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INTRODUCTION

During the last few years, experimental and theoretical developments
in laser spectroscopy have increased our understanding of photon atom in
teractions. New methods have been invented for controlling the translational

degrees of freedom of atoms or ions!. A new type of spectroscopy is arising,
which deals with a single atom or a single ion, confined in a very small vo
lume of space, with a kinetic energy so much reduced by lasercooling that
first and second order Doppler effects become completely negligible. The si

gnal given by a photodetector recording the fluorescence light emitted by
such a single atom looks like a random sequence of pulses. ln this confe
rence, devoted to methods of laser spectroscopy, we would like to present
new theoretical tools for extracting the spectroscopic information contained
in this sequence of pulses.

EXAMPLES OF SINGLE ATOM EFFECTS

A first example of single atom effect is the so called photon antibun
chingz. The probability per unit time, gz(t,t+T), if one has detected one
photon at time t, to detect another one at time t+T, tends to zero when T
tends to zer03• The interpretation of this effect is that the detection of

one photon projects the atom into the ground state, so that we have to wait

that the laser reexcites the atom, before we can detect a second photon4-6•

Another interesting example of single atom effect is the phenomenon of
"electron shelving" proposed by Dehmelt as a very sentitive double resonance
scheme for detecting very weak transitions on a single trapped ion7• Consider

for example the 3 level atom of Fig. 1-a, with two transitions starting from

the ground state Ig>, one very weak g*eR , one very intense g*eB (which we
will calI for convenience the "red" and the "blue" transitions), and suppose
that two lasers drive these two transitions. When the atom absorbs a red

photon, it is "shelved" on 1eR> , and this switches off the intense blue

fluorescence for a time of the order of ril • W~ expect therefore in this
case that the sequence of pulses given by the broadband photodetector recor
ding the fluorescence light should exhibit "periods of brightness", with
closely spaced pulses, corresponding to the intense blue resonance fluores

cence, alternated with "periods of darkness" corresponding to the periods of

shelving on 1eR> (Fig. 1-b). The absorption of one red photon could thus be
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is clear that peT) is the probability for not

between t and t+T , after the emission of a
from 1 at T = 0 and decreases to zero as T

the hypothesis that P and Wz evolve in time

detected by the absence of a large number of blue fluorescence photons8 •

It has been recently pointed out9 that such a fluorescence signal could pro

vide a direct observation of "quantum jumps" between Ig> and 1eR>, and seve
raI theoretical models have been presented for this effect, using rate equa

tions and random telegraph signal theory9, or optical Bloch equations and

correlation functions such as gz 10-13

INTRODUCTION OF NEW STATISTICAL FUNCTIONS

ln this lecture, we wou Id like to introduce another statistical func

tion which, in our opinion, is more suitable than gz for the analysis of si

gnaIs such as the one of Fig. ]-b. We define Wz(T) as the probability, if
one has detected one photon at time t, to detect the next one at time t+T

(and not any other one, as it is the case for gZ)'4. We suppose for the mo
ment that the detection efficiency is equal to 1, so that Wz and gz refer

also to emission processes. The delay function Wz(T) is directly related to

the repartition of delays T between two successive pulses and thus provides

simple evidence for the possible existence of periods of darkness. We would

like also to show in this lecture that Wz(T) is very simple to calculate and

is a very convenient tool for extracting aIl the spectroscopie information

contained in the sequence of pulses of Fig. ]-b.

We first introduce, in paraI leI with WZ(T), a related function peT)

defined by :

peT) = 1 - f T dT' . wz(T')
o

From the definition of Wz , it

having any emission of photons
photon at time t . peT) starts

tends to infinity. We now make
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with at least two very different time constants. }loreprecisely, we suppose
that P(T) can be written as

P(T) = P (T) + P Cr)
short long

where

(2)

this

time

(3)

and

Pl (T) = P exp(-T/TI )ong ong

where Pshort(T) tends to zero very rapidly, Le. with one (or several)

constant(s) T h much shorter than Tl . We shall see later on thatsort ong
splitting effectively occurs for the three level system described above.

(4)

00

After an integration by parts and using again the double inequality (4),
this becomes

LOOKING FOR PERIODS OF DARKNESS

Our main point is that this form for P(T) proves the existence of bright
and dark periods in the photodetection signal, and furthermore allows the
calculations of aIl their characteristics (average duration, repetition
rate, ...). Our analysis directly follows the experimental procedure that one
would use in order to exhibit such dark and light periods in the signal. We
introduce a time delay 8 such as :

T «8«T
short long

and we "store" the intervals 6t between successive pulses in two "channels"
the interval 6t is considered as short if 6t < 8 , as long if 6t> 8 . We now
evaluate quantities such as the probability TI for having a long interval

after a given pulse and the average durations Tl and T h of long andong sort
short intervals. If none of these three quantities depends (in first appro
ximation) on 8 , this clearly demonstrates the existence of bright periods
(i.e. : succession of short intervals) and of dark ones (i.e. : occurence of

a long interval).

The probability TI for having an interval 6t larger than 8 is directly
obtained from the function P : TI = p(8). Using the double inequality (4), we

get Ph (8) "'0 and Pl (8) "'Pl (0) =p , so that :sort ong ong

TI = p (5)

The average durations Tl and T h of long and short intervals are
. b ong sortglven y

Tl = ~ J
dT.T.w2(T)ong II 8

T = 1 r dT .T •W2 (T)

(6)

short T=1Ï
0

joodT.Ph (T)sort
o

We see that the average length of long intervals is just the long time

constant of P(T), while the average length of short intervals is related to
the rapidly decreasing part of P(T). None of the three quantities obtained

J

l
Tlong

1
T =-
short 1- p

(7)
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in (5) and (7) depends on 6,which indicates the intrinsic existence of dark

periods and of bright ones. The average duration of a dark period~ is just
'1 ' while the average duration of a bright period~ is the product ofong .~

the duration of a short interval Th' by the average number N of conse-
cutive short intervals1S : sort

cgD

cGB

'long

Tshort .N

(8.a)

(8.b)

This average number N can be written ~ N PN where PN ~ (1 - p)N P is the proba
bility for having N short intervals followed by a long one. Actually, the
notion of "brightness" for a period has a sense only if it contains many
pulses. We are then led to suppose p «1 , so that :

N ~ ~ '" 1- » 1 (9)
p P

Using (7) and (8.b), the length of a bright period can finally be written

"B ~ 1- J'X> d, . P h (,) (10)P " sort
o

Note that if the efficiency of the detection E is not 100%, results
(8.a) and (JO) are still valid provided certain conditions hold. Remark first
that in a bright period, the mean number of pulses is multiplied by E , and
that the interval between two successive pulses is divided by E • ln order to
still observe dark and bright periods, one has to detect many pulses in a
given bright period, and the average delay between two detected pulses must
be much shorter than the length of a dark period :

« E N

( 1 1 )

T lE « T
short long

Provided these two inequalities are satisfied, it is still possible to detect
dark and bright periods, whose lengthes are again given by (8.a) and (10).

METHOD OF CALCULATION OF THE DELAY FUNCTION

We now tackle the problem of the calculation of W2 and P for the 3-level
atom described above, for which we shall use a dressed atom approach. Imme
diately after the detection of a first fluorescence photon at time t, the

system is in the state I~o> ~ Ig,NB,NR> , i.e. atom in the ground state in
presence of NB blue photons and NR red photons. Neglecting antiresonant
terms, we see that this state is only coupled by the laser-atom interactions

to the two other states I~l> = leB,NB-I,NR> and 1~2> ~ leR,NB,NR-I> (the

atom absorbs a blue or a red photon and jumps from \g> to leB> or leE».These three states form a nearly degenerate 3-dimensional manifold ~(NB,NR)
(see Fig. 2), from which the atom can escape only by emitting a second fluo
rescence photon. The detection of this photon then projects theatom in a
lower manifold. Consequently, the probability P(,) for not having any emis
sion of photon between t and t+, after the detection of a photon at time t

is simply equal to the population of the manifold ~(NB,NR) at time t+,
knowing that the system starts from the state I~o> at time t.

ln order to calculate this population, we look for a solution for the
total wavefunction of the form :
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11)i(t+T» = L a.(T) lep.> x 10 fluorescence photon>
i=0,1,2 ~ ~

+ Istates involving fluorescence photons> ( 12)

with ao(O) = 1 , aIl other coefficients being equal to zero at time t. From
(12), we then extract P

The the a.' s read~

irB

+ -2-) al

ifR
+ --) a22

(13)

( 14)

where ~B and ~R represent the blue and red Rabi frequencies, 6B(6R) the de
tuning between the blue (red) laser and the blue (red) atomic transition, and

where fB-I and fR-I are the natural lifetimes of levels leB> and 1eR>' This

differential system is easily solved by Laplace transform, and each ai(T)
appears as a superposition of 3 (eventually complex) exponentials. The main

result is then that, provided fR and ~R are small enough compared to fB and
~B , peT) can be written as in (2)-(3) : this proves the existence of periods
of darkness in the photodetection signal.

We shall not give here the details of the general calculations, and we

shall only investigate the two limiting cases of weak and strong blue exci
tations.

THE LOW INTENSITY LIMIT

This limit corresponds to ~B« fB (blue transition not saturated). We

suppose the blue laser tuned at resonance (6B = 0) and 've consider first

6R=0. The system (14) has 3 time constants, two short Tl and T2 and one
long T3
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T -
short - Tz/2

(15. a)

(J5.b)

(15. c)

(16)

(18)

(17)

( 19)

Physically, 2/Tz represents the absorption rate of a blue photon from Ig>
to leB>' It can be interpreted as the transition rate given by the Fermi

golden rule, with a matrix element ~B/2 and a density of final states 2/TIfB
and corresponds to the width of the ground state induced by the blue laser.

On the other hand, the long time constant in peT) is proportional to T3

Tl = T3/2ong

Physically, 2/T3 represents the departure rate from 1eR> , due to both
spontaneous (first term of (15.c» and stimulated (second term of (15.c»

transitions (Fig. 3). The second term of (15.c) can be written (~R/2)ZTz
and then appears as a Fermi golden rule expression. It gives the stimulated

emission rate of a red photon from 1eR> (matrix element ~R/2) to the ground
state Ig> broadened by the blue laser (density of states Tz/TI).Note that the

condition Tl »T h implies:ong sort

~Bz
fR ' ~ « -f

B

From now on, we choose ~R such that the two spontaneous and stimulated
rates of (15.c) are equal, and we calculate from (8.a) and (10) the variation

with the red detuning ~R of the ratio ~D/~B . We find that this ratio exhi
bits a resonant variation with ~R (Fig. 4) :

~ 1

-~-B=-2-+-(T-Z-~-R-)T

This shows that it is possible to detect the g - eR resonance by studying the
ratio between the lengthes of dark and bright periods. Note that this ratio

can be as large as 1/2 (for ~R = 0) and that the width of the resonance is
determined by the width of the ground state induced by the laser. We have

supposed here that ~B = 0 ; if this was not the case, one would get a shift
of the resonance given in (19) due to the light shift of Ig> .

THE HIGH INTENSITY LIMIT

This limit corresponds to ~B» fB (blue transition saturated). We still
suppose ~B = 0 . The two short time constants Tl and Tz of (14) are now equal

to 4/fB ' so that T h = 2/fB . The corresponding two roots rI and rz ofsort

the characteristic equation of (14) :

{

fB. ~B
(20.a)

rI = - ~ - ~ T

fB . ~B
(20.b)

l
rz = - ~ + ~ :2
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Fig. 3. The tuv po~~iblede~excitatLonp~oce~~e~ Oô the ~helving~tate eR
~pontaneoUh~an~ition~ (wavy~ow) ô~om eR to 9 and ~timufated
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(double~ow) .
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have now an imaginary part ± i~B/2 , which describes a removal of degeneracy
induced in the manifold &(NB ,NR) by the atom blue laser coupling : the two
unperturbed states I~o> and 1~1> of &(NB, NR)' which are degenerate for
~B=O , are transformed by this coupling into two perturbed dressed states

(21)

having a width rB/4 and separated by the well known dynamical Stark splitting

~B 16. The interaction with the red laser couples the third level 1~2> to
I~±> with matrix elements ± ~R/212 . This coupling is resonant when 1~2> is
degenerate with I~+> or I~_> , i.e. when ~R =± ~B/2 (Fig. 5). Such a resonant
behaviour appears on the general expression of the slow time constant '3 of
(14)

for ~R = ± ~B/2 . As in (15. c), the first term of (22) or (23) represents the

effect of spontaneous transitions from 1eR> . The second term of (23) can be
written as (~R/2/2)2 . (4/rB) and appears as a stimulated emission rate of a
red photon from 1eR> to the broad I~+> or I~_> states. If, as above, we

choose ~R such that the 2 rates of (23) are equal, we get for ~D/~ the
double peaked structure of Fig. 6 • When ~R = 0 , we find :

r 4
B

WT « ]
B

rR ~R2 ~B2 rB
-+-- 2 2 2

'3

2 32 [~B _ ~ 2 )2 + ~ rB4 R 4which reaches its maximum value

:

cG'D

oGB

(22)

(23)

(24)

so that the dark periods have a very

hand, around ~R = ± ~B/2 , we get :

(rf )2

~B 2

(~R + 2) +

small weight in this case. On the other

(25)

It follows that the two peaks have a maximum value equal to ]/4 and a width
rB/12 .

Finally, Fig. 6 shows that measuring in this case the ratio between the

lengthes of dark and bright periods gives the possibility to detect, on a
single atom, the Autler-Townes effect induced on the weak red transition by
the intense blue laser excitation.

CONCLUSION

We have introduced in this paper new statistical functions which allow

a simple analysis of the electron shelving scheme proposed by Dehmelt for
detecting very weak transitions on a single trapped ion. We have shown that

there exist, in the sequence of pulses given by the photodetector recording

the fluorescence light, periods of darkness. The average length~D of such
dark periods, which is determined by the spontaneous and stimulated lifetimes

of the shelving state, can reach values of the order of the average length
~ of the bright periods. They should then be clearly visible on the recor

ding of the fluorescence signal. We have also shown that it is possible to
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get spectroscopic informations by plotting the ratio ~D/~ versus the detu
ning of the laser driving the weak transition. The smallest width obtained in
this way is the width of the ground state due to the intense laser. Note that
this width is still large compared to the natural width of the shelving sta
te. lt is clear that, in order to get resonances as narrow as possible, the
two lasers should be alternated in time.

* Laboratoire associé au C.N.R.S. (LA 18) et à l'Université Paris VI.
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