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Bose-Einstein Condensation: An Introduction

C. Cohen-Tannoudji

Abstract. The goal of this first lecture is to introduce the notion of Bose-Einstein
condensation in the simple case of a perfect Bosonic gas, which means a set of
Bosons trapped in an external potential and without mutual interactions. After
briefly recalling some statistical physics results, we study the case of a perfect gas
of Bosons, first trapped in a harmonic potential (section 2), then in a box (section
3). We underline the singularity discovered by Einstein [1], which appears when the
density in phase space exceeds a critical value.

1 Statistical Mechanics Reminders

1.1 Grand-canonical Partition Function

In order to describe a set of indistinguishable quantum particles, the most conve-
nient statistical ensemble is the grand-canonical ensemble (2, 3, 4]. It is obtained
by assuming that the considered system can exchange energy and particles with a
much bigger reservoir [5]. The presence of the reservoir fixes the mean number of
particles N and the mean energy U. The equilibrium state is then determined by
choosing the system’s density operator p to maximize the missing information, or
statistical entropy:

S(p) = —kpTr (pIn(p)) , (1)

given the two constraints:

(N)=N (HY=U . )

This maximization under constraints can be easily solved using Lagrange
multipliers. One obtains:

e—aﬂf—ﬁff i "
p= —7, & Zg=Tr (e_“N—ﬁ”) : (3)

The function Z¢ is called the grand canonical partition function. Lagrange multi-
pliers a and 3 are associated to the constraints on (N) and (H). The § parameter
is linked to the temperature T" by the formula g = (kBT)_l. The o parameter is
linked to the chemical potential y (energy needed to add a particle) by o = — [,
and to the fugacity z = e™® = e’*. Determining the values of z and 8 which
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satisfy the constraints (2) can be done through:

N = zﬂlnzc(z,ﬁ,V), (4)
0z
= —%ng(z,,@,v'). (5)

It is sufficient to invert in order to get z and 3 as functions of N and U.
Once Zg set, all the thermodynamic variables can be obtained through simple
derivation. Thus pressure is determined from:

a
P = kpT 5 n Z6(2,6,V) - (6)

1.2 The Perfect Quantum Gas

Computing Z¢ explicitly, which allows to derive explicit results from expressions
such as (6), is very harsh in the general case of an interacting fluid. However, the
perfect gas case can be exactly solved in a very simple way, as we shall see now.

For a system of N particles which do not interact, the complete Hamiltonian
is the sum of one-body Hamiltonians:

H=h +ho+...+hn. (7

Let us write {|A)}} for a basis of the one-body Hamiltonian h eigenvectors, and e
for the energy associated to |A):

RN =en V) - (8)
Let us now perform second quantization, and introduce the operators a) for

destruction and a} for creation of a particle in the individual state A\. The complete
Hamiltonian and the number of particles operator can be written as:

H’:Ze/\agm I‘;T:Za;a,,\. (9)
A 3

A basis of eigenstates in the Fock space is {| Ny, Ny, Ny, ...)} where the occupa-
tion numbers N of the individual quantum states (i) are equal to 0 or 1 in the
case of fermions, (ii) are any positive or null integers in the case of bosons. For
convenience, we write £ a given set {Ny}: [£) = [Ny, Ny, Ny»,...). We thus get

N = Nl with Ne=)» Ny, (10)
A

Ay = E/le)y with E;=» Nyex. (11)
A



Bose-Einstein Condensation: An Introduction 5

The grand-canonical partition function Zg given by (3) is easily derived in
the basis |£):
ZG :Ze—fINf—ﬁEz S Z 6_(‘1"‘:353\)}\‘{)\ b e_(f-“i‘ﬁfAF)NM X e—(ﬂ-i-.@f;\»‘r)N;J*x T
N Ny '

=16 (12)
X

where we wrote:

C/\ A Ze—(u—]-ﬁel]}\r;‘ ) (13)

N

This factorization of Z¢g as a product of partition functions, each of them related to
an individual quantum state J, is the major advantage in using the grand-canonical
formalism.

The Fermionic Case: Fermi-Dirac Statistics

For Fermions, the possible values of Ny in the sum (13) are N, = 0 or N, = 1.
We thus have:
F) =14 e P =14 ze7F5 (14)

The partition function satisfies:

InZg =) In(1+ze7P<) . (15)
A

By looking at (4), the expression of the total number of particles in the system
can be obtained:

1

- eflea—p) +1° (16}

N=) Ny with Ny
A

For a system at fixed temperature, the chemical potential can take any value, pos-
itive or negative. A big negative value corresponds to a mean number of particles
very small, thus to a system well described by classical Boltzmann statistics:

U — —00 : Ny =~ ze P (17)

On the contrary, a positive value which is big with respect to kg7 corresponds to
a very large number of particles, and thus to a highly degenerate Fermi gas. The
occupation numbers N, are almost equal to 1 if €y < u, and to 0 otherwise.

The Bosonic Case: Bose-Einstein Statistics

For Bosons, the computation of (13) leads to the sum of a geometrical series, or:

(B) _ 1 _ 1
A 1—eaBex 1 —zePer’ (18)
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The number of particles is then given by:

B —1° (19)

. . 1
N = ;N,\ with Ny = -

In this case the chemical potential can take all values from —oo up to €min, which
represents the energy of the fundamental level of A’s. For a chemical potential
beyond this value, the population of this fundamental level would become negative,
which of course doesn’t make any sense. As for the Fermi gas, the big negative
values of p correspond to a gas well described by classical physics (Boltzmann
distribution):

p— —00 : Ny =~ ze P, (20)

2 Bose-Einstein Condensation in a Harmonic Trap

2.1 The saturation of the excited levels

Let us consider Bose-Einstein statistics given by (19). When p goes to €yiy, at

a fixed temperature, the number of particles Ny in the fundamental level of h

becomes infinite: o
B
b €mn  : Nom BT (21)
€min — M
If the gas is restricted to a finite box or trapped in a harmonic pit, the spectrum
of h’is discrete. The number of particles N’ in the excited levels of h is bounded
above:

i 1 , :
" I , B 1
N — ; eﬁ[ﬁ)\—ﬂ) =4 < Nmax - ; eﬁ{g;\—fmm‘] ] ] (22)

where 3 represents the sum over all the eigenstates A of h except the fundamental
state.

In what follows, we will call saturation number the value of N/ .. The exis-
tence of that number, which represents an upper bound for the number of particles
which can be put in states other than the fundamental, may be considered as a
signature of Bose-Einstein condensation: if, at fixed temperature, we put in the
trap a number of particles N greater than N/ .., we are sure that at least N — N/
particles must belong to the fundamental state. This effect is sufficient to explain
the phenomena observed in a harmonic trap.

The saturation of the excited levels of A’ should not be considered a phase
transition. To introduce this notion, one should perform the thermodynamic limit
of the system considered, and observe if the density corresponding to N’/ atoms
placed on the excited levels also remains bounded. The answer to this question
will highly depend on the system’s dimensionality. Before, we are going to study
the application of (22) to the case of a harmonic trap, for which this notion of
thermodynamical limit is not necessary [6, 7, 8, 9].
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2.2 Saturation in a Harmonic Isotropic Trap

For an isotropic trap of frequency v = w / 2, the energy levels of 7’ are charac-
terized by the three quantum numbers (n.,ny,n.) = n, which characterize the
oscillator’s state of vibration upon the three axes. The corresponding energy is:

3 3
€n = hw (ﬂx +ny +n; + 5) €min = §hw . (23)

Moreover, each energy level has a degeneracy g,, given by:

_(n+1)(n+2)

. 5 n=Ny+ny+n,. (24)

The saturation number can be simply written:

o0

1 q huw
) _ o n i o
i\rmax e E e(nx g tna)E _ 1 = E enE 1 with 5 = —kBT )
(ng,ny,n;)7#(0,0,0) n=1
(25)

In the limit where the vibration quantum hw is very small compared to the thermal
energy kg7, that is when £ < 1, this discrete sum can be approximated by
replacing it with an integral (see appendix). We obtain:

EnT\?

N/ =~ 1.202 (%) : (26)
The quality of this approximation can be evaluated on figure 1, which gives the
variation of the discrete sum (25) and of the approximated result (26) as a function
of kgT [/ iw. When kgT becomes larger than 25 hw, the two results differ by less
than 5%. In practice a typical harmonic trap frequency is of magnitude 100 Hz,
or hv/kg ~ 5 nK. For a gas cooled to 200 nK, the maximal number of atoms out
of the fundamental state is then about 80 000.

2.3 The Equilibrium Distribution in a Harmonic Trap

Given the saturation number for a harmonic trap, we can describe the equilibrium
state of a N bosons system in this trap, when its temperature changes [10]. We
will limit ourselves, in the following discussion, to the case of a number of atoms
large in front of 1. This case corresponds to the solid line of figure 2. The dotted
line of this Figure 2 gives some indication on the necessary modifications for lower
numbers of atoms (N = 100 respectively). To simplify notations, we shall shift the
origin of energies by 3/2 hw to bring the energy of the fundamental level to 0.
The critical temperature for which N/ . = N can be deduced from (26). It
is given by:
kgT. = 0.94 hw N/3 (27)
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Figure 1: Saturation number in a three-dimensional isotropic harmonic trap. The
solid line gives the exact result (25) and the dotted line represents the approxi-
mated result (26).
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Figure 2: Fraction of condensed atoms Ny /N as a function of the reduced tempera-
ture T'/T.. The solid curve corresponds to the limit of a large number of atoms (eq.
32). The dotted and dashed curves are the exact solutions of (19) for N = 100 and
N = 1000 respectively. The right figure is an enlargement near the condensation
transition.
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and is therefore large with respect to hw/kpg: the approximate expressions com-
puted in the previous paragraph are valid.

At high temperature, the saturation number N/ (proportional to T?) is
much larger N. The gas is then only very weakly degenerate and one can apply
Boltzmann’s statistics (20). The fugacity is determined using N = ) N, =~

3. gnze” ", which gives after summation of a triple geometric series:

z=N (1-e )’ 2N ~1202—— <1, (28)

N!

max

form which one deduces the occupation of each level:
an,ﬂg.nz =N e_f(nx+‘ny+nz) (1 - 8—6)3 ~ N£3 e—tf(‘nm+ny+ﬂz) ) (29)

In particular, the proportion of atoms in the fundamental state Ny/N is given by

£ = (hw/ kgT)3 and is very small compared to 1. The distributions in position
and velocity of the atoms are Gaussian, with respective variances kgT/(mw?) and
kBT/ m.

When temperature goes down and nears 7., the fugacity z increases and
nears 1. One can compute it by solving the transcendental equation:

o0
9n = z

N = T;] m ~ Ny+¢£ 93(2) avec Ny = m (30)
where one performed an approximation similar to (50-53). Let us remark that it is
essential to exclude the contribution of the fundamental level in this transformation
of a discrete sum into an integral. If this is not done, the lower bound of the integral
which replaces (51) is —1/2 and the integral can diverge when z is close enough
to 1.

For T = T, the proportion of atoms in the fundamental state is still small
compared to 1, but the population of excited levels is quasi saturated. Let us
remark that very many levels have a significant occupation at this point. The vi-
bration quantum number n,, after which the occupation rate becomes smaller than
1 is of order of kpT/hw, hence n, ~ N3 > 1. One should therefore not con-
fuse the condensation that occurs at that point with the more trivial phenomenon
that is expected in the regime of extremely low temperature, i.e., kgT < hw,
for which only the fundamental level has a significant population, no matter how
many particles are present.

If the temperature comes below 7., one observes a redistribution of parti-
cles from the excited levels towards the fundamental level, the fugacity remaining
almost equal to 1. The population of excited levels decreases according to the
previously determined saturation law:

N'(T) = 1.202 (%%T)S =N (%)% , (31)
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and the population of the fundamental level is therefore:

No(T)=N (1— (%)3) . (32)

The result (30) should therefore be understood in the following way in the
regime £ < 1:

— either T' > T, and the number of atoms in the fundamental state is negligible;
one has then:

N ~£73g3(z) ; (33)
— or T < T. and the distribution of excited states is saturated:

N~ No+£3g3(1) . (34)

Once the temperature comes below the critical temperature, the spatial dis-
tribution and the velocity distribution of the atoms each show two well-separated
components. For instance the spatial distribution is the superposition of a narrow
peak, of width Az = (h/mw)'/? corresponding to the fundamental state of the
harmonic trap, and a broader peak corresponding to the fraction of non condensed
atoms, of width Az’ = (kgT / mw?)'/2. The ratio of these two widths is:

. 1/2
%%1 = (;—A-%) soit, pour T =T, : % ~N8 1. (35)
B

Similarly, in velocity space, one finds Avg = (hw/m)/? and Av' = (kgT/m)'/?,
which leads to a ratio Avy/Av’ equal to the ratio Azg/Az’.

3 Bose-Einstein Condensation in a Box

We come now to the description of Bose-Einstein condensation for a gas confined
in a parallelepipedic box, which is the situation initially considered by Einstein in
1924, to discover this phenomenon. This geometry corresponds to the experiments
performed on macroscopic samples confined in real containers, like the study of
helium’s superfluidity in a cryostat (see S. Balibar’s lecture in this book), or of
an exciton gas in a semi-conductor, or of a bidimensional gas of hydrogen atoms
maintained in levitation above a surface of liquid helium.

3.1 Energy Levels

Let us consider a parallelepipedic box, with sides L., L,, L.. One notes V' =
L, L, L. the volume of the box. We choose here periodic boundary conditions. The
eigenstates A of the one-body Hamiltonian are plane waves |\) = |k):

ik-r 2 :
7 ko= i=2,yz, (36)
(3

(rlk) =
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where the n;'s are positive or negative integers. One has:
2m2h? ny n?
+ 2+ = 37
*= T (L2 212 (87)
et €min = 0.

The problem that we now want to solve is the following one: when one takes
the thermodynamic limit for this system, by letting the size of the box tend to
infinity and keeping the particle density, the temperature, and the chemical po-
tential fixed, how do particles fill the various energy levels? More precisely, the
interesting question is to find whether the saturation of the excited levels of h,
found in the previous paragraph for a system of finite size, will “survive” to this
limit, although the gap between €,,;,, and the first excited levels of h tends to 0 as
the size of the box increases towards infinity.

3.2 The Quasi One Dimensional Bose Gas

Let us start with the simplest situation, which corresponds to a strong confinement
along the axes « and y: the transverse dimensions L, and L, of the box are assumed
small and fixed. More precisely, one assumes that the energy necessaryv to excite
the motion of a particle along these directions h*n?/(2mL?) (with i = z,y) is
much larger than the thermic energy kgT'. The thermodynamic limit is taken by
letting L. tend to infinity, keeping N/L. constant, and one wants to find the
behavior of the maximal linear density of the particles which are not condensed in
the fundamental state of the box Nmax /L.

The explicit computation of N/ .. from (22) for the energy levels (37) is
performed in a very simple way if one neglects the population of the transversally
excited levels (n, # 0 or n, # 0). One gets:

+oo 1
’
Nmax ~2 Z s Z'rrz.ﬁg'n.z/(ﬂakgTLz) 1 (38)

n.=1

Let us introduce the thermic wave length:

h
A=, 39
V2mmkgT (39)
and define: 3
flu) = TNJIT ] (40)
Using the result (50) of the Appendix, which is valid if A < L., one finds:
& 2 L, [ dv
N2 [ fyau=— 3 [T, 41)
1/2 @) \/_ B e Eres] (
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where the lower bound of the integral is ¢ = /@ A/(2L.). The linear density not
condensed in the fundamental level is therefore at most:

N! 2 1 ® dy
. iy — R = e 42
AI]I(LX Lz ﬁ A \/c e-u - 1 ( )

Let now the size L. of the box tend to infinity. The integral which appears
in (42) diverges like 1/¢, hence more precisely:

™ = 2 (43)
T A2

There is therefroe no finite limit for the saturation linear density when one takes
the thermodynamic limit L, — oo. In other words, for a fixed linear density N/L.
and a fixed temperature, there is a size L, above which atoms will essentially
fill excited levels, the fraction of atoms in the fundamental level being negligible.
In this one dimensional case, the saturation of excited levels did not survive the
thermodynamic limit.

3.3 The Three Dimensional Bose Gas

Let us take now L, = L, = L, = L. The number of non condensed atoms can be
written as:

!

1 4 L3 [* v?dv
! : ~ e B r—
Nmax E . ew,\z(ni+n% +n2)/L2 _ 1 - \/i 23 /E e — 1 (4"1)

(nur ELLETRE L )

The discrete sum is performed over all triplets which differ from zero triplet (0, 0,0)
corresponding to the fundamental state. Similarly, the lower bound € of the integral
corresponds to exclude a sphere with radius of order A/L, corresponding to the
contribution of this fundamental level. In the three dimensional case here at hand,
the integral that should be computed converges, even when its lower bound is
replaced by 0, and its value therefore does not depend on € in the limit L — oc.
One finds:

N! 3/2(1
Mo (1) =~ = 9‘*//\23( ) soit nl (T) X ~2612. (45)

In this case, the saturation of excited levels “survived” passing to the thermody-
namic limit. The study of this gas is done in detail in many textbooks on statistical
physics and we shall only recall the major results, the road to follow in order to
obtain them being similar to that followed in the case of the harmonic trap [2, 3, 4].

Consider a gas of fixed density n. In the high temperature region, character-
ized by nA® < 1, the critical density nl,,. (T'), which varies as T°%/2, is much larger
than n, and the gas is only very weakly degenerated. Physically, this temperature
region corresponds to the case where the distance between particles, n=1/3| is very
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large compared to their thermic wave length. Quantum effects are therefore in
general hidden and the gas can be validly described by Boltzmann statistics. Its
velocity distribution is well described by a Gaussian, of variance kg7 /m, and the
fugacity is given by z = nA? < 1.

When the temperature of this gas is lowered, the Gaussian approximation
for the velocity distribution becomes worse and worse, and the fugacity z must be
determined through the transcendental equation:

93/2(2) avec ng = L s
x T 1=z

(46)

n=ng+

Similarly to what we saw for (30), this equation must be understood in the fol-
lowing way:
— When T > T, where the critical temperature T, is such that n = n/ . (T.),
the density in the fundamental state ng is negligible and one has:

93/2(2)
T (47)
— When T" < T, the excited levels are saturated, and one has:
g3/2(1)
n=no+ ’)\3 A (48)

The N — N’ remaining atoms accumulate in the fundamental state p = 0,
and the condensed density is:

3/2
no(T)=n—-nl  (T)=n (1 - (TEC) ) : (49)

In contrast with the harmonic trap, this condensation happens only in the
velocity space. The distribution of the atoms in position space remains uni-
form, as it should be taking into account the translation invariance of the
system.

Appendix: Proof of Approximation (26)
When a function f(z) varies slowly on an interval of length 1, one has the approx-
imation:

3/2 5/2 7/2
FO+fQ)+FfB) +...~ (w) du+ J(u) du+ (u) du+... (50)
1/2 3/2 5/2

For the sum (25), this hypothesis of slow variation corresponds to the case £ < 1.

One has then: | foo ; .y
N =3 [ e, (51)
2 1/2 6“5 -1
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hence, writing = = uf:

L1l [FE+l)(x+2)ds
Moo > 35 /w for e (52)

When one expands the numerator of the integrand as x2 + 3x¢ + 2€2, it is easy to
show that, for £ < 1, the essential contribution comes from z? since the function
to sum takes significant values only for z ~ 1. Let us keep only this term, and
let us send the lower bound of the integral (£/2) to 0, which is possible since the
function to sum is continuous at 0. One then finds:

, 1 * e
which is 5
kgT\"
N = (ﬁ) (1) (54)
We introduced here the two special functions:
oo el a—1
2¢ T dx
9a(2) :;E_ I.(z) :/u o g (55)
linked through the relation:
+oo
() =T(@) ga(z) v Tl@)=[ ylevay.  (56)
0

One has I'(a + 1) = a I'(«) with in particular:

r)=r@)=1 , I3/2)= , TI@®=2,

%

and

71.2

g32(1) = 2612, @l)=-F
To obtain a better precision on the value of the critical temperature, one can try to
evaluate the contributions of the terms 3z¢ and 2¢2 which appear in the numerator
of (52). For the term in 3z one can still send the lower bound of the integral to
0 and one obtains a correction in £72 to N/ ... For the term in 2£2, the function
to sum diverges like 1/z in 0, and one must keep the lower bound equal to £/2.
The leading contribution for this last term is £~! In €. Remark however that these
expansions improved with respect to (54) are not very interesting in practice. If
one wants to determine the saturation number with a very good precision in the
case where kg7 is not very large compared to hw, it is faster and more secure to

return to the series (25).

g5(1) ~1.202 .
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