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1. Introduction

WEISSKOPF and WIGNER have shown a long time ago that when a discrete state |¢i > is
weakly cougled to a broad continuum, the probability that the system remains in |¢i > decreases
exponentially, in an irreversible way. One can then ask the following gquestion : How does this
behaviour change when the width NO of the continuum is decreased, or when, ND remaining constant,
the coupling V between the discrete state and the continuum is increased ? One knows of course
another extreme case, the one where the width of the continuum is so small that it can be con-
sidered as a discrete state |¢j >. Then, the coupling V between |¢i > and |¢j > induces
reversible oscillations between |¢i > and ]¢j > , with a frequency proportional to

< ¢i|U|¢j > and which is the well known Rabi nutation frequency.

In this paper, we show how it is possible, with a very simple model and with elemen-
tary graphic constructions, to understand the continuous transition between the Weisskopf-Wigner

exponential decay and the Rabi oscillation.

So many publications have been devoted to the problem of the coupling between discrete
states and continuums that it seems extremely difficult to try to present an exhaustive review
on this subject. We therefore apologize for not giving any bibliography at the end of this
paper.

2. Presentation of a simple model

2.1. Notations
We consider an unperturbed hamiltonian Ho having only one non-degenerate discrete
state [¢i > , with an energy Ei’ and one continuum of states ]8, E >, labelled by their energy

E, which varies from 0 to + =, and some other guantum numbers B. The density of states in the
continuum will be noted p(B, EJ,

HD |¢i >=Ei |¢i>

H, |8, E>=E |B, E> 0gE<w® (1]

One adds to H_ & coupling AV proportional to a dimensionless parameter A. When
A >> 1, the coupling is strong, when A << 1 it is weak. The operator V is assumed to have

non zero matrix elements only between the discrete state and the continuum, and they are noted

v(B, EJ,
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= ¢1|VIB: E > = v(B, E) (2)
All other matrix elements of V are equal to zero
< ¢;lv[e, > = <B, E[V|B", E' > =0 (3)

2.2. Decay amplitude Ui(t) and Fourier transform bi(E) of the decay amplitude
What we have to calculate is the matrix element of the evolution operator between

]¢i > and < ¢i| i

-1 (Ho+AV)t
U, (£) = < g, Je0 |

by > s (4
which represents the decay amplitude, i.e. the probability amplitude that the system, starting
at t = 0 in |¢i > , remains in this state after a time t. One can easily show from Schrddinger

equation that UiEt] satisfies an integro-differential equation which is not easy to solve.

It is much simpler to take a different approach and to calculate the Fourier transform

bi[E] of Ui[t], rather than Ui[t] itself

+o0 X
u, (t) = I e b, () (5)

=00

The first step in this direction is to compute the matrix element of the resolvent operator

G(Z) = [ Z-H ]-1 between |¢i > and < ¢i[

1

B L2 =< o, | | ¢; > (8)

where Z is the complex variable and H = HD + AV the total hamiltonian. One can easily show

that 51[2] satisfies an algebraic equation (much simpler than an integro-differential equation)
which can be exactly solved for the simple model considered here. The corresponding calculations
are sketched in the appendix. In the same appendix, we give the connection between Gi[Z] and

bi[E]. displayed by the equation

b, (E) =

1 lim [, (E-1e) - G, (E+ie) ] (7
1 1
2mi € * U¥

and from which it is possible to derive an explicit expression for bi[E]' Before giving this
expression, it will be useful to introduce and to discuss 2 functions of E which play an

important role in the problem.
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2.3. Energy dependence of the coupling between the discrete state and the continuum

(i) Ir(E) function

The first function, T'(E), is defined by :

T(E) = 27 J dB p(B, E)|v(B, EI|2 (8)

Physically, T(E) represents the strength of the coupling between the discrete state
|¢i > and the shell of states in the continuum having the energy E. The variations with E of
I'(E) are represented on Fig. 1.

From the definition (8), it follows that :
T(E) =2 0 (9)

Since, the continuum is supposed to start from E = 0, p(B, E) = 0 for E < 0, and,
consequently

T(E) =D For Ew 0 (10)
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Finally, p(B, E) is generally an increasing function of E whereas |v(B, E)}|? tends

to zero when E + «=. We will suppose here that |v(B, EJ|2 tends to zero sufficiently rapidly so
that :

B(E] =0 when E + e (1)

This explains the shape of T'(E) represented on Fig. 1. The width ND of T(E) can be
considered as the "width of the continuum”.

Let's also note that XZF[Ei] is the decay rate of |¢i > , given by Fermi’s golden

rule.

(ii) Parameter &
From T(E), it is possible to define the parameter {1} by

Gy = 7[ dE T'(E) = ” dB dE p(B, EJ |v(B, E)|2 (12)

(I characterizes the coupling between the discrete state |¢i > and the whole continuum (rather

than the shell of energy E). We will see later on that Af}; coincides with the Rabi frequency for
very high couplings.

(iii) A(E) function

A (E) is défined by :

1 © r oEENE)
BE) = —— JdE =t (13)
where S means principal part.

It is easy to see that the varlations with E of A(E), represented on Fig. 2, are
those of a dispersion like curve. For the following discussion , it will be useful to determine
the asymptotic behaviour of A(E) for |E| very large. For |E| >> wD, one can replace in (13)
E-E' by E so that, using (12), one gets :

1 @2
for |E| >> W : A(E) = — de' T(E") = (14)

E

Finally, it can be noted that XZ&(Ei] is the Weisskopf-Wigner's result for the
shift of the discrete state |¢i > due to its coupling with the continuum.

2.4, Explicit expression for bi(E)_

We can now give the explicit expression of bi[E] (see the appendix for the details of
the ecaleulations) which only depends on T'(E) and A(E) :

1 e vz DE)

2
b,(E) = — Lim
i T'(E)
€0, [E =E; ~ hSSIENT]E % [p +7\2—§-—-]2

(15)
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It must be emphasized that this expression is exact and does not invaolve any appro-

ximation (within the simple model considered here).

One must not forget however that T'(E) and A(E) both depend on E, so that hi[E] is not

a lorentzian, and consequently Ui(t] does not correspond to a pure exponential decay.

Actually, one expects that the deviations of bi(EJ from a lorentzian are very small
for A << 1, since Weisskopf-Wigner's results are valid for a weak coupling. On the other hand,
for A >> 1, one expects to find 2 sharp maxima for bi[E] since the Fourier transform of the

Rabi sinusoid, which must appear at very strong coupling, is formed by 2 delta functions.

It is precisely for understanding the deformations of b, (E) when A increases that we

introduce now some simple graphic constructions.

3. Some simple graphic constructions

3.1. Construction of b, (E)

In Fig. 3, we have represented 3 functions of E : A2T(E), A2A(E), E-Ei (straight line

of slope 1 intersecting the E axis at Ei}. Let's consider now, for each value of E, a vertical
line of abscissa E, and let's call A, B, C, D the intersections of this vertical line with

respectively the E axis, A2I'(E), A2A(E), E—Ei. We have :

AB = AT(E) CO = E~ E, = AZA(E) (16)

so that the expression (15] of biEE] can be rewritten as :

AB

b, (E) = = Lim = (17)
e+0, (CD2+ (e« 5 )2

£ +

which gives the possibility of determining bi(E] graphically for each value of E.

Since everything is positive in the denominator of (17), one expects to find a maxi-
mum of bi(E] when E is such that CD = E - Ei - A2A(E) = 0. Thus, the abscissas, Em’ of the
maximums of bi[E] are given by :

i A =
Em Ei A ﬂ(EmJ 0. (18]

3.2. Positions of the maximums of b;(E)
According to (18), the positions of the maximums of hi[E] can be obtained by studying

the intersections of [E-Ei] / A% with A(E). The carresponding graphic construction is represented
on Fig. 4.

For a weak coupling (A << 1), [E_Ei] / A2 is practically a vertical line, so that
there is only one solution to equation (18), Em = Ei' A better approximation of Em is obtained

by replacing in the small term AZAEEm] of (18) Em by Ei‘ which gives :
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E.8 B, BIRZRMEL - (19)
m i i
When the coupling A increases, one sees on Fig. 4 that the abscissa Em of the inter-
section of A(E) with [E-Ei] / A2 decreases until A reaches a critical value lc above which Em
takes a negative value. (New intersections of the 2 curves can also appear.) . The value of
lc is obtained by putting E, = 0in (18) :
2m E

RN - L (20)

c A
[ 1ED
=]

We will come back in § 4 on the physical meaning of this critical coupling.

At very strong couplings (A >> 1), the slope of EE—Ei] / A2 becomes very small and
one sees on Fig. 4 that A(E) and EE—Eil / A2 intersect in general in 3 points with abscissas
E; 3 qﬁ 7 E; . E; is approximately equal to the abscissa of the zero of A(E). E; and E;
correspond to the points far in the wings of A(E), where the asymptotic expression (14) can be
used. It is therefore possible, for evaluating Eg and Eg to transform (18) into :

Az 2

E. . SSE, ~F————=im (z21)
m

Neglecting E, in comparison to Em' one gets :

i
[Em)2 -2 2 =0 (22)

which finally gives :
E

mzﬁ';\ﬂl, En_?z"‘lﬂl (23]

4. Discussion of the various regimes

4.1. Weak coupling 1imit. Corrections to the Weisskopf-Wigner's result
When A << 1, the £ E—Ei-Azﬁ(E] ]2 term in the denominator of (15) is much larger

than all other ones, except around E = Ei where it vanishes. It is therefore a pood approximation

to replace,in the small terms 2T (E) and Azﬁ[E])E by Ei’ since it is only around E = Ei that
these small terms are not negligible compared to [:E—Ei—XZA[E] ]2 . One gets in this way :
r

2 _L
| A 2
b, (E) = — (24)
i T Fi )
g 32 2 20 ik
FE-EpZh. T2 & [ 32 o]
where Fi = P(E.) A, = A[E,) . (25)
1 1 i

The Fourier transform of (24) is :
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Fig. 5 : Shape of b (E) for a weak coupling. In dotted lines, lorentzian

corresponding to the Weisskopf-Wigner's result. In full lines,
better approximation for b i (E)
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This is the well known Weisskopf-Wigner'sresult : the energy of the discrete state
is shifted by an amount Xzﬁi and the population of this state decays with a rate szi.

A better approximation would be to replace T'(E) and A(E) by Fi and 61 in the denomi-
nator of (15) where the E dependence is essentially determined by the [_E-Ei-lzﬁfE] ]2
term, but to keep T'(E) in the numerator :

T'(E)
2

[ E-E,-A%A 7%+ [ 5_2...1.‘..1.,_ ]2
i i 2

One gets in this way corrections to the Weisskopf-Wigner's result due to the E dependence of

b d
R A
™

hiEE] = (27)

the coupling with the continuum.

We have represented on Fig. 5, in dotted lines, the lorentzian associated with
equation (24), in full lines, the better approximation (27). Since T(E) vanishes for E < 0 and
tends to zero for E >> W, one sees first that the wings of the curve in full lines tend to
zero more rapidly than for a lorentzian and that the domain of existence of this curve is an

interval of width wD. It follows that, at very short times (t << ;
I
i

), the decay amplitude
o
Ui[t] may be shown to vary not linearly in t, as 1-12[ T iﬂi ) t, but guadratically as

2 42
1 -KEQ%—Ji-. Another correction comes from the fact that T'(E) 2 0 for E < 0 and consequently

hi[E] = D for E < 0. The long time behaviour of the decay amplitude is determined by the E de-
pendence of bi[E] around E = 0. If one assumes for T'(E) a power law dependence, [(E) = g" for

E small, one finds that, at very long times (t >> 1/Fi], the decay amplitude does not decrease
exponentially but as 18",
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When X increases,more important deviations from the exponential decay law occur,
due to the appearance of broad structures in the wings of bi{EJ. New zeros of E-Ei—kzﬂ(E]
can appear, giving rise to new maximums for bi(E]. It is therefore useful to understand the

shape of bi[E] near these maximums.

4.2. Expansion of bi(gl_near a maximum

Around a zero Em of eguation (18), one can write :

I'(E) = F[Em] = L

H

A(E) AEEm] + [E—EmJ ﬂ'[EmJ = Am + {E—Em] ﬂ'm (28)

A G = .32 e i =
E<E,~A*ALE) = E_-E,-XPA[E J » E-E -3 [A(E)-A(E.) ]

‘——W'-___/
=0
= (E-E_) (1-A2A' ) (29)
m m
50 that we get :

Im

7]
b, (E) = S e T (30)

1-228' - Teso0 Ym
m tERE R e [ ]2

with 1 € + AT
m
Y, - : (31)
1 = A2A"
m

We therefore conclude that, around E = Em, bi[EJ has the shape of a lorentzian,

centered at E = Em’ having a width 7y _ and a weight 1 / [1~12ﬂ'm].

Of course, these results are only valid if T(E) and A(E) do not vary rapidly with E

in an interval T around E = Em'

4.3. Physical meaning of the critical coupling

When A > kc’ one zero E_ of equation (18) becomes negative. Since T(E) = 0 for E < O,
it tollows that F[EmJ = Tm = 0, and consequently, according to (31) :
Ym=;=e'+ﬂ (32)
1 = lzﬂ'm

The expansion (30) of bi[E] around E = E_ becomes (this expansion is certainly valid since Yoo = 0)

1 d e'/2

b, (E) = —— Lim (33)
* 1-A2A" g'> 0 C(E-EJ)2 + (e'/2)2
m m
1
= ——— 8(E-E)

1-A2A°
m
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We therefore conclude that, above the critical coupling, aé function appears in
bifE] in the negative region of the E axis, i.e. below the continuum, giving rise to an

undamped oscillatiaon

1 o~ 1Emt

_— (34)
- 2p0
1 < %%A 4

in the decay amplitude. This means that, above the critical coupling, a new discrete state

appears below the continuum.

It will be useful for the following to determine the position Em and the weight
1/(1—126'm] of this discrete state when A still increases and becomes verylarge. We have already
seen in § 3.2 that E  tends to Eé = -Af}; [(see equation 23). Replacing A(E) by its asymptotic
expression (14), one easily finds A’(E) = -2;2/E2 and Al =A=MY ) = -1/A? so that :

T R R e (35)
1 - Azﬁ'm

It follows that, for very strong couplings, the new discrete state has an energy
-A2; and a weight 1/2.

4.4, Strong coupling limit. Corrections to the Rabi oscillation

We have already mentioned in § 3.2 that, when A >> 1, bi[EJ exhibits 3 maximums
located at E}, E2 = -aQ; , E3 = Ay

m m m

From the results of the previous section, a delta function with a weight 1/2,
%—6[E+RQIJ, is associated with E; 5

The expansion (30) of bi[E] shows that, around E; = lQl, bi[E] has the shape of a
lorentzian, with a weight 1/[1—12&'m] which can be shown, as in § 4.3, to tend to 1/2 when
A =+ e, and with a width which, according to (31), is equal to :
A2 TQ,))

Yy = — = — A2 7T (AQy) - (38)
1 - 22 A'(ARy)

M| =

If T(E) decreases asymptotically more rapidly than 1/E2, it follows from (36) that
e tends to zero when A + = (Ym tends to a constant value if T'(E) behaves asymptotically as

1/E2 and diverges if I'(E) decreases more slowly than 1/E2).

It remains to understand the contribution of E;— which is close to the zero of A(E)
(see Fig. 4). Coming back to the expression (15) of bi(E], one sees that, in the interval
0 £ E W, E-E; can be neglected in comparison to A2T(E) and A2A(E) since A >> 1, so that :
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Fig. 6 : Shape of b (E) for a strong coupling
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In the interval 0 £ E < W, bi[E] behaves as a curve having a width of the order of
NO and a weight tending to zero as 1/32 when A =+ © (we don’t use the expansion (30) since T'(E)

and A(E) vary rapidly in the interval 0 £ E g wo}.

All these results are summarized in Fig. 6. One deduces the following conclusions

for the Fourier transform Ui[t] of bi[E]'

Since the weight of the central curve of Fig. B tends to zero when A+ =, whereas
the weights of the two other narrow curves tend to 1/2, we have essentially for Ui[t] an oscil-
lation of the form % [:eikﬂlt % e-llglt:] = cosAfit due to the beat between the Fourier

transforms of the two narrow curves. This is precisely the Rabi oscillation. There are however

corrections to this oscillation

(i) At very short times (t << 1/WDJ, small corrections in 1/A2 appeer, associated with the
central curve of Fig. 6 and damped with a time constant of the order of 1/NU.
(ii) The contribution to Ui[t] of the narrow curve located at E; = A} is damped with a time
constant of the order of 1/Ym, so that, at very long times (t >> 1/Ym], only survives the

contribution elxnlt / 2 of the delta function.

This last point clearly shows that we can never get an undamped Rabi oscillation.
The coupling with the continuum introduces a fundamental irreversibility in the problem, which

cannot completely disappear, even at wvery strong couplings.

Remark

So far, we have considered a true continuum, with a density of states starting at
E = 0, and equal to zero below this value. In some simple models, one can als® consider a
continuum extending over the whole E axis, and giving rise to a T'(E) function having a

lorentzian shape with a width NO, and centered at E = E
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W_/2
0

T(E) = 20;2 :
(E-E )2 + (W_/2)?
(8] [n]

(38)

[ The coefficient 2912 is put in (38) in order to maintain the relation (12) ]. In such a
case, the delta function of Fig. 6 has to be replaced by a lorentzian as the one centered
at E = E; , both curves having a width tending to a constant when A + = (since T'(E) behaves
asymptotically as 1/E2 )

W
1 [s]
Yo = AT (£A0) > 5 (39)

One therefore finds that, in the limit of strong coupling, the Rabi oscillation is completely

damped to zero with a time constant 4/WO.

This simple result can be obtained more easily by considering the continuum as an
unstable state with a complex energy Eu — iwDXZ and by describing the coupling between the

discrete state and the continuum by a "non hermitian hamiltonian”,

3 A
i (40)

3 a
JLQ]_ ED—:L—Z—

5. Conclusion

In this paper, we have presented a model of a discrete state coupled to a continuum,
sufficiently simple for allowing an exact solution. Using graphic constructions we have shown
how the Weisskopf-Wigner's exponential decay is progressively changed into a Rabi type damped

oscillation when the coupling constant increases from very small to very high values.

It would be interesting to investigate possible applications of this model. Suppose
that one excites with a monochromatic light a transition connecting a discrete bound state
to a narrow autoidnizing level near the ionization limit. The atom in the bound state in
presence of N photons can be associated with the discrete state |¢i > of this model whereas
the autoionizing continuum with N-1 photons can be associated with the states [B,E >
Varying N, i.e. the light intensity, amounts to vary the coupling which is proportional to V.
At very low intensities, one can of course define a probability of ionization per unit time.
At very high intensities, one expects to find some ringings in the photocurrent associated; with
a Rabi type oscillation. Of course, other atomic states exist and a simple T'(E) function of
the type of Fig. 1 is not realistic so that it would be necessary to complicate the model.
Another possible application would be to extend this formalism to Liouville space in order
to study the transition between Markovian and non-Markovian regimes in quantum statistical

problems.



APPENDIX

Calculation of 6;(7)

1 1

Let G(Z) = (Z - HD - M) and GD(ZJ = HD]- be the perturbed and unperturbed

resolvent operators. Using the identity :

T g LA 1 (A-1)
one gets the equation :
G(Z) = GD[Z] + GO(Z] AV G(Z) (A-2)
which can be iterated to give :
G(Z) = GO[Z] + A GOEZ] \ GD[Z] + A2 GD(Z] \V 50[2] V G(Z) (A-3]

Taking the matrix element of (A-3) between 1¢i > and < ¢i| and using the properties
(2) and(3) of V, one gets :

2
e A , =y P(R',E")|VIB",E")] )

Gi[ZJ = Z"Ei + 0 + ‘2_—'5-:-; JJ dp' dE 5 EY EiEZ] (A-4)
from which one deduces, using (8)
il

Gi[Z] = 7 (A-5)

Wy T(E')
Z Ei 27 J ot Z=E"

If one 1s only interested in the wvalues Gi[E + ie) of Gi[Z] near the real axis, one

gets from (A-5)

1

G, (Etie) = (A-5)
. A2 , TE"M
E-Ejtie- =7 J 9B’ EEvE1e
Since
Lim bl SR b R (A-7)
0 G o E-E’
.

we finally have, according to (13)

Lim Ei[EiiE] = Lim : (A-8)

e Ex 0. ek 320e) | 24 [ess2 B
i = 2

This shows that G,(Z) has a cut along the real axis (The limits of G;(Z) are not

the same according as Z tends to the real axis from below and from abovel.
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Connection between b, (E) and Gi(Eiie)

From the evolution operator U(t) = e

where 8(x) is the Heaviside function

-iHt

K, (t) = £8 (+t) U(t)

Let us now define the Fourier transforms of K,(t) by :

K, (£)

4o —Et
gt f dE e % g (E)
2mi

~oo

Inverting (A-10), one gets :

G, (E)

[ Y

i
€

and similarly :

+oo
f dE
=00

Lim
+ 0

+

G_

- o0 .
e T T J b e RS e
K, 1
o]

dE e1[E—H+1E)t o L ?
E+ie-H
0 €+ 0,

1

(E) = Lim ToieH

£ U+

Now, since 8(x) + 8(-x) = 1, we have from (A-3)

Inserting (A-11) and (A-12) into (A-10) and then into (A-13), we finally get :

where :

b.(E]
i

which proves eguation

U

Uy

Lim
e—+0

Lim
E

(7).

t) = K, (t) - K_(t)

+oo =
(t) = J dE o iEt b, (E)

—oo

1 1
{ <t lemmglh >l caqen 4> }
+
P [ 5, (E-ie) - 6, (E+ie) ]
+

Inserting (A-8) into (A-15) gives equation (15].

, one can introduce the 2 opsrators :

[60x) =1 for x > 0, 8(x) =0 for x < 0] .

(A-9)

(A-10)

(A-11)

(A-12]

(A-13)

(A-14)

[A-15]



