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1. — Introduction.

This lecture is devoted to an analysis of the new laser cooling mechanisms
which, during the last three years, have allowed the performances of laser cool-
ing to be improved by orders of magnitude.

A very important feature of these new cooling mechanisms is that they re-
quire the existence of several sublevels in the lower atomic state g. The reason
is that new internal times appear in these conditions, which are the optical-
pumping times 7p between ground-state sublevels. At very low laser intensity
I;,, the pumping times tp become very long, much longer than the radiative life-
time 7g of the excited state e, which is the only relevant internal time for a two-
level atom. Multilevel atoms can thus have very long internal times, which ex-
plains why internal variables cannot follow adiabatically the variations of the
laser field «seen» by the moving atom. The important time lag which appears
then between internal and translational degrees of freedom is at the origin of a
large friction foree.

We have thus found it useful to start this lecture by recalling in sect. 2 a few
basic results concerning the effect of a weak-intensity light irradiation on an
atom having several ground-state sublevels. Two types of effects are briefly re-
viewed: reactive effects, such as energy shifts of the ground-state sublevels
(light shifts), on the one hand, dissipative effects, corresponding to irreversible
transitions between ground-state sublevels (optical pumping), on the other
hand. We also show that the total mean force experienced by the atom can be
split into two components, one reactive and one dissipative.

We then present in sect. 3 and 4 two simple one-dimensional cooling schemes
using optieal pumping, light shifts and laser polarization gradients, and leading
to very low temperatures. The first one is the so-called «Sisyphus cooling»
mechanism (sect. 3), where strong correlations between spatially modulated
light shifts and spatially modulated optical-pumping rates lead to a situation
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where the moving atom is running up optical-potential hills more than down (a:
did Sisyphus in the Greek mythology). The second scheme, which uses a ¢* -¢~
laser configuration, is also based on optical pumping, light shifts and polariza
tion gradients (sect. 4). The physical processes responsible for the cooling are
however, quite different from the Sisyphus effect. They involve a very sensi
tive motion-induced imbalance between the radiation pressures exerted by the
two counterpropagating laser waves. We also introduce in sect. 4 the idea of co-
herent population trapping for a A-type atomic transition. We then show ir
sect. 5 how the possibility of making such a coherent population trapping veloe-
ity selective allows one to cool atoms below the recoil limit, corresponding tc
the recoil energy of an atom emitting or absorbing a single photon.

Actually, this lecture follows very closely the second part of a lecture given
at Les Houches summer school in July 1990 [1]. The first part of ref.[1] deals
with two-level atoms. We will refer to this first part when results concerning
two-level atoms are needed.

2. — Optical pumping, light shifts and mean radiative forces.

2'1. Introduction. — This lecture is devoted to atoms having several sub-
levels in the ground state. More precisely, we consider an atomic transition con-
necting two levels g and e with angular momenta respectively equal to J, and
Je, and we suppose J, # 0. As mentioned in sect. 1, such a situation gives rise to
very efficient new cooling mechanisms which we now want to analyse.

Two physical effects, which have been known for a long time, play a basic
role in the new cooling mechanisms. The first one is optical pumping which con-
sists of a transfer of atoms from one sublevel g, of g to another one g, by absorp-
tion-spontaneous emission ecycles. The second one is an energy shift of the
ground-state sublevels, which in general varies from one sublevel to the other
and which is proportional to the light intensity. Such shifts are called light
shifts or a.c.-Stark shifts. Up to now, these effects have been considered only in
connection with the dynamics of the atomic internal degrees of freedom. Very
recently, it has been realized that these effects also play a very important role
in the dynamics of the atomic translational degrees of freedom. So we have
thought it would be useful to recall in this sect. 2 a few properties of optical
pumping and light shifts which are needed for understanding the new cooling
mechanisms discussed in the following sections.

We begin in subsect. 22 by generalizing to multilevel atoms the equations of
motion of the atomic density matrix ¢ and the expression of the mean force
which are well known for 2-level atoms (see, for example, in Chapt. 2 of
ref. [1]). We then show in subsect. 2'3 that these equations can be considerably
simplified in the low-saturation and low-velocity limit, which is precisely the
limit where the new cooling mechanisms are the most efficient. The existence of



NEW LASER COOLING MECHANISMS 101

two different time scales, the radiative lifetime 7y of e and the optical-pumping
time tp in g, with 7p>> 13, allows one to adiabatically eliminate all fast variables
and to get equations of motion involving only the ground-state density matrix.
Such equations of motion contain two types of terms, terms corresponding to a
Hamiltonian evolution and describing the light shifts in g, and terms describing
a relaxation in g associated with optical pumping. The physical content of these
two types of terms is analysed, respectively, in subsect. 24 and 2'5. Finally, we
discuss in subsect. 2'6 the new expression of the mean force in the low-satura-
tion and the low-velocity limit, and we identify two types of terms related, re-
spectively, to the light shifts of the ground-state sublevels and to the absorp-
tion rate from these sublevels.

2'2. Basic equations for mullilevel atoms.

22.1. Approximations. We use a semi-classical description where the po-
sition operator R of the centre of mass is replaced by the c-number r =ry +
+ vy L.

Let P, (respectively, P,) be the projector onto the subspace subtended by
the various Zeeman sublevels of g (respectively, e)

+Jy
Py = _E_:J | g} (Tguel »
(2.1) | e 4
+J.
Pe == EJ !Jem><Jem1 &

The atomic-density operator ¢ can be written

2.2) a'=c'gg+a-ge+o'eg+rree,
where
(23) Tah = Pa O’Pb

with a, b = e or g. Note that o, is now an operator and not a c-number. The two
operators g, and o, are represented by square matrices. Their diagonal ele-
ments give the populations of the various Zeeman sublevels of g and e, whereas
the off-diagonal elements describe «Zeeman coherences» which exist between
them in e or g. Finally, o, and o, = o}, are represented by rectangular matrices
consisting of off-diagonal elements between one sublevel of e and one sublevel
of g, which are called «optical coherences».

The new expression of the atom-laser interaction Hamiltonian V,;,, which
generalizes (2.10) of ref.[1], is given by

2.4) Vi = —d*-Ef (r) exp[—iwyt] —d ™ -Ef () exp[+iwgt],
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where
(2.5) d* =P, dP,, d-=P,dP,

and where E;" (r) (respectively, Ey (r)) are the positive (respectively, negative)
frequency components of the laser electric field:

(2.6) EL(r, t) = Ef* r) exp[—iwyt] + B (r) exp[ +ioy t].

As in (2.10) of ref.[1], the rotating-wave approximation has been used.
It will be useful for the following to introduce the internal atomic operators
G * (r) defined by

(2.7) hG=@r)=d~-Eg ()

and to define dimensionless dipole operators d * in the following way. Let

_ 1 2
(2.8) £: = +—-(£in£ )s & = &,
V2 !
be a spherical basis of polarization vectors, corresponding, respectively, to the

¢* and = polarizations. The Wigner-Eckart theorem (ref.[2], Chapt. XIII) ap-
plied to the vectorial operator d * gives

(2.9) (Jem|g,-d™ |Typ) = DJ.m|T,1ug),

where (J.m|J,1uq) is a Clebsch-Gordan coefficient and where & is a reduced
matrix element which can always be taken real with an appropriate choice of
the relative phases of e and g, and which is independent of the magnetic quan-
tum numbers, m,x and q. We will put

(2.10) dt=@d*=d"),

so that the matrix elements of zq-a * are just Clebsch-Gordan coefficients. We
also introduce the polarization vector &(r) in r by

@2.11) Ef () = %s(r) L),

the amplitude &1, (r) being real. The (generally complex) polarization vector &(r)
is normalized

(2.12) gm)-er)=1.

From & and &y, (r), we finally define the Rabi frequency in r

(2.13) h2(r) = —DEL (),

which corresponds to the Rabi frequeney of a transition with Clebsch-Gordan
coefficient equal to 1, excited by a laser field with amplitude &y, (r).
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2'2.2. Operator form of optical Bloch equations. The basic equa-
tions of motion, which generalize (2.42) of ref.[1], can be now written in opera-
tor form

@.14) S o TR, (i%) ,
fz at ")

where Vy;, is given in (2.4) and where
(2.15) H = hwy P,

hey being the energy of e above g (we assume that all sublevels of e are degener-
ate as well as all sublevels of g and we take E, = 0). The last term of (2.14) de-
scribes the damping due to spontaneous emission. For the excited-state density
matrix ., and for the optical coherences s, and oy, it has the same form as in
egs. (2.43a), (2.43¢) and (2.43d) of ref.[1]:

. d -
(216(1) (dt Uee)sp_ Igees
d 78
(2.16b) (—ﬂ' ) = T 5 Tegs
), " 2%
d I
(2.16¢) (—G e) = = =g,
=), " " 2%

where I' is the natural width of e, i.e. also the spontaneous-emission rate. Only
eq. (2.43b) of ref.[1] describing the feeding of s,, from o, by spontaneous emis-
sion has to be modified. One can show (see ref.[3], subsect. 4.3.4) that, for an
atom having a degenerate ground state, the transfer to g by spontaneous emis-
sion with a rate I" takes the form

d . = 5
(216d) ( a c'gg)sp =T o _}1;0' P 1(5:; . d ) Tee (fq T d + ) ;
where the dimensionless operators d = and the basic polarization vectors g, have

been defined above in (2.10) and (2.8). Note that the transfer by spontaneous
emission satisfies the following selection rule:

(2.17) Jem|a|Jem'") > (Jgu|a|yun') with p —p'=m —m’,

which is actually a consequence of the rotational invariance of the atom-vacuum
field interaction Hamiltonian V,y. According to (2.16), the transfer rate associ-
ated with (2.17) is just the product of I" by the two Clebsch-Gordan coefficients
connecting m to p. and m' to u'.
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Calculating the commutator of (2.14), and using (2.15), (24) and (2.16), we
finally get

(2.180) = i AL (T G

(2.185) fw=— (5 - ia) G + A6 (Vo — 7 G 0],

(2.18¢) B (iagg) +i[G ™ (V5 — 5. G * 0],
a =)

where we have used
(2.19a) Teg = Tog €XP [iwy, ]

instead of o, in order to eliminate any explicit time dependence in the coeffi-
cients of the equations and where

(2.195) ¢ = Wy, — Wy

is the detuning between the laser frequency wy, and the atomic frequency e, .
Note that, if the atom is moving, there is an implicit time dependence through
r=ry+ vyt.

2'23. Expression of the mean force. According to (2.30) in ref.[1] and
eq. (2.4) above, the mean force can be written
(220) F, )= —(VWalr, )=+ 2 (d")VE (@) exp[—iw,t] +he.
i=x,Y,2
Using (2.5) and (2.19), the mean value of d;* which appears in (2.20) can be re-
expressed as

2.21) (di* ) = Tr{P.d; Pyo} = Tr{d; oy } = Tr{d;Ty } expliwp 1],
which, inserted into (2.20), yields
(2.22) Fw, t)= 2 Tr{d5.} VEH @) +ee.

i=zy,2
Equation (2.22) clearly shows that the mean radiative force only depends on the
optical coherences 7., and Gg,.

2°3. Limit of low saturation and low velocity.

2'3.1. New possible approximations. Except for the semi-classical and
rotating-wave approximations, egs. (2.18) are exact. We now consider the low-
saturation limit (s << 1), which is the relevant limit for the new cooling mecha-
nisms. In such a limit, the characteristic times for the evolution of the ground
state become much longer than those of the excited state. It follows that o, is a
slow variable compared to g, and o, . After a short transient regime, lasting for
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a time on the order of gy =I'"}, 5, «slaves» the other variables by imposing its
slow rate of variation on 5.y, 5y and o, so that one can write

(2.23) e | KT00e,  |Geg | KT'|Geg | -

It is then possible to use the inequalities (2.23) to neglect the left-hand side of
egs. (2.18a) and (2.18b) in comparison with the damping terms —1Is.,, and
— (I'/2) 5.y which appear in the right-hand side. This yields algebraic equations
allowing o, and o, to be re-expressed in terms of ,,. Such a procedure is called
«adiabatic elimination of the fast variables» and leads for these fast variables to
expressions describing how they adjust themselves at each time to the value
taken at this time by the slowly varying variable.

Such an argument is in fact valid only for an atom at rest, the rate of varia-
tion of ¢ being only due to the absorption and emission processes. For a moving
atom, one must not forget that the time derivatives c,, appearing in the left-
hand side of (2.18) are actually total time derivatives d/dt =3/3t + v,-V, so
that one must also consider the order of magnitude of the terms vy- Vo, =
= k1, vy o Actually, with the new cooling mechanisms, the typical r.m.s. steady-
state velocities reach very low values, for which

(2.24) p=

This is why we will restrict ourselves in the remaining part of this lecture to
calculations done at the zeroth order in x. Such an approximation, which allows
us to neglect &, and ?eg in (2.18), even for a moving atom, eliminates any possi-
bility of taking into account Doppler cooling which appears to the first order in
7, but we are interested now in new cooling mechanisms which are much more
efficient than Doppler cooling, and the equations so obtained will be much sim-
pler. Note finally that we do not neglect in (2.18¢) 3o, /3t and vy Vo, because
ggg i8 a slow variable and the Doppler shift k;, v, can no longer be neglected in
comparison with the characteristic evolution frequencies of o, .

23.2. Adiabatic elimination of the excited state. First we eliminate
optical coherences. Neglecting 3., in (2.18b) leads to

1

(2.25a) Gg= — — G Moy,
Pl o e
2
b T = 1 &=
(2.25 ) Gge = _.Fc—gg (r)‘
3—2§

We have actually neglected the contribution of o, to (2.25). The reason is that
e 15 at least of order 2 in the Rabi frequency Q; (see eq. (2.28) below). Since o,
is multiplied in (2.18a) by G *, which is of order 1 in Q;, the contribution of o, to
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(2.25) is at least of order 3. We restrict ourselves here to calculations up to order
2 in Q,. This is why o, does not appear in (2.25).

Having re-expressed 7., and g, in terms of o, we can now obtain a new ex-
pression for the mean force &. Inserting (2.25) into (2.22) yields

2 Tr{G ™ (Ndi" o } VE; (1) +cic. =
8 i 1:_ T=IY,%
2

(226) &)=

= (G @ (VG * (1)) +ecc.
é— ?,‘2—

We have used (2.7) and the simpler notation
2.27) (X) = Tr{Xog } .

We turn now to eq. (2.18a) giving ... Neglecting &, and using (2.25) for
eliminating &,, and o, we get

228) o= - L 11, G* (oG (r) +he. =

r 6-1‘:E
_Qj
=L Gt MogG )= — () -d " ) o (e () d ).
Pk &%+ %

2'3.3. Equation of motion of the ground-state density matrix. It
remains to transform the last equation (2.18c) describing the evolution of og,.
Using (2.16), (2.25) and (2.28), we get

229) sy= ——G (G Mo+ — G MG () +
P R
> 2
+—L 3 #d Gt MogG Mged”,
2y 2 oa="Ton
1

which is a closed equation of motion for o, since it relates s, only to og,. The
first line of (2.29) describes the effect of the laser excitation, whereas the second
line describes the effect of spontaneous emission. -

We now separate the real and the imaginary parts of 1/(¢ = il'/2). This al-
lows one to transform the first line of (2.29), which will be noted (¢4 s, 25 a
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sum of two terms, the first one involving a commutator and the second one an
anticommutator

L
230) (Ggghue=—i—25[G (NG (), 5gg] — —2—{G~ (VG " (1), oy} -
o+ L sz L=
4 4

In (2.30), {X, Y}, means XY + YX. Note that the operator G~ (r)G * (r) is Her-
mitian and semi-positive since G~ = (G *)',

(2.31) G WG =G"®G* 1),

so that its eigenvalues are real and non negative. Equations having the same
structure as (2.30) and (2.29) have been derived for the first time in ref.[4]
and [5] dealing with the quantum theory of the optical-pumping cycle. The
pumping light was not monochromatie, as is the case here, but a broad-band in-
coherent light, so that eqs. (2.29) and (2.30) had to be averaged over the spec-
tral distribution I(ew;,) of the incoming light.

Equations (2.29) and (2.30) can still be transformed, using (2.7), (2.10),
(2.11) and (2.13). Introducing in G~ G * the Hermitian, semi-positive and di-
mensionless operator

(2.32) AW =(e*(r)-d ) (e@)-dT)=AT@)

r

and the parameters /"' and ¢’ analogous to those defined in (6.15) in ref.[1]

Q)
2.330) Pl B0
. 2| 2
1
Q)
(2.330) rw=s—t =20
G I 2
1

where the saturation parameter s(r) is given by

Qi)

(2.34) s(r) = —‘“‘2“173
'\2
it 4
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we get for o,, the following equation of motion:
gg

r (r)
2

(235) ggp = — 8" (M[AW), o] — AW, o5 b+

+0'0) X (Fd ) (e)d ) o (e*(r)-d ) (g d ).

q=-1,0,+1

24, Light shifts of the ground-state sublevels.

2'4.1. Hamiltonian part of the equations of motion. The terms in-
volving a commutator in (2.30) and (2.35) ean be written as [H(r), o 1/ih,
where

(2.36) Hy = LQG TG () =k ) A).
o2 + %
The corresponding rate of variation is the same as the one which would be in-
duced by the effective Hamiltonian H ().
We will call |g,(r)) the eigenstates of A(r) and 2, (r) the corresponding eigen-
values, which are real and non negative since A(r) is Hermitian and semi-positi-
ve: :

(2.37) AN |g. @) = 2, g.), () real and =0.

If the term associated with (2.36) were alone in the equation of motion of o,
one would find that the Zeeman degeneracy in g is removed (if the 2, are all dif-
ferent) and that the states |g,(r)) get a well-defined energy shift 3E,, called
light shift and equal to

(2.38) eE, = hd' 2.

2'42. Properties of light shifts. The light shifts 3K, are, as ¢', propor-
tional to QF, i.e. to the laser intensity I;,. Since the A, are positive (see (2.37)), all
the 3F, have the same sign, which is the sign of 3, according to (2.33b).

The variations with the detuning & of the light shifts 3£, are those
of a Lorentz dispersion curve, corresponding to a reactive effect. Using
the analysis of sect. 6.2 in ref.[1], and in particular the diagram b of
fig. 9, one can also consider that the light shifts are associated with a
virtual absorption and re-emission of the incident photon (contamination
of |g,p; kre,) by |e, p+ fiky; 0)). Light shifts can be considered as the
equivalent, for the absorption process, of the Lamb shift (which is associated
with the virtual emission and reabsorption of a spontaneous photon). Another
equivalent picture for light shifts is to consider them as the polarization
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energy of the induced atomic-dipole moment in the driving laser field, which
explains the denomination «a.c.-Stark shifts» which is sometimes used.

The first observations of light shifts [5-7] predate the use of lasers in atomic
physics. They were induced by the light coming from an ordinary discharge
lamp (this is why they were called «Lamp shifts» by A. KASTLER, in a word play
indicating their origin and their analogy with the Lamb shift). The fact that the
light shifts depend on the polarization of the light beam and vary from one
ground-state sublevel to the other was essential for their observation. Because
of the length of relaxation times in atomic ground states, magnetic-resonance
curves in atomic ground states are very narrow, and even if the light shifts of
two ground-state sublevels differ only by a few Hz, such an effect can be easily
detected as a shift of the magnetic-resonance curve [6].

To conclude this subsection, we point out a few symmetry properties of the
effective Hamiltonian (2.36). The two operators d © appearing in the expression
(2.32) of A are vectorial operators. It follows that the expansion of H.y in irre-
ducible tensor operators T\ of rank k can contain only terms with & = 0,1,2.
The corresponding terms of H.; describe, respectively, a global shift of the
ground state (k = 0) and a removal of degeneracy equivalent to the one which
would be produced by a fictitious magnetic (k = 1) or electric (k = 2) static
field, the direction of these fictitious fields being determined by the polarization
veetor £(r). The interested reader may find more details in ref.[8,9].

2'5. Relaxation associated with optical pumping.

2'5.1. Departure rates. The second term of (2.35) describes how the
atomic ground state is emptied by the absorption process. The contribution of
this term to the rate of variation of the diagonal element of ¢ in the eigenstate
lg.) of A can be written

(2.39) (92 1519 Dabs = — {9 | 792,
where
(2.40) r,=r'x

can be interpreted as a rate of departure from the state |g,). Note that I', is
nonnegative as A, (see eq. (2.37)), is proportional to the laser intensity I, ~ @
(as I'"), and varies with the detuning ¢ as a Lorentz absorption curve (dissipa-
tive effect).

The fact that the A,’s are not all equal means that the departure rates vary
from one sublevel to the other. If one A, vanishes, there is no possibility for an
atom in the corresponding sublevel |g,) to leave such a state by photon absorp-
tion. The sublevel |g,) then appears as a trap state.
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2'6.2. Feeding of the ground state by spontaneous emission. The
atoms which have left the ground state by photon absorption fall back in the
ground state by spontaneous emission. Such an effect is described by the last
term of (2.35) which is, as the second one, proportional to I'' (dissipative
effect).

One can easily check that the trace of the second term of (2.35) is opposite to
the trace of the third one (*). This means that there are as many atoms leaving g
per unit time as atoms falling back in g.

As a consequence of these absorption-spontaneous emission cycles, popula-
tion differences can build up between the various Zeeman sublevels. This is the
well-known principle of optical pumping [10]. Such a process can be actually
considered as a transfer of angular momentum from the incident polarized pho-
tons to the atoms. For example, if the incident light beam is propagating along
0z and has a right circular polarization ¢* corresponding to photons having an
angular momentum + % along 0z, one can easily show that optical pumping con-
centrates the atomic population in the Zeeman sublevel with the highest value
of the magnetic quantum number along 0z. An example of such a situation will
be given in sect. 3.

Optical pumping appears thus as a relaxation process, described by the last
two terms of (2.35), and leading the internal atomic state to a new equilibrium
state, which generally is quite different from the thermodynamic equilibrium.
The characteristic time constants of optical pumping are on the order of

o I |
(ﬂ.41) Lp I” .

The pumping time 7p is inversely proportional to the laser intensity I;, and can
become very long if Iy, — 0.

2'5.3. Zeeman coherence effects. It may happen that atoms are sub-
mitted to two perturbations with different symmetries. For example, a ¢* po-
larized beam propagating along the Ox axis tends to create in the ground state a
magnetization along 0x. If one applies a static magnetic field B along the 0z ax-
is, this magnetization starts to precess around 0z with a Larmor frequency Qp
proportional to B. Such a precession will wash out the anisotropy along 0Ox in-
troduced by the pumping beam if, during the characteristic damping time =, of
the ground state (pumping time tp, or more generally relaxation time including
the effect of collisions, the finite duration of the interaction...), the rotation
angle (g 7, is not small compared to 1. It follows that, when B is scanned around
zero, the anisotropy introduced by the pumping beam in the ground state un-

(*) The trace of the first term of (2.35), which is a commutator, vanishes. This means that
light shifts (which are a reactive effect) cannot change the total population of the ground
state.
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dergoes resonant variations which can be detected by changes in the light ab-
sorbed or emitted by the atoms. This is the well-known Hanle effect which has
been first observed in atomic excited states[11]. The interest of Hanle reso-
nances in atomic ground states is that they are very narrow, since z, can be very
long. These resonances may thus be used to detect very small magnetic fields,
smaller than 107°G[12,13]. Note that, since Hanle resonances correspond to
resonant variations of the photon absorption rate when B is scanned, the mo-
mentum transferred to the atomic trajectories varies also in a resonant way.
Hanle resonances have been recently detected in this way, by monitoring the
deflection of an atomie beam [14].

In eq. (2.35), the Hanle resonances appear as resonant variations of the Zee-
man coherences (off-diagonal elements of ¢ in the basis of eigenstates of J,).
They represent an example, among others, of situations where optical pumping
cannot be described only in terms of populations (see, for example,
ref. [5]).

2'54. Case of a moving atom. All previous considerations suppose im-
plicitly that the atom is at rest, so that it «sees» a pumping light with a constant
intensity and a constant polarization. If the atom is moving, and if the laser con-
figuration is such that the local polarization varies in space, the moving atom
will «see», in its rest frame, a time-varying polarization. Since it reacts to these
variations of optical pumping with a characteristic time on the order of p, its
internal state in r will lag behind the steady state of an atom which would be at
rest at the same point. We will discuss later on the role played by such a time
lag in the new cooling mechanisms.

2'6. General properties of the mean force. — We come back now to the ap-
proximate expression (2.26) of the mean force, deduced from the general ex-
pression (2.22) after adiabatic elimination of the optical coherences. In this last
subsection, we discuss the physical content of eq. (2.26), and we point out the
connection which exists, in the low-saturation and low-velocity limit, between
the mean force and the light shifts and absorption rates discussed in subsect.
24 and 2'5. Other similar treatments can be found in ref.[15] and [16].

2'6.1. Reactive component and dissipative component. In (2.26),
we split 1/(¢ — iI'/2) into its real and imaginary parts. We will call reactive and
dissipative the components of the mean force respectively proportional to these
real and imaginary parts:

(2420) Freae(r) = — ﬁ;}& (G~ M) (VG* @) +{((VG~ @) G )],
& =
4
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S KVG~ @) G ) — (G~ (VG @)).

4

(242b) Py (1) = th—2—

O

The denomination reactive and dissipative comes from the ¢-dependence of the
real and imaginary parts of 1/(¢ — il'/2). Note, however, that the s-dependence
of Freact aNd F gy is not entirely determined by the two terms which multiply
the brackets of (2.42a) and (2.42b). The average values which appear ingide the
brackets depend on the ground-state density matrix o,, which is obtained by
solving eq. (2.29). Such a solution is itself a function of ¢ and I', so that the final
expressions of &, and Fy, will have a more complicated dependence on ¢

larger than Fj,, since the bracket of (2.42b) can be much larger than the
bracket of (2.42a).

One can still give a useful equivalent expression of &, and Fy;, by using
an expansion of the laser electric field Ey, in plane waves. If we use for the posi-
tive-frequency component E; the expansion

(2.43) ’ Ef ()=2E; 1),
I

where the r-dependence of E,” is given by

(2.44) E; () ~ explik, 1],

then we can write

H

(2.45) R ik

m
where, according to (2.7) and (2.43),

(2.46) WG =d*-E;(r).
Inserting (2.45) into (2.42) ﬁnally gives

2.47a) Frogs = — i 2 2 1k, (G G ) = (G G,

I|2
4

O +

(2-47b) g:iissip

; 2k, (GGl Y+ (G Gl

v

o

2'6.2. Interpretation of the reactive component. Comparing the ex-
pression (2.42a) of F . and the expression (2.36) of the effective Hamiltonian
Hy describing the light shifts of the ground-state sublevels shows that &,
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can be written
(2.48) Freact = — (VHer ),

which clearly demonstrates the close connection which exists between the reac-
tive component of the mean force and light shifts.

An equivalent expression of H.; in terms of its eigenvalues £, and eigen-
states |g,) is

(2.49) Hy =2 E,(n)g.0){9. )| .

Taking the gradient of (2.49) (and omitting r to simplify the notation)
gives

2500  VHer=2(VE,) [g.)(g. | + 2 E.[(V]g.D{g. | + l9.) (Vg D],

which, inserted into (2.48), leads to
(2.51) Freae, = — 2(VENIT, —

- 2 E,Kg.19(V]g.)) + (V(g. Dalg.)l,
where

(2.52) I, = (9. |s]g.)

is the population of the ground-state sublevels |g,).

The first term of (2.51) has a straightforward interpretation, analogous to
the dressed-atom interpretation of the mean dipole force given in sect. 7.3 of
ref, [1] for a 2-level atom (see eq. (7.10)). This term is just the average value of
the forces —VE, associated with the spatial gradients of the light-shifted
ground-state sublevels, weighted by the probabilities of occupation [T, of these
sublevels.

In order to interpret the second line of (2.51), we suppose that the atom is
displaced from r to r + dr, and we calculate the work done against the reactive
force

(2.53) — Freaet Ar = 2 I1,-dE, +

+ S E, g, |2]dg,) + (dg. |o1.)1,
where dE, and |dg,), given by
(2.54a) d&, = dr-VE,,
(2.54b) |dg..) = dr-V|g,),

represent the variations of £, and |g,) between r and r + dr. The second line of
(2.53), which originates from the second line of (2.51), is associated with the

8 - Rendiconti S.ILF. - CXVIII
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spatial variations of the wave functions of the sublevels |g,). It can be written,
to first order in dr,

(2.55) 2 E, direead,
where
(2.56) A = (g, (r + dr)|o|g, (r + dr)) — (g. )| |g. @)

is the nonadiabatic variation of the population of the state |g,) due to the spatial
variations of the wave functions. It follows that the second line of (2.51) repre-
sents the contribution of nonadiabatic transitions between the various ground-
state sublevels, induced by atomic motion and due to the spatial variations of
the wave functions of the light-shifted ground-state sublevels.

Finally, we discuss the physical content of eq. (2.47a), deduced from the
plane-wave expansion of the laser field. Since the force exerted by the laser
beam comes from a disappearance of photons k, from the various plane waves ¢
forming the laser wave, each of these photons carrying a momentum #k,, one
can interpret the coefficient of #k, in (2.47a) as the mean number of photons ab-
sorbed per unit time in the plane wave p. The fact that this coefficient depends
on v means that the field E, of the plane wave y interacts with the atomic dipole
induced by the wave v. It follows that

react
- . m——
2.57) e G/ )= (G G
Ry

can be interpreted as the mean number of photons « absorbed per unit time out
of the wave p interacting with the reactive component of the dipole moment in-
duced by the wave v. We take here the reactive component of the dipole mo-
ment because of the ¢-dependence of (2.57). From (2.57), it follows that

(2.58a) N g
' dt ’
AN oot AN et
(2.58b) T

Such a result is easy to understand. Reactive effects involving a single wave
cannot lead to photon absorption. This is the meaning of (2.58a). But, according
to (2.568b), photons can disappear from one wave, p. for example, and reappear in
the other wave v of the pair pv. This is a redistribution process. During such a
process, the total energy of the field does not change, because the waves p, v
have the same frequency. But, since k, # k,, there is a change of momentum of
the field. The corresponding change of the atomic momentum is at the origin of
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Freact, Which can be written according to (2.57)

rcan.t

(2.59) Freaes = O ik, — k,)

pairs pv

2'6.3. Interpretation of the dissipative component. Using the same
type of argument as in the previous subsection, one shows from (2.47b)
that

(2.60)

[(Gu_ G_r;+ ) ot ((7 .u_ Gv+ )}

dissip £
dny, 2
dt ol

is the number of photons absorbed per unit time out of the wave . interacting
with the dissipative component of the dipole moment induced by the wave v.
The equations corresponding to (2.58) are now

dN Jesip J
2.61a) =—L @G 6r)y=0,
dt PR o
’ 4
dN dissip dN dissip
2.61b e,
(2610) a dt

The contribution of the wave u alone to F, is different from zero and equal
to

I Y
7ﬁk,ﬂ (Glu G,u >'

(2.62)
2 112
&2+

1

Such a term represents the radiation pressure exerted by the wave . indepen-
dently of the other waves. Note, however, that (2.62) depends implicitly on the
other waves v since the average values appearing in (2.62) are taken in o,
which itself is determined by the total laser field E; , i.e. by the whole set of
plane waves forming E|,.

There are also crossed terms p # v in the expression (2.47b) of Fg,, the
contribution of the pair (u,v) being equal to

(2.63) —=—hlk, + k,)(G, G, ) + (G G,")].

2, I?
4

g

Such terms describe interference effects between the waves p and v. The radia-
tion pressure exerted by the wave p is modified by the presence of the wave v
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and vice versa. Equation (2.615) means that, if the absorption of the wave u is
.modified by the presence of the wave v, the absorption of the wave v is modified
by the same amount by the presence of the wave . We have not here a redistri-
bution process as in the previous subsection, but a similar increase (or decrease)
of the absorption of both waves due to interference effects.

2'6.4. Particular case of one-dimensional molasses. Suppose that
the laser configuration is formed by two counterpropagating plane waves 1 and
2, with

(2.64) ki=k, ky=-k.

As shown in subsect. 2'6.2, ., is a pure redistribution force, which does not
contain single-wave terms. Equation (2.59) becomes now, taking (2.64) into
account,

(2.65) Frreaet = ———2hkil(Gy G5™ ) — (G5 Gi* )].
224 L2
4
Since k; + k; = 0, the crossed term (2.63) of F, vanishes. The radiation
pressure of each wave is increased by the presence of the other wave, but these
extra forces have the same modulus but opposite directions, so that they cancel
out. We are left with a sum of single-wave terms which can be written

(266) F dissip = Lﬁﬁk[((}f Gi") —(Gsy G5 )].

2
o —
4

It follows that, for one-dimensional molasses, Fg;.p, is just equal to the differ-
ence between the radiation pressures exerted separately by the two waves.

We will conclude with a remark concerning the polarizations & and & of the
two counterpropagating waves. If we take k; = — k, along 0z, these polariza-
tion vectors are perpendicular to 0z, because of the transversality of the field,
and can, therefore, be considered as linear superpositions of the right and left
circular polarizations " and o7. It follows that all the matrix elements of
G, G,”, with u,v =1 or 2, in the ground-state manifold, satisfy the selection
rule Am = 0, =2, where m is the magnetic quantum number along 0z (G, and
G, change m by +1 or —1). Consequently, if the angular momentum J, of the
ground state is equal to J, = 1 /2, one concludes that all the G,” G, are diagonal
in the basis of eigenstates of J,, and also G ~ G . In such a case, the eigenstates
of the effective Hamiltonian H.;, which, according to (2.36), is proportional to
G~ G ", are independent of z.
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3. — Low-intensity Sisyphus cooling.

3'1. Introduction. — During the last few years, spectacular developments
have allowed the performances of laser cooling to be improved by orders of
magnitude. The starting point of these developments was the demonstration,
by the N.I.S.T. group at Gaithersburg, that the Doppler limit could be over-
come [17]. For a discussion of this experiment and of the subsequent ones from
various groups, we refer the reader to Phillips’s lecture in this volume. The
purpose of this section and the following one is to present a few new cooling
mechanisms which, we think, are responsible for the very low temperatures
which have been measured.

This section 3 is devoted to the analysis of a low-intensity version of the
Sisyphus cooling mechanism presented in sect. 7 of ref.[1] for a 2-level atom
moving in an intense laser standing wave (see also ref.[18]). As in that section,
we have an atom moving in a bipotential, and jumping preferentially from the
tops of the hills of one potential curve to the bottoms of the valleys of the other
potential curve, so that, on the average, the atom is running up the hills more
than down, as did Sisyphus in the Greek mythology. But, now, the bipotential
is no longer associated with the two dressed states originating from the excited
state e and the ground state g (more precisely from |e,N) and |g, N +1),
where N denotes the number of laser photons). It is associated with two
ground-state Zeeman sublevels which undergo spatially modulated light shifts
and between which optical-pumping transitions occur with a rate which is also
spatially modulated. We show that in this case a very efficient Sisyphus cooling
can appear at very low intensity, when the saturation parameter s is very
small.

We begin in subsect. 3'2 by introducing a one-dimensional model consisting
of a laser configuration exhibiting strong polarization gradients and of a simple
atomic transition leading to a mean radiative force which is only due to the spa-
tial gradients of light shifts. Using the results of sect. 2, we determine in sub-
sect. 3'3 the light shifts of the atomic ground-state sublevels as well as the opti-
cal-pumping transition rates between these sublevels. We then consider in sub-
sect. 3'4 a moving atom and we show how the spatial modulation of light shifts
and optical-pumping rates in the laser polarization gradient ean conspire to pro-
duce a Sisyphus cooling. A more quantitative analysis is presented in subsect.
3’5 in the traditional case where the internal times 7%, are much shorter than
the external times T,. We evaluate the friction coefficient and give an order of
magnitude of the equilibrium temperature. Finally, some indications are given
in subsect. 3'6 on the less usual case where the external times become of the or-
der of or shorter than the internal times. Such a case is actually important be-
cause it corresponds to the situation where the low-intensity Sisyphus cooling
reaches its limits.

We will follow here the presentation of ref.[19] and [20]. More details may
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be found in these references, and in ref. [21] which gives the results of a numer-
ical integration of optical Bloch equations. A general review of the field is pre-
sented in ref. [22].

3'2. Presentation of the model.

32.1. Laser configuration. We consider two counterpropagating waves
along 0z, with orthogonal polarizations ¢, and g, and the same amplitude &
(fig. 1a)). With an appropriate choice of the relative phases of the two waves,
the laser electric field in z can be written

(3.1) E; (z, t) = E{ (z) exp[ —iwt] +c.c.
with
3.2) Ef(z) = é(sx exp [tkz] — 1g, exp[ —ikz]) &.

=\

x
1 ! I 1 s
/ AE Ad 3A8 A2 z
¥ a)
e e“_"__ eq____ €
1 ‘/2 1 3 Jﬁ 1
3 V3 1’5 3

b)

g-m gﬂ?.‘

Fig. 1. - a) Lin L Lin laser configuration, exhibiting a strong polarization gradient along
0z. b) Clebsch-Gordan coefficients for a J, = 1/2<>J, = 3/2 transition.
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As in (2.11), one can then write
3.3) Ef @) = %a:(,\/é &) = %J;L &),

where &7, is a real amplitude which is independent of z and equal to (,’u\/i and
where the normalized polarization vector £(z) is given by

(3.4) £(z) =coskze_ —isinkzg, .

According to (3.4), the laser polarization is an elliptical one which is particularly
simple in certain places: ¢~ in z = 0, linear along (g, — sy)/\/é inz=2/8,¢" in
z = A/4, linear along (g, + sy)/\/é in 2=32/8, ¢~ in 2= 1/2 and so on (see
fig. 1a)).

The laser configuration of fig. 1a) exhibits, therefore, a strong gradient of
ellipticity along 0z, on a length scale equal to a fraction of wavelength. Since the
internal atomic state depends on the polarization of the pumping light, such a
configuration leads, as will be shown below, to large nonadiabatic effects, since
a moving atom has to respond to the variations of the laser polarization due to
its motion with an internal response time (the optical-pumping time) which be-
comes very long at low intensity. By contrast, if the two counterpropagating
laser waves had the same polarization, one would have just a gradient of inten-
sity, without any polarization gradient. In the low-intensity regime considered
here, this would produce only a slight change of the total population in the
ground state g (which remains close to 1), without any change of the anisotropy
in g (characterized by the population differences between the ground-state sub-
levels and the Zeeman coherences between them).

32.2. Atomic transition. Simplifications for the mean force. As
for usual laser-cooling experiments, we consider a transition J, —J, = J, + 1.
We take the simplest possible value of J, leading to a degenerate ground state,
ie. Jy=1/2. Figure 1b) gives the various Clebsch-Gordan coefficients corre-
sponding to a transition J, =1/2—J, = 3/2.

Since there are only two Zeeman sublevels in the ground state, the matrix
representing G~ G * in the ground-state manifold is diagonal (see end of sub-
sect. 2°6.4). It follows that the effective Hamiltonian H.y describing the light
shifts of the ground-state sublevels is diagonal in the basis {|g.yp)} of eigen-
states of J,, so that the eigenstates of Hy, which coincide with |g., /2 ), are inde-
pendent of z. One can thus, in the expression (2.51) of ..., neglect the second
line which is associated with the gradients of the wave functions, and
write '
(3.5) Freact = — 1112 VE 110 — 111 VE 4o,

where I1.,5 and E ., are the populations and the energies of |g.s;).
Since we consider here a one-dimensional molasses, we can use the expres-
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sion (2.66) of Fyigp, Which involves the radiation pressures exerted separately
by the two counterpropagating waves. Here also, the matrices representing the
two operators G, G;" and Gy G appearing in (2.66) are diagonal in the basis
{1g9+/2)} of eigenstates of J, (see end of subsect. 2'6.4). Since both counterprop-
agating waves have a linear polarization, one can then easily show that
(Gy Gy ) and (G5 G3" ) are equal and proportional to IT_y /5 + IT, s = 1, i.e. inde-
pendent of the internal atomic state. It follows that

(3.6) Faissip = 0.

The choice of the simple atomic transition of fig. 1b) leads, therefore, to a
mean force which is due only to the spatial variations of the light-shifted en-
ergies of the ground-state sublevels. This is why the new cooling mechanism
analysed in this section can be considered as a pure Sisyphus effect.

3'3. Dynamics of the internal degrees of freedom.

33.1. Light shifts of the ground-state sublevels. The light shifts
E .1/3(z) of |g.1/e) can be written

3.7 E:l/ﬁ (2)=hd"A.. (2),

where A, , (z) and A_ _ (z) are the diagonal elements of the operator A(z) defined
in (2.32), which are the only nonzero matrix elements of this operator, and
where &' is given by (2.33b). Note that, since the laser amplitude in z, &, =
=&y V2, is independent of z (see eq. (3.3)), the Rabi frequency £, appearing in
(2.38b), is also independent of z, so that the only z-dependence in (3.7) comes
from the matrix elements of A, and not from ¢'. Note that &' can be
written

(3.8) &' = a% = 85,

where s is the saturation parameter associated with &y, and s, = s/2 the satura-
tion parameter associated with &, i.e. with each of the two counterpropagating
waves.

Inserting (3.4) into (2.32), and using for the matrix elements of s,;-ff . the
Clebsch-Gordan coefficients of fig. 1b) (see egs. (2.9) and (2.10)), we get

3.90) A, . (2) = sin*kz + écoszkz o %coszkz,
y - 2 1 .9, 2 .5
(3.90) A__(2) = cos*kz + gsm kz=1- §sm kz.
Figure 2 represents the spatial variations of E.,.(2). We have supposed ¢ <0,

so that the light shifts are negative. At z =0, 2/2..., where the polarization is
s, the sublevel |g_,s) is shifted downwards (with respect to the zero of en-
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Fig. 2. - Light shifts £ . ,5(2) of |g.1/2) vs. 2. The size of the solid circles is proportional to
the steady-state populations of |g.;s) for an atom at rest in z. We have supposed
e<0.

ergy, corresponding to the absence of laser) three times more than the sublevel
|g+1/2), because the ¢~ transition starting from |g_,s) is three times more in-
tense than the o~ transition starting from |g.,;). The situation is opposite in
z = /4, where the polarization is ¢, and where the sublevel |g,, /2) is shifted
three times more than |g_,.). Finally, in z = /8, 31/8..., where the polariza-
tion is linear, both sublevels undergo the same light shift.

Using (3.9) and (3.7), we can also write

(3.10a) E. ()= - % + Upcos®kz,
(3.100) E_ @)= — % + U,sinkz,
where

ey 2 af - 2 M,
(8.11) U=~ s 2 h3so

is the depth of the potential wells associated with the spatial oscillations of
E . i/2(2) and E_,;(2). Equations (3.10) also allow the expression (3.5) of the re-
active force, which coincides with the total mean force because of (3.6), to be
transformed into

3.12) Fronet (2) = F2) = £,kUy M (2) sin2kz ,



122 C. COHEN-TANNOUDJI

where
(3.13) M(2) =1 . 1p2(2) — [ _145(2)

is the difference between the populations of the two sublevels.

3'3.2. Optical-pumping rates. First we consider the departure rates
from |g., /2 ¥ /2 (2), associated with the anticommutator of (2.35), and given
by (see also (2.39) and (2.40))

3.14a) Iap@=I"A,,@ =1*’(1 = %cosgkz),
(3.14b) Iyp@=I"A__@)=T" (1 » %sinzkz),
where

(3.15) I ='1*§ =Ts,.

The last term of (2.35), which describes how atoms return to the ground
state after having absorbed one photon, can be easily caleulated, using the ex-
pression (3.4) of £(z) and the Clebsch-Gordan coefficients of fig. 15). Such a term
couples populations only to populations, because the value 1/2 of J, excludes
any off-diagonal element (g,, |ogg |gm') Of og With m —m' = + 2,

Adding the contributions of the last two terms of (2.35), and using (3.14), we
finally get, for the populations /7., of |g.y.), the following rate equations de-
seribing the effect of optical pumping:

(3.16&) _élzﬂ_i.l/g(Z): _P+_,_ (Z}H_'_l{z(Z)+P__,+(Z)H_1J(2(Z),
B16) SN ip@) =~ @I p@ + T DMp),
where

3.17a) I @)= %r’ costhz,

(3.17b) r_..@) = %r* sin® k2

are, respectively, the optical-pumping rates from |[g.,.) to |g_,5) and from
|9-1/2) to |g41s2)-
Subtracting (3.165) from (3.16a) and using (3.13) and (3.17), we also get for
A (z) the following equation:
d

(3.18) PTACEE Tip[tor(z) + cos 2kz],
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where 7p, given by

9 9
(3.19) G e g

is the optical-pumping time characterizing the time constant with which the
population difference reaches its equilibrium value.

It is clear from (8.17) that, as the light shifts £, (2) given in (3.10), the op-
tical-pumping rates from one sublevel to the other are spatially modulated. The
same function of z, cos?kz, appears in (3.10a) and (3.17a). There is, therefore, a
perfect correlation between the spatial dependence of the light shift of |g.,.)
and the spatial dependence of the optical-pumping rate from |g.,p) to |g_1s).
More precisely, E ., (z) and I', _, _ () reach their maximal values for the same
values of z, those for which cos’kz = 1. A similar results holds for E_, . (2) and
I'__,,(z). This means that the transition rate from |g,, ,2) (respectively,
|g-172)) to |g_152) (respectively, |g.1/2)) is maximum at the places where the
energy of |g,y.) (respectively, |g_y/»)) is the highest. We will see in the next
subsection that, for a moving atom, the most probable processes are those
where the atom leaves one of the two oscillating potential curves of fig. 2 at the
top of one hill and is transferred to the bottom of one valley of the other poten-
tial curve. This is the key point of the cooling mechanism discussed in this
section.

3'3.3. Steady-state populations for an atom at rest. If we suppose
that the atom is at rest in z, all coefficients of (3.18) are time independent. This
equation has, therefore, a steady-state solution given by

(3.20) M H(2) = IT 5 (2) — 1T, 2 (2) = — cos2kz.

Combining this equation with the normalization condition I]‘ifl/z (2) + I, p(2) =
=1, we get

(321&) HS.E 1/2 (Z) = Sjllz kz ’

(3.21b) I 5 (2) = cos®kz.

The size of the solid circles of fig. 2 is proportional to these steady-state popula-
tions. For a given value of z, the most populated sublevel is the lowest one. At
the top of the hills, the population is equal to zero, whereas it is equal to 1 at the
bottom of the valleys.
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3'4. Cooling mechanism for a moving atom.

3'4.1. Sisyphus effect. Consider an atom moving with velocity v along 0z
in the bipotential E.,,(2) of fig. 2. We suppose that initially v is large
enough:

(3.22a) %M«uz > U,

(3.22b) ko>>T",

so that, on the one hand, the atom is not trapped in one of the potential wells
and, on the other hand, it travels over several wavelengths before being opti-
cally pumped from one sublevel to the other. Note, however, that v is small
enough so that we can still neglect kv in comparison with I' (negligible Doppler
cooling)

(3.23) kv <<TI.

Condition (3.23), which can be written o' ~'<< A, means also that the atom trav-
els over a distance very small compared to A during the duration I" ! of a fluo-
rescence cycle. In other words, each optical-pumping cycle can be considered as
occurring instantaneously in a given point of the 0z axis.

A total atomic energy

Fig. 3. — Sisyphus effect for a moving atom. Because of the strong correlation between the
spatial dependences of light shifts and optical-pumping rates, the atom loses potential en-
ergy when it jumps from one sublevel to the other. The upper part of the figure gives the
corresponding variations of the total energy. The random path sketched here has been ob-
tained for ¢ = — 5I', @, = 2.3I" and for the cesium recoil shift #k?/MI'="7.8-10"%
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Suppose that initially the atom is in the sublevel |g_;/) (fig. 3). As long as it
remains in this sublevel, its total (kinetic+ potential) energy, represented in
the upper part of fig. 3, remains constant. We neglect for the moment the recoil
due to the absorbed and re-emitted photons in the fluorescence cycles g_;/, —
—> e,y (Or e_gp5) — g_1/» Where the atom returns in g_, . Because of the spatial
dependence of the optical-pumping rates, discussed at the end of subsect. 3'3.2,
the transfer by optical pumping from g_,» to g/, Will occur preferentially near
the maxima of £ _,,(2), and the atom will jump suddenly from a point near the
top of one hill of £_,/(2) to a point near the bottom of one valley of £,/ (2).
The corresponding change 3U of its potential energy will, therefore, be nega-
tive and on the order (in absolute value) of Uj. If we neglect here also the recoil
of the absorbed and re-emitted photons, the total energy of the atom will de-
crease suddenly by an amount U (first discontinuity in the curve represented
in the upper part of fig. 3).

From there, the same sequence can be repeated. On the average, the atom is
running up the hills more than down and its total energy decreases by a series
of discontinuous steps until its kinetic energy becomes on the order of or small-
er than U (see, for example, the last jump of fig. 3). Such a qualitative analysis,
which is confirmed by the results of more quantitative treatments, therefore
shows that the kinetic energies which can be achieved by low-intensity Sisy-
phus cooling are on the order of the depth U, of the potential wells associated
with the spatially modulated light shifts: Mv*/2 ~ U,. For large detunings
(|2 >I), which is the interesting case where the light shifts of the ground-
state sublevels are larger than their widths, Uy is on the order of #Q%/|2|, so
that

o2

o]

(3.24) kg T

3'42. Threshold intensity. Cooling limit. According to eq. (3.24), the
temperature can be decreased by decreasing the laser intensity I;, ~ Q%, or by
inereasing the detuning 4. Obviously, one cannot decrease I}, indefinitely. There
must be, therefore, a threshold intensity below which eq. (3.24) is no longer
valid.

Actually, in deriving (3.24), we have neglected the recoil due to the ab-
sorbed and re-emitted photons in each fluorescence cycle. We have thus implic-
itly assumed that the mean loss of potential energy at each optical-pumping cy-
cle, on the order of U, is much larger than the mean increase of kinetic energy
due to the recoil, on the order of Ey = #*k* /2M. If I}, is decreased, U, also de-
creases, and, when U, becomes on the order of a few Ey, the cooling due to the
Sisyphus effect is no longer sufficient to overcome the heating due to the recoil.
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There is, therefore, a threshold intensity given by
(3.25) (Up)inr > a few Ey.

The previous analysis also shows that low-intensity Sisyphus cooling cannot
lead to minimum energies lower than a few Eg. The characteristic energy is
now the recoil energy Eg, and not A" as was the case for Doppler cooling.

34.3. Comparison of internal and external times. In the cooling
scheme discussed in this section, internal variables evolve with a characteristic
time T, equal to the optical-pumping time 7p:

9
(3.26) Tt = Tp = 21"_30
To characterize the evolution of external variables, we suppose that the atom
has been cooled during a time long enough that it is quasi-trapped in the poten-
tial wells of fig. 3, and we introduce the oscillation frequency (. in these wells.
Near the bottom of one potential well, for example near z = 0, we have, accord-
ing to (3.100),

3.27) E_ @)= - %’TQ + k2Ug2? for |z| <1/k,

so that Q. is given by

. [au, _\/4h|a“|sg
(3.28) Qe =k T s
The external time T is on the order of the oscillation period:
e 1
(3.29) Tow= i

An important parameter for characterizing atomic motion is, therefore,

2Thk? |8| Ty
(3.30) o TR ol L ..
! MS()I‘?' Text

If Q. 7p < 1, the atom makes several transitions between |g_;.) and |g. /)
in a single oscillation period. In such a «jumping regime», internal variables are
much faster than external variables. This is the usual regime considered up to
now in the semi-classical treatment of laser cooling. One can adiabatically elimi-
nate the internal variables and desecribe atomic motion in terms of a velocity-de-
pendent force and a momentum diffusion coefficient. Such a treatment, which is
given in detail in ref.[19], will be sketched in subsect. 3'5.

If Q.. tp >> 1, we are in the opposite situation where the atom makes several
oscillations in a potential well before being optically pumped into the other sub-
level. Such an «oscillating regime», where external variables are faster than in-
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ternal variables, is quite unusual in laser cooling of free atoms. It is important
here since, if one decreases (2,, at fixed ¢, in order to decrease the temperature
estimated in (3.24), one sees from (3.30) that one can go from the jumping
regime to the oscillating regime. A few remarks on this regime will be given in
subsect. 3'6. More details may be found in ref. [20] and [23].

Before ending this subsection, we would like to mention other cooling mech-
anisms, closely related to the one discussed in this section, but which do not use
polarization gradients [24,25]. Suppose, for example, that the laser configur-
ation consists of two counterpropagating waves along 0z, with the same circular
polarization «*. We have in this case a pure ¢* standing wave. If we still consid-
er aJ, = 1/2 < J, = 3/2 transition, the light shifts . (2) of |g.,s) oscillate in
space (with K., =3E_,;), the splitting between the two sublevels being
equal to zero at the nodes of the standing wave and maximum at the antinodes.
Because of optical pumping, all atoms are pumped into |g.,) and the steady-
state population of this state for an atom at rest in z remains equal to 1 and inde-
pendent of z, since, in the limit s << 1, the population of the excited state is negli-
gible. Suppose now that one adds a small static magnetic field B, perpendicu-
lar to 0z. If B, is small enough, its effect will be important only near the nodes
where it mixes the sublevels |g.;,) which become degenerate in such places.
Consider then a moving atom, initially pumped in the sublevel |g,;;). When
such an atom passes through a node, Landau-Zener transitions can transfer it to
the other sublevel |g_, ), which is less light shifted than |g. /). The atom will
remain in this sublevel for a time on the order of tp before being optically
pumped back to |g.1/2). One can then easily see that such a scheme provides a
new example of situations where the atom is running up the hills of oscillating
potential curves more than down.

3'5. The jumping regime (2,7p<<1). — We suppose in this subsection that
Qpee tp < 1, so that

(3.31) ThaeTi ;.

It follows that during the time required by the internal variables to reach a
steady state, or more precisely a forced regime, the atomic velocity does not
change appreciably. We can thus set

(3.32) 2= vt

in the equations of motion (3.16) of internal variables and consider v as a con-
stant when solving these equations.

3'5.1. Internal state for an atom with velocity ». Inserting (3.32)
into the equation of motion (3.18) of the population difference .# leads to

d 1

(3.33) SO+ = I ) = —Tlpcosszt,
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which is a linear differential equation with constant coefficients (since tp is, ac-
cording to (3.19), independent of z and thus of f) and with a source term modu-
lated at the angular frequency 2kv. The forced-regime solution of (3.33) can be
written

-1

: P .
(3.34) M () = — Re ———— exp [2ikvt],
L 2ikv + tp ?

that is also, coming back to the variable z with (3.32),

v
(3.35) M @) = — ——cos2kz — ——*—sin2ke,
i 1+ _1:?_.
t+(3) (5
where v, is a critical velocity defined by
1 A I

(3.36)

Y= 2k'l'p B 47‘(71) - @

In order to get some physical insight into (3.35), it will be useful to study the
limit of this expression for v << .. To order 1 in v/v,, (3.35) can be written using
(3.36) and the definition (3.20) of the population difference for an atom at rest
in z:

337 W (z) = — cos2kz — 2kvrpsin2kz =
— A (2) — vrp %t_wt(z) = A~ vip).

Such a result clearly shows that (after a transient regime) the internal state of
an atom passing in z with a small velocity » lags behind the internal state of an
atom which would be at rest in z. Because of the finite response time 7p of inter-
nal variables, .# (z) does not adjust instantaneously to the variations of the
laser polarization «seen» by the moving atom. There is a nonlocality in the re-
sponse of the atom which is characterized by the distance vrp travelled by the
atom during the internal time <p.

35.2. Velocity-dependent mean force. Friction coefficient. In-
serting (3.35) into the expression (3.12) of the mean force, and taking a spatial
average, we get for the z-component of the spatially averaged force acting upon
an atom moving with velocity v

k
(3:38) = e WS
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where «g is equal, according to (3.36), (3.11) and (3.19), to

(3.39) ag = k2 Uytp = — 3hk? Ii

For v<<v,, F,(v) can be written

(3.40) F,(v)= — agv,

which shows that «g is the friction coefficient associated with low-intensity
Sisyphus cooling. It is interesting to compare «g with the friction coefficient o
given in (4.8) of ref.[1] for a two-level atom moving in a laser plane wave and
due to the Doppler effect. A remarkable property of «g, given in (3.39), is that it
is independent of the laser intensity Iy, whereas eq. (4.8) of ref.[1] shows that
ap is proportional to s, and thus to [, if s << 1. At first sight, such a result seems
quite surprising, since decreasing I;, decreases the depth U, of the potential
wells of fig. 2, and consequently the corresponding gradient forces. But eq.
(3.39) shows that «g is proportional to the produet of U, by 7p, so that, when I,
decreases, the decrease of U, which varies as [, is compensated for by the in-
crease of tp, which varies as 1/I;,. In other words, at low intensity, the weak-
ness of light shifts is compensated for by the length of optical-pumping times.
Note also that, according to (3.39), the value of ag is, for |¢| >>I', larger than the
optimal value of «p which, according to (4.9) in ref.[1], is on the order of
hk? /4.

When v increases, &, (v) reaches a maximum when » = », and then decreases
as 1/v when v>>v,. The ecritical velocity v., which is a velocity such that the
atom, moving with this velocity, travels over a distance on the order of A during
the optical-pumping time 7p, can thus be considered as defining the velocity
range, sometimes called «velocity capture range», over which low-intensity
Sisyphus friction is most efficient. According to (3.36), v, is proportional to
1/7p, i.e. to the laser intensity I;,. Such a result is to be contrasted with what
happens for Doppler cooling, where the velocity capture range, given by the
width of the curve of fig. 4 of sect. 4 in ref.[1], is, for the optimal value ¢ =
= —I'/2 of the detuning, such that kv, =TI, and is, therefore, independent of
I,.

To summarize the results derived in this subsection, one can say that, for
low-intensity Sisyphus cooling, the friction coefficient ag remains constant, and
very large, when I}, decreases, whereas the velocity capture range decreases.
On the contrary, for Doppler cooling, the friction coefficient «p decreases when
I}, decreases, whereas the velocity capture range remains constant.

35.3. Equilibrium temperature. In order to evaluate the equilibrium
temperature Ty associated with low-intensity Sisyphus cooling, we must find
first an order of magnitude of the momentum diffusion coefficient D for an atom
at rest in z.

9 - Rendiconti S.LF. - CXVIII
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As in the case of a two-level atom, we have a contribution D,,. to D coming
from the fluctuations of the momentum carried away by the spontaneously
emitted photons, and a contribution D, coming from the fluctuations in the dif-
ference between the number of photons absorbed in each of the two counter-
propagating waves. Considerations similar to those developed in subsect. 5.2.3
of ref.[1] show that these two contributions are, for s;<<1, which is the case
considered in this section, on the order of

(3.41a) D =Dy, stk =i k2rs,.

We also have a contribution Dy, to D coming from the fluctuations of the instan-
taneous dipole force oscillating back and forth between —-VE_.,, and
—VE_ 3=+ VE.,, when the atom undergoes, at random times, optical-
pumping transitions between the two ground-state Zeeman sublevels at a rate
1/7p. A calculation, quite similar to the one presented in subsection 4B of
ref. [18], gives for this contribution the following result:

a2
3, 8, 8in* (2kz),

(3.41b) Dy, = 212 k?

whose spatial average is equal to

a2
(3.41¢) Dy = %fﬁkz .
Note that, according to (3.41b), Dg, vanishes in certain places. But, since the
departure rates from |g.,;) never vanish (see eq. (3.14)), Dy,. and D, never
vanish.

If 8| >, D—d,-p is larger than D,,. and D, by a factor on the order of
82 /I%>>1, so that

(3.42) D =Dy, =

The equilibrium temperature Tg results from a competition between the
cooling, described by the friction coefficient g, and the heating due to momen-
tum diffusion. We then have, for |¢| >,

B A &
(343) kyT = o = = ghisy= 2 .

This confirms the result predicted above in a qualitative way (see (3.24)), ac-
cording to which the equilibrium energy is on the order of the depth U, of the
potential wells of fig. 2. Using the definition of s, as the saturation parameter



NEW LASER COOLING MECHANISMS 131

associated with each of the two counterpropagating waves, we have, for
gl >l

0

a r

(3.44) ko T =

where (2; is the Rabi frequency associated with each of the two counterpropa-
gating waves. Experiments[26] done on cesium have given results showing
that 7 depends linearly on Q% /|¢| over a large range of values of the parame-
ters. This agreement with (3.44) is somewhat unexpected since the theory pre-
sented here is valid only in one dimension and for a J, = 1/2 < J, = 3/2 transi-
tion, whereas the experiments are done in three dimensions ona J, =4<J,=5
transition.

One can finally ask under what condition the whole velocity distribution falls
in the linear part of 7, (v). Such a condition can be written

nk? 18I
(3.45) Vs, KV =>0; > _h‘dr F
and turns out to be equivalent to Q.. p << 1, which is the condition of validity of
the jumping regime considered in this section.

3'6. The limits of low-intensity Sisyphus cooling. — The treatment present-
ed in the previous subsect. 3’5 relies on a semi-classical approximation (atomic
spatial coherence length £, much smaller than the laser wavelength A—see the
discussion of subsect. 2.3.2 in ref. [1]) and on the assumption that Ty, << Ty . Its
predictions for the equilibrium temperature (3.44) are certainly wrong when (,
becomes too small. In order to determine the lowest temperatures which can be
reached by low-intensity Sisyphus cooling, we need, therefore, a more precise
theory.

36.1. Results of a full quantum treatment. Reference[20] presents
a full quantum treatment of low-intensity Sisyphus cooling, where both inter-
nal and external degrees of freedom are quantized. We will not give here the
details of such calculations. We just present a few important results.

Consider first the predictions concerning the variations with U, of the mean
kinetic energy (P*/2M), for a fixed value of the detuning 3. For U,> Ef, the
quantum result agrees with the semi-classical one, and one gets a straight line.
When Uy is decreased, (P? /2M) decreases, passes through a minimum and then
diverges (see fig. 3b of ref.[20]). This confirms the qualitative predictions of
subsect. 3'4.2 for the existence of a threshold for U,. Two important results
must be noted concerning the minimum (P?/2M),;, of (P?/2M). First, for the
values of ¢ and U, corresponding to this minimum, the dispersion Ap of the pos-
sible values of p, characterized by Ap ~ (P?)"/?, remains always larger than #k.
Actually, the smallest possible value of (P*)'/2, which is achieved for U, = 95Ey
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and || >, is equal to 5.5hk. This means that the semi-classical approximation
is not too bad, since the coherence length £, ~ i/ Ap remains always smaller than
2 = 2x/k. Second, for the values of U, corresponding to (P? /2M )y, Qs Tp IS 1O
longer small compared to 1. Actually the smallest possible value of (P?/2M);,
is reached in the limit O, p — . These results show that the optimum of Sisy-
phus cooling cannot be properly described by the treatment of subsect. 3'5, not
because of the semi-classical approximation, which is not bad, but because of
the assumption Ty, << T, which has to be reversed.

Reference [20] presents a few approximations which can be done on the
quantum equations of motion and which are still semi-classical in the sense that,
as in subsect. 5.3 of ref.[1], the atomic Wigner functions are expanded in pow-
ers of fik/Ap, up to order 2. The difference with the treatment of subsect. 5.3 in
ref.[1] is that internal variables are no longer adiabatically eliminated. Some
other approximations are then introduced. We will focus here on the limit
Qose 7p >> 1, where the so-called «secular approximation» allows one to describe
laser cooling of neutral atoms with physical pictures quite similar to the ones
used to describe laser cooling of trapped ions [27].

36.2. The oscillating regime (2, 7p > 1). In this regime, the atom os-
cillates several times in one of the potential wells of fig. 2, before being optically
pumped into the other sublevel. One can, therefore, in a first step, neglect the
dissipative part of the atom-field coupling which is responsible for the real ab-
sorption and emission of photons by the atom, and consider only the reactive
part of this coupling which is at the origin of light shifts. This amounts to con-
sidering an atom moving in a bipotential E .,/ (2), without any dissipative pro-
cess. As shown in ref. [23], the diagonalization of the corresponding Hamiltoni-
an gives a series of energy levels which are actually energy bands because of the
periodicity of E .., (2). The lowest bands are very narrow because of the small-
ness of the tunnel effect between two adjacent potential wells. For example, for
¢= —20I', 2, = 1.5I' and the cesium recoil shift, one finds U, = 100Ey, which
gives 6 bound bands [23], the width of the lowest band being smaller than
10"%EyR and the distance between two successive bands being on the order of
15 With Q. /27 = 40 kHz.

The second step of such an approach consists in introducing the effect of opti-
cal pumping which induces transitions between different energy bands or inside
a given band. Condition Q.. tp >> 1 then allows one to neglect any «nonsecular»
coupling between the populations of the energy levels and the off-diagonal ele-
ments of the density matrix between different energy levels separated by an en-
ergy on the order of #Q2,. Reference [23] shows how such a «secular approxima-
tion» (supplemented by symmetry considerations) leads to a set of rate equations
involving only the populations of the energy levels. Such equations have a clear
physical meaning in terms of optical-pumping rates and they are much easier to
solve numerically than the full quantum equations written in the basis |g.1/2, p),
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where p is the atomic momentum along 0z. For example, one finds that, for the
values of the parameters given above, more than 50% of the atoms are trapped in
the two lowest bound bands, and the value obtained in this way for (P* /2M) is in
a very good agreement with the result obtained in ref. [20].

Such an approach provides a description of laser cooling in terms of sponta-
neous anti-Stokes-Raman transitions between bound states, quite analogous to
the one given for laser cooling of trapped ions [27]. It thus suggests new phe-
nomena which could be observed on neutral atoms trapped in optical molasses.
For example, one could hope to observe discrete sidebands in the fluorescence
spectrum of the trapped atoms, with a frequency shift from w;, on the order of
+ 0y Such sidebands could be easily resolved since their distance from ey,
Oy, i1s much larger than their width, on the order of 1/7p. Their observation
would represent a direct evidence for the quantization of atomic motion in opti-
cal molasses (¥).

4. — The ¢" -¢~ laser configuration. Semi-classical theory.

4'1. Introduction. — The purpose of this section is to present another
example of a new laser cooling mechanism allowing one to beat the Doppler lim-
it. As in the previous section, this mechanism is based on the existence of sev-
eral ground-state Zeeman sublevels, and on polarization gradients. The polar-
ization gradient is, however, of a different nature and gives rise to physical
processes which are quite different from the Sisyphus effect discussed in

= Wmmeﬂ,

0) =

Ve

Fig. 4. — c7-5~ laser configuration. The resulting laser electric field has a linear polariza-
tion which rotates in space, forming a helix with a pitch A.

w

(*) Note added in proofs. — Such effects have been recently observed experimental-
ly [28,29].
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sect. 3. Another important motivation for studying the s* -o~ configuration is
that it will allow us to introduce, in the specific case of a J, = 1<>.J, =1 transi-
tion, the idea of «coherent population trapping». This phenomenon is at the ba-
sis of another cooling scheme, which will be analysed in sect. 5, and which can
lead to temperatures below the single-photon recoil limit.

As in sect. 3, we consider two counterpropagating laser waves along 0z,
with the same amplitude &, and the same frequency «y,. But, instead of having
orthogonal linear polarizations, the two waves have now orthogonal circular po-
larizations, s* for the wave propagating along 0z, o~ for the counterpropagat-
ing wave (see fig. 4).

With an appropriate choice of the relative phases of the two waves, the laser
electric field in z can be written

(4.1) E; (z,t) = Ef (z) exp[—iwyt] +cc.
with
4.2) Ef () = %(a explike] + & exp[—ikz]) &y.

Using . = ¥ (g, * 'izy)/\/ﬁ, we get

43) Ef @)= - \;50 52) = — L8140,

where &1, = & V/2 is a real amplitude which is independent of z, and where the
normalized linear polarization vector &(z)

44) €)= —\%[8"' exp [ikz] + ¢£_exp[—ikz]] = g,sinkz + g,cos k2

is deduced from g, by a rotation ¢ = — kz around 0z. It follows that the result-
ing laser electric field has, for all values of z, the same amplitude &y, and a linear
polarization &(z) which rotates when z varies, forming a helix with a pitch 2
(fig. 4).

Since the laser electric fields at two different points z; and z, are deduced
from each other by a pure rotation, the light shifts of the ground-state sublevels
have the same magnitude in z, and 2,, whereas the corresponding wave func-
tions are deduced from each other by a rotation. It follows that, contrary to the
situation studied in sect. 3, the light-shifted energies do not exhibit any spatial
gradient, whereas the wave functions of the ground-state Zeeman sublevels
having a well-defined light shift are position dependent. This shows that the
light-shifted energies of the ground-state sublevels do not oscillate in space,
which excludes any possibility of Sisyphus effect for the ¢"-¢~ configuration. In
such a configuration, the reactive component of the mean force, given in (2.51),
is entirely due to the spatial gradient of the wave functions. We thus have a
sitnation which is, in some sense, complementary to the one analysed in
sect. 3.
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Fig. 5. — Clebsch-Gordan coefficients for the transitions J, = 1< J, =2 (a)) and J, = 1<
<J, =1 (b).

The fact that the polarization £(z) of the laser electric field is linear has an
important consequence. The light shifts, which have the same symmetry as d.c.
Stark shifts produced by a static electric field parallel to £(z), are the same for
two Zeeman sublevels having opposite magnetic quantum numbers along £(z).
It follows that, if we take J, = 1/2, as in sect. 3, the Zeeman degeneracy of the
ground state is not removed by light shifts, so that we have in this case neither
energy gradients, nor gradients of wave functions. Since the radiation pres-
sures of the two counterpropagating waves remain always equal for J, = 1/2 (if
we neglect Doppler cooling), we conclude that no new laser cooling mechanism
can occur for J, = 1/2. This is why we consider in this section two atomic transi-
tions J, = 1<>J, = 2 and J, = 1 <> J, = 1 having the simplest possible value of J,
leading to new cooling mechanisms in the ¢"-¢~ configuration (fig. 5). The first
one is a standard transition J, <> J, = J, + 1. The second one is considered here,
in order to introduce in a simple way the idea of coherent population
trapping.

We begin (subsect. 42) by giving the general expression of the mean force
which is now the sum of a contribution due to the spatial gradients of the wave
functions of the light-shifted Zeeman sublevels and of a contribution due to the
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difference between the radiation pressures exerted by the two counterpropa-
gating waves. We then study in subsect. 43 the light shifts and the steady-
state populations of an atom at rest in z. For a moving atom, we show in sub-
sect. 44 that it is possible to introduce a moving rotating frame in which the
evolution of the atom can be analysed with a time-independent Hamiltonian.
Such a transformation then allows us in subsect. 45 to interpret in a simple way
the new cooling mechanism which appears for a J, = 1<>J, = 2 transition. The
important physical effect is essentially an ultrasensitive motion-induced popu-
lation difference which appears among the ground-state sublevels and which
gives rise to an imbalance between the radiation pressures exerted by the two
counterpropagating waves. Finally, we analyse in subsect. 46 the case of a
Jg = 1<>J, =1 transition which gives rise to the phenomenon of coherent popu-
lation trapping.

The ¢"-¢~ configuration has been considered from the beginning in the first
explanations [30,31] proposed for the new laser cooling mechanisms. We will
follow here the more quantitative presentation of ref.[19]. Some numerical re-
sults are also presented in ref. [21]. The combination of the o*-~ laser configur-
ation with applied static magnetic fields has been also considered in
ref. [32].

42. General expression of the mean force. — As in seet. 3, we intro-
duce

(4.5a) 3" = a5/2 = 8y,
(4.5b) I'" =TIs/2=Ts,,

where s; is the saturation parameter associated with the amplitude &, of each of
the two counterpropagating waves and s = 2s, the saturation parameter associ-
ated with &, = & V2.

42.1. Effective Hamiltonian associated with light shifts. Accord-
ing to (2.36), such a Hamiltonian can be written

(4.6) Ha=1" 3 19n)(gn | (9 [A@)]02),

where A(z) is given in (2.32). Using the expansion (4.4) of £(z) in £, and &_ and
the Clebsch-Gordan coefficients of fig. 5, one can easily calculate the matrix ele-
ments of A(z). Inserting them into (4.6), one gets for a J,=1<J, =2
transition

(47a) Hgx(l<2)=+ %|9’0)<90| + %llgl)(gll +|g-1){g-1 11+

+ %Hm)(g_l | exp [2ikz] + |g_1)<gl i GXp{—2ikz]]
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and for a J, =1<.J, =1 transition

(47) Hg(Q<1)=+ % 190) (g0 | + %[Igl)(gll + |g-1){g-111-

- %“91)(9—1 | exp(2ikz] + |g-1)(g: | exp[—2ikz]].

It is clear in (4.7) that the only nonzero off-diagonal elements of H.; in the
basis {|g.,,)} of eigenstates of J, are those connecting |g;) to |g_,) or vice versa.
This is a manifestation of the selection rule Am = = 2 mentioned at the end of
subsect. 2'6.4. Note also that the only terms of (4.7) which depend on z are
those where both |g;) and |g_,) appear. This is due to the fact that these terms
involve both counterpropagating waves (redistribution processes) which have a
relative phase which varies as exp[+ 2ikz] when z varies.

42.2. Reactive force. Using the expression (2.48) of this force, we get
for a J, =1<>J, =2 transition

480) Frur(l2) = — (VHg(1o2)) =
= = Lis" &0y 5, XD [2ik2] — oy, exp [~ 2ikz]

and for a J, = 1< J, =1 transition
(4.8D) Fra(1=>1)= —(VHa(1<1))=
= + Lhks' &ls,  expI2ike] - oy, , exp[~2ikz]].
It will be useful, for subsequent calculations, to introduce a new nota-
tion
4.9 Tgig1 = g XD [—2ikz] =55

for the off-diagonal elements of the density matrix. The physiecal interpretation
of the transformation relating s, , , to 5, , A will be given in subsect. 4'4. Let C,
and C; be the real and imaginary parts of g, , :

(4.10) g, = Cr +1C;.
Using (4.9) and (4.10), one can rewrite (4.8) as
(411a) Frae(lo2) = = By,
(4.11b) Freact 1 = 1) = + hks' Cig,.

It is clear from (4.11) that the reactive component of the mean force is propor-
tional to the imaginary part of the Zeeman coherence between g, and g_,. This
reflects the fact that the reactive force is a redistribution force (see subsect.
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2'6.2) and that the two counterpropagating waves have orthogonal circular po-
larizations ¢* and o~

4'2.3. Dissipative force. — Such a force, which is given by (2.66), is the dif-
ference between the radiation pressures exerted by the two waves. Using the
definition (2.46) of G,° and the saturation parameter s, associated with each
wave, one easily finds that the radiation pressure exerted by the wave 1 (with
wave vector ke, and polarization ¢”) is equal to the product of #kI's; /2 and the
sum of the populations I7,, of the various Zeeman sublevels g,, weighted by the
square of the Clebsch-Gordan coefficient of the ¢* transition starting from g,,.
A similar result holds for the radiation pressure exerted by wave 2, provided
that one replaces & by —e& and ¢* by o~. This yields for a J,=1<J, =2
transition

(4.12(1) Qﬁissip(l(—).?} = + hk?ﬁz Hl 4 == e _1‘1_1

I’ nn h’_] .”] f}u _
2 6 6 2

5 ol r
= + Efzk! g [ — 1T 4]

and for a J, = 1<>.J, =1 transition

YD GO L R R 1
(4.120) %issip(l 1) = + hk B) Ez[ 2 + 2 2 2 ]

= ihkf'sz[ﬂl =m0

It clearly appears in (4.12) that the dissipative component of the mean force
is proportional to the population difference I7, — I7_, between the two Zeeman
sublevels. Note also the change of sign between (4.12a) and (4.12b). It is due to
the fact that the most intense ¢* transition starts from g, for a J, =1<>J, =2
transition, whereas it starts from g_, for a J,=1<J, =1 transition (see
fig. 5).

4°3. Internal state of an atom ot rest.

4'3.1. Light shifts. The effective Hamiltonians given in (4.7) are easy to
diagonalize. First, the state |g,) which is not coupled to any other state is obvi-
ously an eigenstate of H;. Then, the 2 X 2 matrix representing H; in the mani-
fold {|g.;)} has equal diagonal elements. It follows that the symmetric and an-
tisymmetric linear combinations of |g;)exp[ikz] and |g_,)exp[—ikz] are also
eigenstates of H.y. If we put

(4.130) l4s @) = %[lgoexp like] + g, ) exp [ - ike]l,
(4.13b) |¢a (2)) = %[lgl)exp [ikz] — |g_1)exp[—ikz]],
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we get for a J, =1<J, =2 transition

H(1<2)|go) = (h3'/2)|g),
(4.14a) H (1< 2)| s (2)) = (2h3'/3) [ (2)),
Hez (1 <>2)|¢ga (2)) = (h8'/2)|¢a (2)),

and for a J, = 1<>J, =1 transition

Hy(1<>1)|gy) = (h2'/2)|go),
(4.14b) Hz(1<1)|¢5(2)) = 0] (2),
Hog (1< 1) |ga (2)) = (5'/2)|4a (2)) -

As predicted above (see subsect. 4'1), we find that the light shifts are indepen-
dent of z, whereas the eigenstates of H; depend on z. Figure 6 represents for
both transitions the light shifts of the ground-state Zeeman sublevels. As in
sect. 3, we have supposed ¢ < 0, so that light shifts are negative. Note that |g,)
and |y, (2)) have the same light shift, so that they remain degenerate.

The results obtained in (4.14) and represented in fig. 6 could have been
found more quickly by noting that the laser polarization in z is linear and paral-
lel to the unit vector £(z) given in (4.4). It is then clear that the eigenstates of

\eherg)r
)
B ' ? T "'._Il‘
I
| | '
| | '
z [ 1
218’ | L1 kv
3 | | 2 | 2
| | |
B i
—— — ————
i . ) &)
V
| ) a) b)

Fig. 6. — Light shifts of the ground-state Zeeman sublevels for a J, = 1 <».J, = 2 transition
(@) and for a J, = 1< J, = 1 transition (b)). The size of the solid circles is proportional to
the steady-state population of the corresponding sublevels for an atom at rest in z. We
have supposed ¢ < 0. The vertical arrows represent the motional coupling between |¢g)
and |¢y), characterized by an angular frequency kv.



140 C. COHEN-TANNOUDJI

the component &(z)-J of the angular momentum J have a well-defined light
shift, which is equal to the product of 42" by the square of the Clebsch-Gordan
coefficients of the = transitions of fig. 5. This gives immediately the eigenvalues
written in (4.14) and their degeneracy. One can also check that |{g(z)), given in
(4.13a), coincides with the eigenstate of £(z)-J with eigenvalue 0, whereas |g;)
and |y, (2)) given in (4.13b) are two orthogonal linear combinations of the two
eigenstates of &(z)-J with eigenvalues +# and — #. It turns out, however, that
the two states |¢g(z)) and |¢,(2)), which we have introduced for diagonalizing
H., will play an important role in the following sections and that they are more
convenient to use than the eigenstates of £(z)-J. First, we will see in the next
subsect. 4'4 that atomic motion couples only [¢g) to |¢a) and vice versa. Second,
the states |{,(2)) for a J, = 1<>.J, = 2 transition, |{g(2)) for a J,=1<J, =1
transition are linear combinations of |g_;) and |g;), which are not coupled to
the excited state |ey) by the laser-atom interaction Hamiltonian V;, (for an
atom at rest in z). One can easily check that

(4.15a) (€0 | Va1 < 2) [y (2)) =0,
(4.15b) (eo | Va1 < 1)|gs(2)) = 0.

The physical interpretation of this result is that the absorption amplitudes for
the absorption of a * photon from |g_,) and for the absorption of a s~ photon
from |g,;) can interfere destructively if the atom is in an appropriate linear su-
perposition of |g_;) and |g.,). The difference of sign between the two noncou-
pled states (4.15a) and (4.15b) is due to the fact that the Clebsch-Gordan coeffi-
cients of the " and ¢~ transitions arriving in e, are equal for a J, = 1< J, =2
transition, whereas they are opposite for a J,=1<J,=1 transition (see
fig. 5). We will see later on that the noncoupled state (4.15b) plays an essential
role in the phenomenon of coherent population trapping.

43.2. Optical pumping and steady-state populations. The depar-
ture rates from |gy), |¢s(2)), |¢a(2)) are well defined (see (2.39)), and equal to
the produet of I'" by the eigenvalues of A, which are the coefficients of #¢" in
(4.14). We get in this way

1}

W12 =Ti(le2) = 52—

T e Y
12 = %

(4.16a)

for a J, =1<>J, =2 transition and

IT!

(4.16b) ][ Tlel)=I'y1<1)= L,

L(1e1)=0
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for a J;, = 1< J, = 1 transition. The vanishing of I'g(1 <> 1) reflects the fact that
|45 (2)) is a noncoupled state for a J, = 1<.J, = 1 transition. Fora J, = 1< J, =
= 2 transition, the state |4 (2)) is not coupled to e;, but it remains coupled to
le.o) and |e_,), which explains why I') (1<>2) does not vanish as I's(1<1).

In order to find the steady-state density matrix for an atom at rest in z,
which results from the competition between the departure rates and the return
rates, respectively, associated with the second and third terms of the right-
hand side of (2.35), we use the basis of eigenstates of £(z)-J, where the laser po-
larization can be considered as a = polarization and where the steady-state den-
sity matrix is diagonal. Consider first a J, = 1 <> J, = 2 transition. A simple de-
tailed-balance argument, expressing that the number of transitions from g, to
g_1 by absorption of a = photon and spontaneous emission of a ¢* photon must
balance the number of transitions from g_; to g, by absorption of a = photon and
spontaneous emission of a ¢~ photon, then shows that the populations of the
eigenstates of &(z)-J with eigenvalues — f, 0, + % are, respectively, equal to
4/17, 9/17, 4/17. 1t follows that, in the basis {|go), |¢s), |¥a)}, the density ma-
trix is also diagonal, the corresponding populations being equal to

(4.17a) 9
Ms(1er2) = .

These steady-state populations, which are independent of z, are represented by
the solid circles of fig. 6a).

Consider now a J, =1<J, =1 transition. Since the departure rate from
|¢g) vanishes, all the atomic population will be optically pumped in |{¢g) where
the atom remains trapped. It follows that

My(l<1)=I,(1<1)=0,

S0 Ig(les1)=1.

Such a result ean be also obtained by using the basis of eigenstates of £(z)-J. In
such a basis, the atom is optically pumped into g, by absorption of a = photon
and spontaneous emission of a ¢ or ¢~ photon, and it remains trapped in g, be-
cause of the vanishing of the Clebsch-Gordan coefficient of the = transition
starting from g, (see fig. 5b)).

4'4. Internal state for a moving atom. — We now consider an atom moving
with velocity v along 0z, so that

(4.18) z=1t,
and we also suppose that

(4.19) Ting K Texi »
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so that we can neglect the variation of v during the time T}, required by inter-
nal variables to reach a steady state.

4'41. Transformation to the moving rotating frame. Replacing z
by vt in the expression (4.4) of £(z) shows that, in its rest frame, moving with
velocity v along 0z, the atom «sees» a laser field with a polarization rotating
around 0z with an angular frequency — kv. This suggests the introduction, in
the atomic rest frame, of a rotating frame such that, in this moving rotating
frame, the laser field keeps a fixed direction.

Such a transformation is achieved by applying a unitary transformation

(4.20) T(t) = exp [ —ikvtJ, /h].

One can easily check (see appendix A of ref.[19]) that, in the new representa-
tion, the laser-atom interaction Hamiltonian describes the coupling of the atom-
ic dipole moment with a laser electric field keeping a fixed linear polarization,

parallel to &,
In the new representation, the atomic density matrix is equal to
(4.21) 7 = exp[ —ikvt], /hl o exp [ +ikvt], [h],

which shows that the change of variables introduced above in (4.9) corresponds
to a trasformation to the rotating frame. Note that the populations IT_,, 11y, IT .,
of the three Zeeman sublevels |g_;), |g0), |g+1) are not modified by the trans-
formation (4.20).

4'42. New Hamiltonian. New equations of motion. Since T'(f) de-
pends on {, the dynamics in the new representation is governed by the
Hamiltonian

(4.22) H=T®HT™* ) +ih % ] F&,

where H is the Hamiltonian of the old representation. We have already men-
tioned that T'(t) HT * () describes the dynamics of the atom coupled to a laser
field with a fixed linear polarization parallel to &,. This dynamics is, therefore,
described by eq. (2.35) where £(r) is replaced by ¢,, and ¢ by .
Using (4.20), one can show that the last term of (4.22) is equal to

(4.28) ih [ %} TH(@) =V = kd,.

Such a term, which is time independent, has the same form as an interaction
Hamiltonian with a static (fictitious) magnetic field B, parallel to 0z, and hav-
ing an amplitude such that the corresponding Larmor frequency is equal to kv.
Actually, such a fictitious field is nothing but an inertial field appearing in the
new frame because of its rotation (Larmor’s theorem).
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Finally, the dynamics of a moving atom is the same as the dynamics of an
atom at rest in z = 0 submitted in addition to the effect of a static magnetic field
B; parallel to 0z. From (2.35) and (4.23), one deduces that the equation of motion
of g, in the new representation can be written

(424) 5= — 3" [Alz = 0), 5gg] — %{A(z =0), 5y )4 +

- - - - i .
1 2 (8 -d™)(g-d*)o,(ef-d ™) (gd)~ tk’v[—g', :rgg}.
g=-10,+1
In (4.24), A(z) is the coefficient of #¢" in (4.7). Using (4.7), (4.10) and the
Clebsch-Gordan coefficients of fig. 5, one ean deduce from (4.24) a closed set of 5
equations for I7_,, Iy, II;, C,., C; which can be written

(= - 2Lom + 2, + Lm,-Lc.- $a,
m,=+ %Hl + ??—";H.] - %n_l - %Cr-i- %Ci!
(4.25a) Iy = — (1, + 171_,),
C.=+ %Hl + ’; Iy + %H_l - %CrJrzkai,
\C'iz + %(ﬂl —I_,) - 2kvC, — 5f2 ¢
for a J, =1<J, =2 transition, and
(i1, = - %nl + %Hﬁ %H—l + %Ci,
=+ g o %Hn - %H_l - %Ci!
(4.25b) M= (g +dr ) =— %Ho,
C.= % = %c + 2k0C;,
kCi = — 9}(111 —1II_,) — 2kvC, — %Ci

for a J; = 1<>J, = 1 transition. The Zeeman coherences Am = =+ 1 are not cou-
pled to Iy, I1.,, C,, C; because of the selection rule Am = 0, +2 followed by A
and because the |g,,) are eigenstates of .J,. Since all coefficients of eqs. (4.25)
are time independent, these equations have a steady-state solution.

The third equation in (4.25b) shows that, for a J, =1<>J, =1 transition,
II, is damped with a rate I''/4. This is due to the fact that an atom
initially in g, is optically pumped into g.,. From g.,, it can be re-excited
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to ¢, but it can then never fall back in g, because of the vanishing of
the Clebsch-Gordan coefficient of the transition e;<> g, (see fig. 5b)).

4'43. New expression of the mean force. Suppose that the atom has
reached a steady state so that all left-hand sides of eqs. (4.25) can be put equal
to zero.

Consider first a J, = 1< J, = 2 transition. If one subtracts the second equa-
tion (4.25a) from the first one, one gets,

42’

(4.26) for Jy,=1eJ,=2, IL -1 ,=- ?Ci.
Equation (4.26), combined with (4.11a) and (4.12a), implies that
(4.27) Fissip (12 2) = bFreper (1< 2).

The dissipative force is proportional to the reactive force, and 5 times more im-
portant, so that the total mean force is equal to

(428) FU2) = L Ty (1+2) = SHT" 2,(Ty — 1T_y).

For a J, = 1<>J, = 2 transition, the main effect is, therefore, the imbalance be-
tween the radiation pressures exerted by the two counterpropagating waves. It
may appear surprising that the reactive force is smaller than the dissipative
force, even if > I' (which implies |¢'| >I'"). This is due to the fact that the
redistribution processes, which are at the origin of the reactive force, are limit-
ed to a finite number of steps in the case of a ¢*-o~ configuration. Starting from
g_1, the atom can absorb a ¢ photon in the ke, wave, jump into e;, then make a
stimulated emission of a ¢~ photon in the —ke, wave, which brings it into ¢,
then absorb again a ¢ photon in the k&, wave and jump into e,. But, from e,, it
can no longer make a stimulated emission of a ¢~ photon and the redistribution
stops. This would not be the case if, as in sect. 3, the polarizations of the two
counterpropagating waves both contain an admixture of c* and o.

Consider now a J, = 1<>J, = 1 transition. Since II; vanishes in steady state,
the first two equations (4.25b) are identical in steady state and lead to,

43’

(4.29) for Jp=1leJ.=1, M-I,=+ 3G

8

which, combined with (4.116) and (4.12b), gives
(4.30) Fhp (1 1) = — G (1==1).

This shows that the reactive and dissipative forces are equal and opposite. For a
Jy = 1<>J, =1 transition, the mean total radiative force always vanishes, even
for a moving atom

(431) T 1) = Frgger (1> 1) + Fep (1 <> 1) = 0.
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There is, therefore, in this case no friction force. We will show, however, in the
next section that a new cooling mechanism, not based on friction, but on mo-
mentum diffusion and velocity-selective coherent population trapping, can ap-
pear for such a transition.

4'5. Friction force for a J, = 1<>J, =2 transition.

4'5.1. Friction coefficient. In order to calculate the total mean force
(4.28) experienced by the atom, we must solve eqs. (4.25a) and find the steady-
state value of 11, — IT_,.

Consider first the limit of very small velocities. For an atom with v =0 at
z =0, we know the steady-state density matrix which is given in (4.17a) and
from which we can deduce the steady-state values of I, IT,, IT_;, C., C;

for v=0,
nl _1—18/34
Iy =4/17,
(4.32) C.=5/34,
Ci = 0.

We can then use eqs. (4.25a) with v # 0 to find the linear term in v of IT, — IT _,
for an atom which is still at z =0 in its moving rotating rest frame. Using
(4.26), we can transform the last equation (4.25a) and express in steady state
I, — IT_, as a function of C.. Since C, is already multiplied by kv in this equa-
tion, we can replace C, by the its zeroth-order value given in (4.32). We get in
this way

4.33) Mot = 240 bd

17 46" + 51r?
and consequently, when (4.33) is inserted into (4.28),

(4.34) Kl-=F,(1<2)= —av,

1e'T 'I
where the friction coefficient « is given by
120 re' 120 ,,2 I

. = - Zhkt——— = — SRk ———.
(4.35) * 17 h 4572 + B2 17 432 1 52
We have used (4.5).

It is possible to give a more physical derivation of (4.35) in the limit |&| >>T,

where II; — II_; and « are, according to (4.33) and (4.35), given by
60 kv

—)Hl 111“+ﬁd‘”

(4.36a)

10 - Rendiconti S.IL.F. - CXVIII
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_ 30,20
(4.36D) o == 7 hk 5

We come back to fig. 6a) giving the light shifts and steady-state populations of
l90), |¢s) and |¢,) for an atom at rest and we try to understand the perturba-
tion due to atomic motion, which is described by the Hamiltonian V,,; given in
(4.23). Since J, |gy) = 0, V., cannot couple |g,) to any other state. Furthermore,
one can easily check, using (4.13a) (without the exponentials exp[=+ ikz] since
the atom is at z = 0 in its moving rotating rest frame), that V,,; has no diagonal
elements in |¢s) and |¢,). The only nonzero matrix element of V., is between
|4s) and |¢s) and is equal to

4.37) (s | Viot |4} = fikev.

It is represented by the vertical arrow of fig. 6a). In the limit kv << |¢’ |, which
is the condition of validity of (4.36), leading to |II; — II_; | <1, the motional
coupling Akv between ¢g and ¢, is small compared to the splitting Eg — Ej
which, according to (4.14a), is equal to

Loy o B2

2
43 Eq—Ey= 2pe' — .
L = Ba— gt =g 6

The effect of V., can thus be treated by perturbation theory. To lowest order in
kv/3', i.e. to order 1, the main effect of V,,, is to change the wave functions. The
wave function of , is contaminated by ¢g and vice versa. If [¢s) and [¢, ) are the
perturbed states associated with |¢g) and |¢,), we have, to first order in
kv/d',

(4.39a) m= H) >+ EhkﬁE |E-’A)_ ﬁk'l; _
:L(1+6kv) +( 6fw) ]
,\/§|: |§'11) | —l)

4.395)  Tda) = |ga) + ELE_M} . Gkv _

=%{(1 8 g - 1+ &2)ig- o]

Whereas |¢s) and [¢, ) contain both the same proportion of |g;) and |g_, ), this
is no longer true for [Jg) and [¢,). For example, since &' <0, the weight of
|g_1) in [¢g) is larger than the weight of |g; ). The conclusions are reversed for
Ta)- Since levels [¢s) and [¢s ) have unequal populations, one understands how
the motional coupling #ikv between |{s) and |¢,) can give rise to a motion-in-

duced difference between I7; and I7_;. As in ref.[19], such an argument can be
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formulated in quantitative terms (*) and leads exactly to (4.36). We want to em-
phasize here that the motion-induced population difference II; — IT_; varies as
kv/2', and not as kv/T’, as is the case for Doppler cooling. Since |2’ | <<I" at low in-
tensity, the new cooling mechanism discussed here is, therefore, much more
sensitive to the velocity than Doppler cooling.

It is clear in (4.35) that, as in sect. 3, the friction coefficient is independent of
the laser intensity I;. This results from a compensation in (4.28) between the
I;-dependence of the absorption rate I'', which decreases as I}, when [;, decreas-
es, and the I -dependence of IT, — IT_;, which increases as 1/I;, (see (4.33) and
(4.36a)). In particular, one sees in fig. 6a) that, when I}, decreases, the distance
between ¢g and ¢, decreases, which explains why the contamination of wave
functions induced by the motional coupling Aikv between {g and ¢, increases
when [}, decreases. Note also that, according to (4.36b), « is on the order of
— (80/17) hk>T'/3 for |2| >>TI'. Such a value is smaller than the corresponding
value (3.39) of ag found in sect. 3 by a factor of the order of I'"2/2% which is small
for |2| >I. We will see, however, in subsect. 4'5.3, that the momentum diffu-
sion coefficient is also reduced by the same factor I'*/4% so that the equilibrium
temperatures are on the same order for both ¢*-s~ and Lin L Lin configura-
tions.

4'5.2. Velocity capture range. From now on, we will suppose that
>>I'. When kv is no longer small compared to |¢'|, all perturbative calcula-
tions of the previous subsection, based on the smallness of kv/s’, are no longer
valid. One must then come back to egs. (4.25a) and determine their exact
steady-state solution, either numerically or analytically. One then finds that
the variations with v of the mean force (4.28) are those of a dispersion curve, the
maximum of the modulus of the force being reached for a eritical velocity v,, or
velocity capture range, such that

(4.40) v, ~

)

ot

8'|.

Figure 8 of ref.[19], which also includes the effect of Doppler cooling, gives an
example of such a caleulation.

As the velocity capture range (3.36) found for low-intensity Sisyphus cool-
ing, the value (4.40) of v, is proportional to the laser intensity I;,. There is, how-
ever, an important difference between (3.36) and (4.40). For the Lin L Lin con-
figuration, kv, is proportional to the absorption rate I'’, whereas, for the ¢7-o~
configuration, kv, is proportional to the light shift ¢'.

The discussion of this subsection can be presented in more physical terms by

(*) In ref.[19], the calculation is done in the basis of eigenstates of g,-J. The motional
coupling V,; has then two nonzero off-diagonal elements. Using the basis {|go), [¢s)h
[¢4)}, as we do here, simplifies the calculations because only |{s) and |¢,) are coupled by

Vaor:
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considering that the atom is submitted in the ground state to two perturbations
with different symmetries. We have first the effect of the laser-atom interac-
tion which, in the moving rotating frame, has the symmetry of a static electrie
field parallel to &, and which is characterized by a Hamiltonian part, proportion-
al to ¢', and a relaxation part, proportional to I''. We also have the effect of
atomic motion which has the symmetry of a magnetic field parallel to & and
which is proportional to kv. Depending on the relative values of kv and [¢'], one
perturbation is predominant over the other. Both are of the same order for v =
= 7,.. In this sense, there is a certain analogy between the narrow structures ap-
pearing in the variations with v of the mean force (4.28) and the narrow Hanle
resonances which can be observed in atomic ground states (see subsect.
2'5.3).

453. Order of magnitude of the equilibrium temperature. First
we try to evaluate the momentum diffusion coefficient D for an atom at rest in z.
Using the same notation and the same arguments as in subsect. 3'5.3, we get
for Dy,. and D, the same result as in (3.41a). This amounts to assuming that
D,,. and D, have the same order of magnitude as for a two-level atom (see sub-
sect. 5.2.3 of ref. [1]). We will see in the next subsection that this is not a good
approximation for D,,,.

Since there is no spatial gradient of light shifts in the ¢¥-c~ configuration,
there is no dipole force and no contribution Dy, to D as in (3.41b). It follows
that

(4.41) D ~D,,.~ D, ~ kI

Comparing (4.41) to (3.42), we see that D is smaller in the 57 -5~ configur-
ation by a factor on the order of I'"®/¢% This reduction of D compensates for the
reduction of « found above, so that the equilibrium temperature

oz
||

(4.42) kT~ 2~ he ~

is on the same order for both ¢*-s~ and Lin L Lin configurations.

4'54. Anomalous momentum diffusion. A quantum ecalculation of the
momentum diffusion coefficient is done in ref.[33]. Such a calculation shows
that D,,. has the order of magnitude given in (4.41), but that D, can be much
larger than D,,. for certain values of ¢ and kv. We now discuss the physical
meaning of such an anomalous momentum diffusion. More details may be found
in ref.[33]. See also ref.[19,21,34].

The enhancement of D, is due to correlations between the directions of two
successively absorbed photons. Because of optical pumping, just after the ab-
sorption of a ¢* photon, the atom has a high probability to be in g; from where it
has a higher probability to absorb a «* photon than a ¢~ one, since the ¢ transi-
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tion starting from g, is 6 times more intense than the o~ one (see fig. 5a)). It fol-
lows that the atom absorbs in sequence several ¢* photons until it absorbs a ¢~
photon which optically pumps it into g_; from where it absorbs in sequence sev-
eral -~ photons and so on .... As a consequence, the steps of the random walk in
momentum space (due to absorption) can be several %k instead of fik and this ex-
plains the increase of D,,,. Such an effect becomes more and more important for
larger values of J,.

Such an enhancement of D, occurs only if the eigenstates of J, can be con-
sidered as stationary between two successive fluorescence cycles, separated by
a time on the order of zp = 1/I"". This is achieved, either for a moving atom with
kv>>|2'], or for a slow atom if the detuning is small (kv<<|2'|, |¢' | <I'"). In
the first case (kv>> |8'|) the perturbation V,, = kvJ, predominates over the ef-
fect of light shifts described by H.y, so that the eigenstates of J, are quasi-sta-
tionary. In the second case, V., is negligible in comparison with H (since
kv << |2"|), but the precession induced by H.; between the eigenstates of J, oc-
curs at a frequency , which is too small compared to the absorption rate I"’
to produce any observable effect between two fluorescence cycles.

The previous discussion explains why D, varies rapidly with kv for a given
large value of ¢. It is possible to understand in this way the profiles of the mo-
mentum distributions derived from a numerical integration of the full quantum
equations of motion[34]. The broad pedestal which appears in these distribu-
tions, and which becomes more pronounced for larger values of J,, reflects the
increase of D, when v increases. Note, however, that the width of the narrow
peak around p = 0 appearing in these distributions remains large compared to
fik, so that the semi-classical approximation is not bad. But, for large values of
J, the atom can make in sequence so many ¢* transitions starting from the sub-
level with the highest magnetic quantum number m =J, that it remains
trapped in this sublevel for a time T}, which can become on the order of or even
longer than 7. As in the case of low-intensity Sisyphus cooling (see subsect.
3'6.1), we find here a new example of a situation where usual treatments of
laser cooling become questionable, not because of the semi-classical approxima-
tion, but because the usual assumption T, << T,y is no longer valid.

G,\]

4'6. Coherent population trapping for a J, =1<>J, =1 transition. - The
fact that the mean total force vanishes for a J, =1<>J, =1 transition (see
(4.31)), even if the atom is moving, does not mean that no interesting effect can
occur for such a transition. We show in this subsection how atomic motion can
induce spectacular changes in the internal dynamics.

4'6.1. Qualitative discussion. We have already mentioned at the end of
subsect. 4'4.2 that atoms initially in g, are optically pumped into g.,, from
where they can never come back to g,. Since there is no motional coupling be-
tween g, and g.,, we can thus completely ignore g,, and consider that the
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ground state has only two relevant sublevels, g; and g_;, or their linear combi-
nations ¢g and ¢, given in (4.13), with z = 0.

For v =0, all the atomic population is optically pumped into |{g) (see fig.
6b)). When the atom is moving, a motional coupling #ikv appears between the
two states |¢g) and |¢,) (vertical arrow of fig. 6b)), which are separated by a
distance

(4.43) ES i EA ==

In the same way as for a J, = 1< .J, = 2 transition, the wave functions of |{s)
and |y, ) are perturbed and this gives rise to a nonzero value of II; — IT_;. But
we now have an additional spectacular effect which comes from the fact that,
when v = 0, the absorption rate from |Jg) vanishes (see (4.165)). The contami-
nation of |¢s) by |¢a), induced by atomic motion, transfers to |¢g) a small part
of the instability of |¢, ), and the absorption rate from the perturbed state [¢g)
corresponding to |¢g) no longer vanishes. In other words, the total fluorescence
rate Ry, which vanishes when v = 0 because all atoms are in the nonabsorbing
state |{g), reappears when the atom is moving because a slight absorption can
take place from [¢g). Such an effect is characterized by the perturbation par-
ameter kv/(Es — E,) ~ kv/?', so that the variations of Ry with v occur in a very
small velocity range around v = 0, on the order of v. given by (4.40).

For the transition J, = 1< .J, = 2, the motional coupling #kv between |{g)
and |¢, ) also changes the absorption rates from these sublevels. In this case, it
is the sublevel |¢, ) which is not coupled to |e,) (see (4.15a)) and which becomes
partially coupled when contaminated by |¢s). The effect is, however, less spec-
tacular because, even if v = 0, the state |, ) can absorb light (see (4.16a)), since
it is always coupled to e; and e_,. One, therefore, expects variations of the total
fluorescence rate when v is slightly varied around v = 0, but the fluorescence
never stops completely, as is the case for a J, = 1<>J, =1 transition.

Note also that, when the atom is moving with velocity v, it «sees» in its rest
frame the two counterpropagating laser waves with opposite Doppler shifts
+ kv, so that these two waves have different apparent frequencies wy, *= kv, dif-
fering by a frequency shift 4 = 2kv which vanishes for v = 0. As long as one is
interested only in the internal atomic dynamics, one would get the same equa-
tions and the same results by considering another problem where an atom, al-
ways at rest, interacts with two laser waves (not necessarily counterpropagat-
ing) having different frequencies, wy, = 4/2. When 4 = 0, the atom gets trapped
into |¢gq) and the fluorescence stops. When A-is slightly varied from zero, the
fluorescence reappears. One can finally show that similar equations also apply
to the situation where g, = g and g_; = ¢’ have different energies £ and E’, and
where the two laser waves have different frequencies, w;, for the wave exciting
the transition g <> ey, wf, for the wave exciting the transition g’ <>¢,. The fluo-
rescence stops when K + fiwy, = E' + fiw,, i.e. when the two detunings of the
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two laser excitations are equal, and reappears when ey, is slightly varied, wy,, £
and E' being fixed, or when E — E' is slightly varied, w;, and wi, being fixed.
Such a phenomenon, called «coherent population trapping», was observed for
the first time on sodium atoms irradiated by a bimodal laser and put in a gradi-
ent of magnetic field [35]. Because of the corresponding spatial variation of the
Zeeman effect, the fluorescence of the sodium cell was disappearing at certain
places along the laser beam, where two Zeeman sublevels belonging to the two
different hyperfine levels were separated by a frequency splitting equal to the
mode spacing.

4'6.2. Velocity dependence of the total fluorescence rate. We now
give a more quantitative deseription of coherent population trapping. Since the
only excited Zeeman sublevel which can be reached from g, and g_, is ¢, (see
fig. 5b)), the total fluorescence rate Ry is given by

(4.44) RF‘ = 1106060‘
According to (2.28), the population o, ,, of e, can be expressed in terms of the

ground-state density matrix. Using (2.28), (4.4), (4.5) and the Clebsch-Gordan
coefficients of fig. 5b), we get

(4.45) Beoss %[H1+H_1—2Cr]= %(1—2(,;).

To evaluate C,, we come back to egs. (4.25b). We already know that, in
steady state, I, — IT_, and C; are proportional (see (4.29)). The last two equa-
tions thus couple only C, and C; and they allow one to calculate the steady-state
value of C.,

W i 462+ 1"
2 46+ 1% + 64k%0%

which, inserted into (4.45), yields

(4.46) c.

16k2v*

(4.47) Re(v)=1" 2
¥ 48" + ' + 64k 02

It is clear from (4.47) that Ry vanishes for v = 0, and then increases when v in-
creases, as an inverted Lorentz curve of amplitude I''/4 and of half-width at

half maximum
\48'2 + "2

(4.48) A?) = I

which decreases as I}, when I, decreases. For v<<Av, Ry varies as

4 lu 8;62?)211
4.49 & Av — Ry () = 16k%v® = y
( ) v V= F(U) 48r2 + 1112 ‘Q%
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which no longer depends on the detuning ¢ (we have used (4.5) and the defini-
tion of s, in terms of the Rabi frequency €, associated with each wave).

Calculations similar to the previous one and based on optical Bloch equations
have been made [36] shortly after the discovery of coherent population trap-
ping. Dressed-atom interpretations, using coupled and uncoupled states anal-
ogous to the states |¢,) and |¢g) introduced here, have been also given (see, for
example, ref.[37] and [38]).

4'6.3. Consequences for atomic motion. We come back to the external
dynamics of the atom. Although the mean friction force vanishes, the fact that
the fluorescence rate Ry varies very rapidly with » around v = 0 has interesting
consequences for atomic motion.

First, one expects that the momentum diffusion coefficient varies also very
rapidly with v around » = 0 and tends to zero when v — 0, since such a phe-
nomenon is due to the random exchanges of momentum associated with fluores-
cence cycles.

In all previous discussions, we have considered an atom with a fixed velocity
v and we have ignored any change of v. This is usual in semi-classical treat-
ments of laser cooling where one calculates the friction and diffusion coefficients
for a fixed value of v. In fact, because of the random changes of momentum fol-
lowing a fluorescence cycle, the atomic velocity makes a random walk in veloc-
ity space. The important new feature which appears here, and which is not in-
cluded in usual treatments, is that such a random walk can be profoundly per-
turbed by the strong velocity dependence of the fluorescence rate. After a fluo-
rescence cycle, depending whether v gets closer or farther from v = 0, the next
fluorescence cycle will occur after a longer or shorter delay. We will see in the
next section how such a velocity-dependent random walk can provide a new
scheme for obtaining very narrow velocity distributions, i.e. very cold atoms.

5. — Laser cooling below the single-photon recoil limit.
51. Introduction.

51.1. The single-photon recoil limit. All cooling mechanisms de-
seribed in the previous sections are based on a friction force which damps
the atomic velocity. Spontaneous-emission processes also play a basic role
for dissipating the energy removed from the external degrees of freedom
of the atom. For example, in the Sisyphus cooling mechanism, either at
high (sect. 7 of ref.[1] and ref.[18]) or low (sect. 3) intensity, spontaneous
Raman anti-Stokes processes dissipate the potential energy gained by the
atom (at the expense of its kinetic energy) when it climbs a potential
hill. For Doppler cooling and for polarization gradient cooling in a ¢*-o~
configuration, it is a blue Doppler shift of the spontaneously emitted photons
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which explains the dissipation of energy (see discussion of subsect. 3.B.6
in ref. [19]).

Since, in all these cooling mechanisms, fluorescence cycles never stop, it
seems impossible to avoid the random recoil due to spontaneously emitted pho-
tons and the corresponding single-photon recoil energy

{5-1} ER = = kBTR.

The temperature Ty defined by (5.1) is called the single-photon recoil limit and
appears as a fundamental limit for any cooling process using spontaneous emis-
sion. The corresponding velocity

hk
52 = —
(5.2) VR M
is called the recoil velocity. For sodium cooled on the resonance line, T =
=24 K and vg = 3 em/s. For cesium, we have Ty = 0.13 pK and vy = 3 mm/s,
and for helium cooled on the 238, <> 23 P, transition at A = 1.08 pm, Ty =4 pK
and vy =9 cm/s.

51.2. Velocity-selective coherent population trapping. The previ-
ous discussion clearly shows that, in order to get temperatures lower than T,
spontaneous-emission processes must stop for the atoms we want to cool down
to very small temperatures. Such a remark suggests the use of the phenomenon
discussed in subsect. 3'6 for a J, = 1<>J, = 1 transition and a c" -~ laser con-
figuration. We have seen in this case that the fluorescence rate Ry vanishes for
atoms with zero velocity (see (4.47) and (4.49)), because atoms are optically
pumped in a linear superposition of the ground-state sublevels which appears as
a trapping nonabsorbing state. This trap is perfect for v = 0 and less and less
perfect when v increases. This is why such a phenomenon can be called velocity-
selective coherent population trapping. It selects very cold atoms, having very
small velocities, and protects them from the «bad» effects of spontaneous
emission.

Actually, if we want to achieve a cooling, we must also compress the velocity
distribution around v = 0. It is not sufficient to find a velocity selection mechan-
ism which consists here of quenching the fluorescence rate for atoms contained
in a small velocity range 3v around v = 0. One must also increase the density of
atoms in this velocity range.

51.3. Optical pumping in velocity space. Because of the momentum
transferred to the atom by the absorbed photon and because of the momentum
carried away by the fluorescence photon, there is a random change of atomic
momentum after each fluorescence cycle. It may happen that an atom with
v > v undergoes such a cycle and ends up with » < 3v. Momentum diffusion can
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thus be considered as an optical-pumping process in velocity space which trans-
fers atoms from the absorbing velocity classes into the nonabsorbing velocity
range év around v = 0 where they remain trapped during the interaction time &
and where they pile up, forming a narrow peak in the velocity distribu-
tion.

The new cooling mechanism we have just described, and which has been
first proposed and demonstrated in ref.[39] and [40], differs radically from the
other ones since it is not based on friction but on a combination of momentum
diffusion and velocity-selective coherent population trapping (*). We show in
the subsequent subsection that it is limited only by the interaction time 6. An-
other important feature is that it does not depend on the sign of the
detuning.

5'14. Failure of semi-classical treatments. The semi-classical treat-
ment presented in sect. 4 considers atoms which are very well localized in the
laser wave. For example, the state |{g(2)), which we have introduced in (4.13a)
for an atom «at rest in z» and which is a nonabsorbing state foraJ, =1<J, =1
transition (see (4.15b)), refers to the internal state of an atom whose centre of
mass is described as a wave packet so well localized around z that it is not
necessary to describe the evolution of such a wave packet in fully quantum
terms. In (4.13a), z is considered as a fixed parameter. If the atom is moving
with velocity v, z is replaced by the c-number vt (see (4.18)).

If a cooling mechanism reduces the momentum spread 3p of the atom below
fik, which is the case for laser cooling below the single-photon recoil limit, the
spatial coherence length £, ~ #i/ép becomes larger than the laser wavelength and
it is no longer possible to consider the atom as well localized in the laser wave. A
fully quantum treatment of all degrees of freedom is then required. Such a
treatment is presented in the next subsection. We will see that the nonabsorb-
ing state is still given by (4.13a), but that Jg(2) is no longer the internal state of
a wave packet localized in z, but a two-component wave function of z.

52. One-dimensional quantum treatment. — We consider here a ¢*-¢~ laser
configuration and a J, = 1<>J, =1 transition.

52.1. Quantum atomic states uncoupled to the laser light. The
atomic states are now labelled by two quantum numbers, one for the internal
state, one for the external state. We have already seen in sect. 4 (see end of sub-
sect. 4'4.2) that, for a J,=1<J, =1 transition, the only relevant internal
states are g, and g_, in the ground state, ¢; in the excited state. For describing

(*) It has been also suggested that optical pumping in translation space might be used to
cool the translational degrees of freedom below the recoil limit by velocity-selective recy-
cling in a trap [41].
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the external state, we will use the momentum p along 0z, so that a state such as
|g1, p) represents the atom in g, with a momentum p along 0z.

When the external degrees of freedom are quantized, the coordinate z of the
centre of mass, which appears in the expression (4.1) of the laser electric field
E; (z, t), becomes an operator Z. The laser-atom interaction Hamiltonian (2.4)
can then be written, using (4.2), the Rabi frequency (£, associated with &, and
the Clebsch-Gordan coefficients of fig. 50),

G3) V=
_ h, 1 : 1 ; ;
= —| — ——explikZ] |eg){(g_1| + —=exp[ — ikZ] |ey){g:| |exp[ — iwt] + h.c.

21 2 V2

The operators exp [+ tkZ] appearing in (5.3) are translation operators in mo-
mentum space, so that

hQ .

(5.4a) Varlg-1,p) = —2\;§exp[—zfuLt]{eo,p+hk),
ﬁQI . :

(5.4b) Var |g41, p) = + —=exp[—iwt] |ey, p — hik).

2v2

The interpretation of (5.4a) is very clear. Starting from g_;, the atom can only
g0 to ¢y by absorption of a photon which must be ¢* (conservation of angular mo-
mentum). This ™ photon propagates along the positive direction of 0z (see fig.
4) and thus carries a momentum + ik which is transferred to the atom during
the absorption process, so that the atomiec momentum changes from p to p + fik.
Similar considerations apply to (5.4b).

Equations (5.4) now suggest to introduce the states

(55) |4 (P)) = %ng_l, p = hk) + |g.1, p + )]
which are not coupled to the laser light since

hQ :
(5.6) Vaw [¢ne (p)) = Tlexp[—%wLi][— leo, p) + leo, p)1 =0.

The two absorption amplitudes, starting from |g_;, p — #ik) and from |g;, p +
+ fik) and ending both in the same final state |eg, p), interfere destructively.
Equations (5.5) and (5.6) generalize eqs. (4.13b) and (4.15b) of the previous sec-
tion where the external degrees of freedom were not quantized. Note that dif-
ferent atomiec momenta p — ik and p + hk appear in the two states which are
linearly superposed in (5.5). This is due to the fact that the photons which can
be absorbed by an atom in g _; or g, have opposite momenta + fik and — fk.
Since the final state must be the same for the two paths, the two initial states
corresponding to g_; and g; must have momenta which differ by 2hk.
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It is, of course, possible to introduce also the states

6.7 4o (P)) = ==~ |g_1, p — Hk) + |gs1, p + )],

V2

i.e. the linear combinations of |g_,, p — k)] and |g,, p + k)] which are orthog-
onal to the noncoupled states (5.5). For such states, the two absorption ampli-
tudes, starting from |g_;, p — #k) and |g;, p + hk) and ending in |e,, p), inter-
fere constructively rather than destructively, so that these states are coupled to
the laser

fLQ
(5.8 VaL [¢c(p) = —iwy,t] | e, p)-

It is easy to check that Vy;, couples |ey, p) only to |¢4c(p)):

hey
(5.9) VaL |€o, p) = —eXPl—iwL“ |tc(p),

so that the only nonzero matrix elements of V,; are

hQ .
(5.10)  {eo, P|VaL l¢c(p) = Tlexp[—’ng t] = (Yo (P)| Vav | €0, P)*.

52.2. Couplings induced by atomic motion. When the external de-
grees of freedom are quantized, the atomic Hamiltonian H, contains a contribu-
tion H® which describes the kinetic energy of the centre-of-mass motion. The
equation which generalizes the Hamiltonian of eq. (2.2) in ref.[1] for a multi-
level atom is

ext int _ _1_?_
(6.11) Hy,=H+ Hj Wi + hewy P,

where P, is the projector onto the manifold of excited Zeeman sublevels, since
we suppose here that the ground-state Zeeman sublevels have all the same in-
ternal energy, taken equal to 0. In (5.11), P is the atomic-momentum operator
along 0z, since we restrict ourselves in this section to a one-dimensional
treatment.

The states |g.,, p = fik) are eigenstates of H,:

( ihk}z
(5.12) HAlgzlspthk)zlegtlspihk>!

the corresponding eigenvalues being the kinetic energies associated with the
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values p = fik of the atomic momentum. From (5.12), one deduces

(5.13a)  Hy |dnc(p)) =

(p — hky? (p + k)

:%[ sap|9-1 P~ k) + ——r g1, p + fik) | =

p* hlep
( Wi + ER)MNC(I’» Ry |¢G(P})

hkp
(5.13b) Hy |de(p) = ( + ER)'%(P)} e |‘?E’NC(,'P)>

Such a result shows that H, shifts the two states |¢nc(p)) and |{c(p)) by the
same amount p2/2M + Ky, where Ey, is the recoil energy given in (5.1), and in-
troduces a «motional coupling» between these two states

ﬁkp

(5.14) (be(p)|[Hy |dne () = A

characterized by an angular frequency equal to the Doppler shift kp/M associ-
ated with the velocity p/M.

52.3. Decay rates due to spontaneous emission. As long as sponta-
neous emission is ignored, the three states |eg, p), |g1, p + fik), |g-1, p — hik)
form a three-dimensional subspace, or family, which we denote F(p), and
which remains stable under the effect of the atom-laser coupling V), and the

eo’ p

T
|
|
1 7é
|
[
|
]

'

hjl':‘. I :n::::l:ﬂ::! fn"_\’_:.
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Fig. 7. — Various couplings between the three states |e;, p), |¢c(p)) and [¢yc(p)) of the
family Z(p). The energy separation between |ey, p) and |4c(p)) (or [¢nc(p))) is — (B +

+ Eg) = — hé (after elimination of the time dependence of V). The two states |¢,, p) and
|4c(p)) are coupled by Vi, (matrix element Ai(2, /2), whereas the two states |{¢(p)) and
|4nc(p)) are coupled by H, (matrix element ﬁkp/M ). In the absence of Vy;, and H,, the
only radiatively unstable state of the family is |ey, p) (natural width or departure rate I).
Because of the contamination of |{c(p)) and |¢yc(p)) by |eg, p) due to Vyy, and Hy, the
two states |¢c(p)) and |¢nc(p)) also acquire finite widths, or departure rates, which are
denoted I't and I'yc.
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atomic Hamiltonian H,. Without spontaneous emission, an atomic state, which
initially belongs to F(p), cannot leave F(p). Since |¢c(p)) and |Ync(p)) are lin-
ear combinations of |g.;, p + k), F(p) can also be considered as subtended by
the three orthogonal states |eg, p), |¢c(P)), |¢nc(P)):

(6.15)  Fp)={ley, p) 941, p + hk), |g_1, p — Hk)} =
= {leo, P), |Lc (D)), |¥nc(P)}-

Figure 7 represents these three states and the various couplings which exist
between them and which are due to V;, (matrix element %, /2 between |eg, p)
and |¢gc(p))) and to H, (matrix element fikp/M between |{c(p)) and |dnc ().
We have eliminated the exponentials exp[ 4wy, t] appearing in expression (5.3)
by using the transformation (2.19) (or by quantizing the laser mode), which
amounts to replacing wy by ws — wp, = — 4. If one includes the diagonal ele-
ments of H, in the unperturbed energies of the three states of F(p), the energy
separation between |e,, p) and |¢c(p)) (or |¢nc(p)) is —hs, where

(5.16) he = hs + Ey.

In this subsection, we investigate the departure rates from F(p) due to
spontaneous emission. If we ignore V,;, and H,, the only radiatively unstable
state of F(p) is |ey, p) since no real (*) spontaneous-emission process can occur
from any one of the two ground-state sublevels |g;) and |g_,). The departure
rate from |e,, p) is equal to the natural width I' of |ey, p). As long as one is in-
terested only in the decay amplitude of an initial state belonging to F#(p), and
not in the final states resulting from this spontaneous decay, one can show (**)
that the quantum evolution within F(p) is correctly described if one just adds
an imaginary part — ihl'/2 to the energy of |eg, p). The quantum evolution
within ZF(p) is thus governed by the following 3 X 3 non-Hermitian effective
Hamiltonian:

—3-irf2 9,/2 0

(5.17) Ha=h| 0,/2 0 kp/M|,
0 kp/M 0

(*) Photons can be virtually emitted an reabsorbed from g, and g_,, when the rotating-
wave approximation is not made in the atom-vacuum field interaction Hamiltonian Vyy ap-
pearing in (2.1) of ref. [1]. One can show that these «virtual» processes give rise to energy
shifts of g, and g _; which are the same for these two sublevels as a consequence of the rota-
tional invariance of Vyy. These Lamb shifts of g_; and g,, as well as the Lamb shift of e,
are supposed here to be reincluded in the atomic frequency wy.

(**) One possible method for demonstrating such a result is to study the restriction of the
resolvent operator within the subspace subtended by the three states of F(p) (see, for
example, ref. [42], Chapt. III).
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which has in general three complex eigenvalues having different imaginary
parts. This means that there are in general three different spontaneous-decay
modes from F#(p). We want here to discuss the physical meaning of these modes
in the perturbative limit where the couplings 7, /2 and #kp/M due to V;, and
H, are sufficiently small.

Consider first the particular case where p = 0. It is clear from fig. 7 that the
state |¢nc(p = 0)), given by

(5.18) lnc(p =0)) = %[lg-la —hk) + 9.1, +ﬁk>]’

is completely isolated from the other two states of Z#{(p = 0) since the coupling
fikp/M between |¢yc(p)) and |{c(p)) vanishes for p = 0. This means that an
atom which is put at £ =0 in |¢yc(p = 0)) will remain there indefinitely. The
state |¢nc(p =0)), given in (5.18), is, therefore, a perfect trap. The departure
rate I'yc(p = 0) from |¢yc(p = 0)) is strictly zero:

(5.19) ne(p=0)=0.

The other two departure rates from F(p = 0) may be found by using (5.17),
which splits up into two submatrices when p =0, one 1 X 1 submatrix corre-
sponding to |¢nc(p = 0)) and one 2 X 2 submatrix

h(—‘é —ir/2 91/2)

(5.20) Q,/2 0

in the subspace {|e,, p =0), |¢c(p = 0)}. If

(5.21) Q, < V3e+r1?/4,

i.e. if Q) <<TI' or ;< |3|, the eigenvalues of (5.20) can be found perturbatively.
The eigenvalue which tends to zero when ; — 0 is given by the well-known
second-order perturbative expression

)
2 R i
(5.22) i . ;,(50 _ 1_),
h(?a‘ + a’f—) 5
2
where
3]
2
(5.23a) re=r —,
: 2y L
4
(3)
r T 2
(5.23b) =2
a2
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Such a result means that, under the effect of V,y,, the state |¢c(p = 0)) is light
shifted by Ad¢ and gets a finite width I'¢., which can be also considered as the
photon scattering rate from |¢c(p = 0)). This departure rate from | (p = 0)) is
obviously due to the «contamination», induced by Vi, of |¢c(p =0)) by
leg, p = 0). The other eigenvalue of (5.20) is very close to —#é — iAI'/2.
Suppose now that p is different from zero, but very small. More precisely,
the coupling #ikp/M between |¢nc(p)) and |¢c(p)) is assumed to be very small
compared with the light shift or the width of |¢g(p)) calculated above for
p=0:
(5.24) &;{]l L |ég| or Ig.
Two of the three eigenvalues of (5.17) are then still very close to the two eigen-
values of (5.20), i.e. to —#d — ih(I'/2) and #ef — ihI'; /2. As for the third one,
one can get it by applying second-order perturbation theory to the coupling
hkp/M induced by H, between |{xc(p)) and the perturbed state |¢c(p)) result-
ing from the coupling #Q, /2 induced by V,;, between |¢c(p)) and |eg, p). One
gets in this way, using (5.23),

hk 2 ry
(525) . =h(afm - il )
h(—ag + 17‘3)
where
(%)
—11? 4k2p2,_
(5.26a) e (p) = &L= 3,
NChP i re C M2Q§
6 g
%)
, M) ., _ 4kp®
(5.26b) FNC (p) = 1”2 1 c= Mz‘Qz
ap2+ C 1
©T oy

In (5.25), héyc (p) is the light shift of |¢yc (p)), whereas I'yc (p) is the departure
rate from |¢yc(p)), more precisely from the eigenstate [¢nc (p)) of (5.17) which
tends to |¢nc(p)) when p— 0 (|¢nc(p)) is a linear superposition of the three
states (5.15) where |¢nc(p)) has the largest weight). Here also, the departure
rate from |{nc(p)) is due to the contamination of |¢nc(p)) by |eo, p). But this
contamination results now from two contaminations: the contamination induced
by Var between |{c(p)) and |ey, p) which gives rise to a perturbed state [¢¢ (p))
containing a small admixture of |e;, p), then the contamination induced by H,

between |[¢nc(p)) and |ge(p)).
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It is clear from (5.26b) that the departure rate 'y (p) is very small when p is
small, and vanishes for p = 0(*). This means that an atom, which is put in
[¢nc(p)) at time ¢ =0, can remain there for a very long time if p is small
enough, on the order of (I'yc(p))~!. Conversely, for a given interaction time 6,
we can find a range dp of values of p around p = 0 such that, if |p| < ép, an atom
in |¢nc(p)) has a high probability to remain trapped in |¢nc(p)) during the
whole interaction time ©. The corresponding value of 3p is given by the
condition

(5.27) I'yc(Gp)O <1,
which, using (5.260), leads to
M &

2k VI V6

The previous analysis thus demonstrates the existence of a velocity selection
mechanism. The set of states |¢yc(p)) with |p| < 3p can be considered as pro-
tected from the «bad» effects of spontaneous emission, since a spontaneous-de-
cay process from such states, during a time interval @, is very unlikely. We
have thus been able to give a correct full quantum description of the phe-
nomenon of velocity-selective coherent population trapping, introduced semi-
classically in subsect. 4'6. We now see that the correct trapping states are lin-
ear superposition of states which differ not only by the internal state g, or g_,,
but also by the linear momentum which is p + Ak for g, and p — Ak for g _,. We
also see that 3p can be as small as we want, and in particular smaller than #k,
pri;i_ded that @ is long enough, since, according to (5.28), 3p varies as
1/V/6.

(5.28) 3p <

524. Spontaneous transfers between different families. In the
previous subsection, we have studied how an atom leaves a family F(p) by
spontaneous emission. We now show that, after a spontaneous-emission pro-
cess, the atom can move into a new family. This diffusion in momentum space is
essential for transferring atoms into the trapping states |¢nc(p)) with
|p| < 2p.

Suppose that, at time ¢, an atom whose state is deseribed by a ket |4(#)) of
F(p) spontaneously emits a photon with a momentum #k having a component
fik, = u along 0z. Such an emission is possible only if |{(f)) contains a certain ad-
mixture of the unstable state |e;, p). We momentarily use a vector p for the
atomic momentum and not only the component p of p along 0z. Just after the

(*) The spontaneous-decay rate I'yc (p) is equal to half the semi-classical fluorescence rate
Rp (v = p/M) found in (4.49). The factor 1/2 is due to the fact that, in steady state, the

state [¢c(p)) is also populated and contributes equally to the fluorescence rate.

11 - Rendiconti S.I.F. - CXVIII
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spontaneous-emission process, the atom is in a linear superposition of |g,, p —
— k) and |g_;, p — fik) which is determined by the direction of k and the polar-
ization of the spontaneously emitted photon. If one is not interested in the x and
y components of the atomic momentum, i.e. if one traces the final density ma-
trix over these momentum quantum numbers, keeping #k, = u fixed, and if one
averages over the polarization of the emitted photon and on the azimuthal direc-
tion of k, one finds that the final atomic density matrix is a statistical mixture,
with equal weights, of |g,, p —u) and |g_,, p — u). Such a result is a clear
manifestation of the conservation of the total linear momentum along 0z.

Figure 8 represents the three states |g,, p + #ik), |g_1, p — fik) and |e,, p) of
F(p) and the two possible final states |g;, p — ) (@) and |g_1, p — u) (b)) of
the statistical mixture obtained after the spontaneous emission of a photon with
momentum u along 0z. According to (5.5), |g, p — u) belongs to F(p — hk — ),
whereas |g_;, p — ) belongs to F(p + fik — u). Since % can take any value be-
tween — ik and + hik, this shows that spontaneous transfers can occur from
F(p) to F(p') with p — 2hk < p' < p + 2hk.

Combining the results of this subsection and the previous one, it would be
possible to make a Monte Carlo simulation of the time evolution of an atom. Just
after a spontaneous-emission process, one knows the state of the atom, which
is, for example, the state |g,, p — u) or |g_;, p — u). Knowing this initial state
and the effective Hamiltonian (5.17) corresponding to the family of this initial
state, one can then calculate the probability that the next spontaneous photon
will be emitted after a time {. When such a process occurs, one knows the new

e,p—u—rhk e,p
Fp-u—tk) 7\
_ 7/ N a)
/
/
b
o
Vi
z
8 .p-u—27k g.p-rk g.p-u gup+ik
e,p e.p-u+ik
B
/ N\ (p-u+iik)
\
\
b
\\ b)
g .p-rik g .p-u gop+ik  g.p-u+2ik

Fig. 8. — Transfers between families due to spontaneous emission. Starting from |eg, p)
which belongs to Z#(p), the atom can, by spontaneous emission of a photon with momen-
tum % along 0z, go either into |g;, p — u) which belongs to F(p — u — fik) (a)), or into
lg_1, p — u} which belongs to F(p — u + k) (b)).
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initial state of the atom and the new family, and so on. There is a certain analo-
gy between the calculation sketched here and the calculation of the delay func-
tion used for interpreting the phenomenon of intermittent fluorescence and
quantum jumps (see ref.[43] and ref.[42], Chapt. VI, subsect. E.3.c). In the
two situations, one calculates the distribution of the time delays between two
successive emissions of photons by the same atom, and the existence of very
slow decay rates explains why the fluorescence can stop for a very long time.
Such an analysis also explains the mechanism for entering into the trapping
state [¢nc). Just after a spontaneous-emission process, the atom is, for
example, in |g;, p — u) which is a linear superposition of the three eigenstates
of the effective Hamiltonian corresponding to the family F(p —u — fik) to
which |g,, p —u) belongs. But these three states decay with quite different
rates so that, if no spontaneous-emission process has occurred after a long
enough time, the initial state is filtered and reduces to |¢yc(p — ik — ). Fi-
nally note an important difference between the situation analysed here and the
one analysed in ref.[43]. We take into account here the momentum change fol-
lowing spontaneous emission. Since the slow decay rates are very sensitive to p
(see (5.26b)), the length of the dark periods, during which the fluorescence
stops, can change appreciably during the time evolution (*).

52.5. Expected final momentum distribution. Consider an atom in
the state |¢nc(p)). Such a state is not an eigenstate of the component P, of the
atomic-momentum operator P. According to (5.5), a measurement of P, for an
atom in |¢Yync (p)) gives two possible results, p — Ak and p + Ak, with equal prob-
abilities, After an interaction time @, a notable fraction of the atoms will be
trapped in the states |¢yc(p)) (which are very close to |¢nc(p))) with |p| < 2p,
8p being related to @ by (5.28). One, therefore, expects to see in the final atom-
ic-momentum distribution (i.e. after an interaction time @) two peaks centred
around + Ak and — fik, each of these two peaks having a width 2p. If 6 is large
enough so that ép is smaller than #ik, one expects these two peaks to be well re-
solved. Inecreasing @ should decrease their width, and hopefully increase their
weight since atoms will have a longer time to diffuse in momentum space to-
wards p = 0.

All these predictions are quantitatively confirmed (**) by a numerical inte-
gration of the quantum equations of motion [40]. The interested reader may find
in ref. [40] a detailed deseription of such calculations and of their conclusions. In
particular, the predictions (5.28) that the width dp of the two peaks at + fik

(*) Note added in proofs. — Such a Monte Carlo simulation has been recently per-
formed [44].

(**) Note, however, that the problem of the evolution of the weight of the peaks in the
long-time limit is still open.
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should vary as , /\/@ is very well confirmed. We just mention here that the
quantum equations of motion cannot be transformed, as in subsect. 5.3.3 of
ref.[1], into coupled Fokker-Planck equations. Since the atomic-momentum
distribution contains sharp peaks, with a width p which can become smaller
than #ik, it is no longer possible to make an expansion of the density matrix ele-
ments in powers of #ik/3p. ;

Finally note that a one-dimensional laser cooling of the type described in
this section was recently demonstrated on a beam of metastable ‘He atoms [39].
Two counterpropagating ¢* and o~ laser beams were exciting perpendicularly
the atomic beam on the 23S, <> 2® P, transition of *He at A = 1.08 nm. Double-
peak structures with a width ép smaller than #ik were observed on the final mo-
mentum distribution, corresponding to a one-dimensional temperature of 2 pK,
smaller than the recoil limit of 4 pK corresponding to this transition of
He.

5'8. Generalization to higher dimensions. — In this last subsection, we
present possible extensions to higher dimensions of the one-dimensional cooling
scheme analysed in the previous subsection. A few proposals have been pub-
lished, extending the idea of velocity-selective coherent population trapping to
two dimensions [40,45] or three dimensions[45,46]. We will follow here the
presentation of ref.[46], restricting ourselves to the particular case of a J,; =
=1<J,=1 transition. Other transitions have been also considered in the
literature [47]. '

53.1. Equivalent expression for the absorption amplitude. At
two or three dimensions, it is no longer possible to ignore the ground-state sub-
level g, and the two excited Zeeman sublevels e¢_; and e;. In the position repre-
sentation, the most general wave function representing the quantum state of
the atom (both internal and external) in the lower state g can be written

(5.29) Ve =¢_10)9-1) + b |go) + 441 [941)-

It is in fact a three-component wave function, one wave function {,, (r) being as-
sociated with each of the three Zeeman sublevels |g,,) of g. Changing from the
spherical basis {|g,,)} to the Cartesian basis

A

PQ‘Q:— '\/é(lgH)_ |Q'_1)),

: |
(6:40) lgy) =+ \—/_E(Igﬂ) + g1 )5

lg:) = + |go)
transforms (5.29) into

(5.31) V() = )]g:) + 4, 0)g,) + 4.@)g:),
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where {, (1), ¢, (), ¢, (r) are three wave functions which are transformed by ro-
tation as the three components of a vector field y, (r):

(5.32) e ) = {L: (), ¢, @), L)}

A similar argument shows that the most general quantum state in the upper
state e is described by a vector field ¢, (r):

(5.33) 6() = {8.0, 4, (), 6. ()} .

We now consider the probability amplitude ..# for the atom to be excited
from the state y, (r) to the state ¢, () by absorption of one laser photon. Such an
amplitude depends not only on the initial and final states y, () and ¢, (r), but
also on the laser electric field Ey’ (r), which is, as y, (r) and ¢, (r), a vector field.
From the Clebsch-Gordan coefficients of a J, = 1<>J, =1 transition, one can
show that

(5.34) A = (e |Var, | ¥,) = C j &r ¢ () [Ef () Xy )],

where C' is a constant. In fact, the structure of (5.34) can be easily understood if
one notes that the only vector field which can be constructed from the two vec-
tor fields y,(r) and Ey (r) is Ey (r) X y, ().

53.2. Conditions for having a trapping state. Going back to the ap-
proach followed in the previous subsection, we can now identify two general
conditions which must be fulfilled by an atomic state y; () in g if one wants this
state to be a perfectly trapping state, i.e. such that, if an atom is put in y; (r) at
time ¢ = 0, it remains there indefinitely.

Firstly, this state must be insensitive to the laser light. More precisely, one
must have

(5.35) Va |¥5) =0,
which generalizes (5.6), or equivalently, according to (5.34),

(5.36) j &r () - [Ef ) X gL )] =0, Ve, (r).

Secondly, the atomic Hamiltonian H, must not couple 7§ to any other state
which could be coupled to the laser light. Such a condition implies that ¥ must
be an eigenfunction of H,, or equivalently that ‘Fg is a stationary state with re-
spect to H,. In the absence of magnetic field, the three Zeeman sublevels of g
have the same internal energy, so that the requirement for ¥ to be an eigen-
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function of H, can be replaced by

P’ |
710 = 2 1vh),

(5.37) H | Pg) =

2M

where P is the atomic-momentum operator and where the eigenvalue p%/2M is
a c-number.

53.3. Finding a trapping state. We now show that a very simple way
to satisfy both conditions (5.36) and (5.37) is to take

(5.38) wg () = pEL (r),

where u is a constant. Equation (5.38) defines an atomie state in g whose wave
function is deseribed by the same vector field as the laser electric field. Firstly,
it is clear that (5.36) is fulfilled since

(5.39) E (r) X yg(r) = pE (r) X Ef (r) =

Secondly, we note that, the laser field being monochromatic with frequency ey,
E1 (r) is necessarily a superposition of plane waves with wave vectors having
all the same modulus ki, = wy, /¢, so that

(5.40) VZE[" = — kZE[" .
Since P = — 14V, we then deduce from (5.38) and (5.40) that

P* wl = uh? o _ HPRE o
RGN AR T

which shows that wg also satisfies (5.37) since it is an eigenfunction of P%/2M
with the eigenvalue Ey = #*k{ /2M.

It should be noted, however, that conditions (5.36) and (5.37), which must
necessarily be fulfilled by a three-dimensional trapping state, are not sufficient
for defining such a state. Consider, for example, a laser configuration which is
formed by three coplanar plane waves whose wave vectors ky, k,, k3 are all in
the z0y plane, with

(5.41)

(]

(5.42) |ky | = ke ] = |k | =k, = —

Suppose now that, instead of taking a constant u in (5.38), we replace u by
exp [ixz], so that we take for y;

(5.43) v (r) = exp [ixz] E1* (r).

It is clear that (5.43) still fulfills (5.36) since wg X E{ is still equal to zero. On
the other hand, the multiplication by exp [ixz] in (5.43) amounts to adding to
the wave vectors k; (i = 1,2,3) of the three plane waves forming E{" the vector
Kk = kg,. It follows that the vector wave function (5.43) is now the sum of three
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de Broglie plane waves with wave vectors k; + k (i = 1,2,3). Since k, which is
parallel to 0z, is perpendicular to ky, ks, k3, which are all in the x0y plane, the
three wave vectors k; + k have the same modulus (k7 + x2)"/2, so that (5.43) is
still an eigenstate of P%/2M with eigenvalue #*(kf + x*)/2M:

e (kE + K2)

P2 b F o) =
(5.44) Wi exp [ikz] Ef (r) = Wi

exp likz] Ei (r).

We have thus demonstrated that (5.43) still satisfies (5.36) and (5.37). But,
since x can take any value, eqs. (5.43) now define a whole set of trapping states
which differ from each other by the value of the momentum along 0z. In other
words, with a laser configuration formed by three coplanar plane waves, taking
w; proportional to E;" does not lead to a three-dimensional trapping state, since
there are an infinite number of trapping states which differ by the momentum
perpendicular to the plane of the three waves. We have only a two-dimensional
trapping.

The previous discussion suggests that, in order to get a unique 3-D trapping
state, one must take a laser configuration consisting of at least four plane waves
k; (1 =1,2,3,4), the directions of the four wave vectors k; being such that there
exists a single sphere (of radius k;, = @y, /c) centred on 0 and containing the ex-
tremities of the k;s. Any translation x then destroys the equality between the
modulus of the four vectors k; + k. A 3-D atomic trapping state (for a J, = 1<
< J, = 1 transition) must, therefore, be a superposition of at least four states
|g;, k;) (with |k; | = k), differing not only by the direction k; /k; of the momen-
tum, but also by the internal state g;. Since, according to (5.38), each state
|gi, k;) is the replica of a laser plane wave, and since such light waves are trans-
verse, the internal atomic state g; must be also transverse with respect to
k;.

It would be very interesting to try to demonstrate the existence of such 3-D
trapping states which exhibit nonseparable quantum correlations between in-
ternal and external degrees of freedom. A certain number of problems remain
to be investigated. For example, one must get rid of gravity. Also, the filling
efficiency of the trapping state, which depends on momentum diffusion, could
be much smaller in three dimensions than in one dimension and it would be
probably helpful to supplement the method by other schemes increasing the
momentum diffusion towards the low values of p.

& ok
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