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1. Introducti on

WEISSKOPF and WIGNER have shown a long time ago that when a discrete state I~i > is

weakly coupled to a broad continuum, the probability that the system remains in I~. > decreasesl
exponentially, in an irreversible way. One can then ask the following question : How does this

behaviour change when the width Wo of the continuum is decreased, or when, Wo remaining constant,

the coupling V between the discrete state and the continuum is increased ? One knows of course

another extreme case, the one where the width of the continuum is so small that it can be con­

sidered as a discrete state I~. >. Then, the coupling V between I~. > and I~. > inducesJ l J

reversible oscillations between I~. > and I~. > , with a frequency proportional to----- l J
< ~. IVI~. > and which is the weIl known Rabi nutation frequency.l J

ln this paper, we show how it is possible, with a very simple model and with elemen­

tary graphie constructions,to understand the continuous transition between the Weisskopf-Wigner

exponential decay and the Rabi oscillation.

So many publications have been devoted to.the problem of the coupling between discrete

states and continuums that it seems extremely difficult to try to present an exhaustive review

on this subject. We therefore apologize for not giving any bibliography at the end of this

paper.

2. Presentation of a simple model

2.1. Notations

We consider an unperturbed hamiltonian Ho having only one non-degenerate discrete

state I~. > , with an energy E., and one continuum of states Is, E >, labelled by their energyl l
E, which varies from 0 to + 00, and some other quantum numbers S. The density of states in the

continuum will be noted pCS, E).

H I~. >o l

His, E >o

E. I~. >l l

= E Is, E > o ~ E < 00 C 1)

One adds to Ho a coupling ÀV proportional to a dimensionless parameter À. When

À » 1, the coupling is strong, when À « 1 it is weak. The operator V is assumed to have

non zero matrix elements only between the discrete state and the continuum, and they are noted

vCS, E),
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v(S, E) (2)

All other mat rix elements of V are equal to zero

<~. IVI~. > = < S, ElVis', E' > = 0l l (3)

2.2. D~cay amplitude Ui(t) and Fourier transform bi(E) of the decay amplitude

What we have to calculate is the matrix element of the evolution operator between

I~. > and < ~·I 'l l

U. (t) = < ~.le-i(Ho+ÀVJtIl l ~i > ,
(4)

which represents the decay amplitude, i.e. the probability amplitude that the system, starting

at t = 0 in I~. > , remains in this state after a time t. One can easily show from Schr6dingerl
equation that Ui (t) sàtisfies an integro-differential equation which is not easy to solve.

lt is much simpler to take a different approach and to calculate the Fourier transform

b. (E) of U. (t), rather than U. (t) itself111

(5)

The first step in this direction is to compute the matrix element of the resolvent operator

G(Z) = [z - H fl between I~. > and < ~.Il l

G. (Z)l < ~i 1

Z 1 ~. >_ H l
( 6)

where Z is the complex variable and H = Ho + ÀV the total hamiltonian. One can easily show

that Gi(Z) satisfies an algebraic equation (much simpler than an integro-differential equationJ

which can be exactly solved for the simple model considered here. The corresponding calculations

are sketched in the appendix. ln the same appendix, we give the connection between Gi(Z) and

bi(E), displayed by the equation

b. (E)l
21Ti

Lim [G.(E-iE) - G.(E+iE)]
E + 0 l l

+

(7)

and from which it is possible to derive an explicit expression for bi(E). Before giving this

expression, it will be useful to introduce and to discuss 2 functions of E which play an

important role in the problem.
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Figure 1: r(E) function
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Figure 2 lI(E) function

2.3. Energy dependence of the coupling between the discrete state and the continuum

(i) r(E) function

The first function, r[E), is defined by :

r [E) = 21T f d S P [S, E) 1 v [S, E) 12
[8)

Physically, r[E) represents the strength of the coupling between the discrete state

I~. > and the shell of states in the continuum having the energy E. The variations with E ofl
r[E) are represented on Fig. 1.

From the definition [8), it follows that

f[E) ~ 0

Since, the continuum is supposed to start from E

consequently :

0, p[S, E)

[9 )

° for E < 0, and,

f[E) o for E < °
[10)
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Finally, pCS, E) is generally an increasing function of E whereas Ivcs, E)I2 tends

to zero when E + 00, We will suppose here that Ivcs, E)I2 tends to zero sufficiently rapidly so

that :

fCE) + 0 when E + 00 C11 )

This explains the shape of fCE) represented on Fig. 1. The width Wo of fCE) can be

considered as the ·width of the continuum·,

Let's also note that À2fCE.) is the decay rate of I~. > , given by Fermi's goldenl l
rule.

(ii) Parameter ~l

From fCE), it is possible to define the parameter ~l by

~12 = ~TI f dE fCE) If dS dE pCS, E) 1 vCS, E) 12

C 12)

~l characterizes the coupling between the discrete state I~i > and the whole continuum (rather

than the shell of energy E), We will see later on that À~l coincides with the Rabi frequency for

very high couplings.

(iii) ~(E) function

~ CE) is defined by :

~CE)
1
2TI P f dE'

fCE')
E - E'

C13)

where ~ means principal part.

It is easy to see that the variations with E of ~CE), represented on Fig. 2, are

those of a dispersion like curve, For the following discussion, it will be useful to determine

the asymptotic behaviour of ~CE) for lEI very large, For lEI » Wo' one can replace in (13)

E-E' by E so that, using (12), one gets

ME) '"_1_ f dE' fCE')2TIE
C14)

Finally, it can be noted that À2~CE.) is the Weisskopf-Wigner's result for thel
shift of the discrete state I~. > due to its coupling with the continuum.l

2.4. Explicit expression for bi(Il

We can now give the explicit expression of bi CE) Csee the appendix for the details of

the calculations) which only depends on fCE) and ~CE)

b. CE) = _1_ Lim
l TIE:+O +

C15)



lt must be emphasized that this expression is exact and does not involve any appro­

ximation Iwithin the simple model considered here).

One must not forget however that rIE) and àlE) both depend on E, so that bilE) is not

a lorentzian, and consequently Ui It) does not correspond to a pure exponential decay,

Actually, one expects that the deviations of bilE) from a lorentzian are very small

for À « 1, since Weisskopf-Wigner's results are valid for a weak coupling. On the other hand,

for À » 1, one expects to find 2 sharp maxima for bilE) since the Fourier transform of the

Rabi sinusoid, which must appear at very strong coupling, is formed by 2 delta functions.

lt is precisely for understanding the deformations of bilE) when À increases that we

introduce now some simple graphic constructions.

3. Some simple graphie constructions

3.1. Construction of bilIl

ln Fig, 3, we have represented 3 functions of E : À2rIE), À2àIE), E-Ei Istraight line

of slope 1 intersecting the E axis at Ei). Let's consider now, for each value of E, a vertical

line of abscissa E, and let's calI A, B, C, 0 the intersections of this vertical line with

respectively the E axis, À2rIE), À2àIE), E-Ei, We have:
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AB CO E - E. - À2à(E)l 116 )

so that the expression (15) of bilE) can be rewritten as

bi lE) = _1_71

E +~
2

1CO) 2 + ( E + ~B ) 2

(17)

which gives the possibility of determining bi lE) graphically for each value of E,

Sinc8 everything is positive in the denominator of (17), one expects to find a maxi­

mum of bi lE) when E is such that CO = E - Ei - À2àIE) = O. Thus, the abscissas, Em' of the

maximunPof bi lE) are given by

o . 118 )

3.2. Positions of the maximums of bilIl

According to (18), the positions of the maximums of bilE) can be obtained by studying

the intersections of IE-E.) / À2 with àIE). The corresponding graphic construction is representedl
on Fig. 4.

For a weak coupling lÀ « 1), IE-Ei) / À2 is practically a vertical line, so that

there is only one solution to equation (18), Em ~ Ei, A better approximation of Em is obtained

by replacing in the small term À2à1Em) of (18) Em by Ei, which gives :
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Vertical line
of abscissa E

Straight line
E - E.l

E

E2
m o

Fig. 3 : Graphie construction of bi(E)

Weak coupling CÀ « 1)
~

Intermediate coupling CÀ ~ 1)

Critical

coupling Àc

Strong

couping (À»1)
~

E 3 E
m

Fig. 4 : Graphie determination of the positions of the

m=imums of bi(E)



E
m

E. + À2l1(E.)l l (19)
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When the coupling À increases,one sees on Fig.4 that the abscissa

section of lI(E) with

(E-E.) / À2 decreases until À reaches a critical value À
l Ctakes a negative value.

(New intersections of the 2 curves can also appear.)

À
c is obtained by putting Em

~ 0 in (18):

E'

2TI E.

À2
~ _ ---=..:L- ~

l
C

MO)

[ dE' r(E')
E'

0

E of the inter~
m

above which E
m

The value of

(20)

We will come back in § 4 on the physical meaning of this critical coupling.

At very strong couplings (À » 1), the slope of (E-Ei) / À2 becomes very small and

one sees on Fig. 4 that lI(E) and (E-E.) / À2 intersect in general in 3 points with abscissas
1-

El, E 2, E 3 . Elis approximately equal to the abscissa of the zero of ME). E 2 and E 3
m m m m m m

correspond to the points far in the wings of lI(E)~ where the asymptotic expression (14) can be

used. It is therefore possible, for evaluating E 2 and E 3 to transform (18) into :m m

o (21 )

Neglecting Ei in comparison to Em' one gets

which finally gives

E2
m

o

E 3
m + À ~l

(22)

(23)

4. Discussion of the various regimes

4.1. Weak coupling limit. Corrections ta the Weisskapf-Wigner's result

When À « 1, the [E-Ei -À2ME) ] 2 term in the denominator of (15) is much larger

than aIl other ones, except around E ~ Ei where it vanishes. It is therefore a good approximation

to replace,in the small terms À2r(E) and À2l1(E)}E by Ei' since it is only around E ~ Ei that

these small terms are not negligible compared to [E-Ei-À2ME) J2 . One gets in this way :

r.
À 2 -2:.

2

where

b. (E)l

r.l

TI

r(E. )l lI.l

r.
+ ( À2 f )2

II (E. )l

(24)

(25)

The Fourier transform of (24) is
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Fig. 5

-----
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o

Shape of bi(E) for a weak coupling. In dotted lines, lorentzian
corresponding to the Weisskopf-Wigner's result. In full Unes,
better approximation for bi (E)

u.(t) = e-i [Ei+À2t1i] t -À2fi t/21 e (26)

E

This is the weIl known Weisskopf-Wigner'sresult : the energy of the discrete state

is shifted by an amount À2t1. and the population of this state decays with a rate À2f .•1 1

A better approximation would be to replace f(E) and tI(E) by fi and tli in the denomi­

nator of (15) where the E dependence is essentially determined by the [E-Ei-À2t1(E) J2

term. but to keep f(E) in the numerator

b. (E)1 TI
(27)

One gets in this way corrections to the Weisskopf-Wigner's result due to the E dependence of

the coupling with the continuum.

We have represented on Fig. 5. in dotted lines. the lorentzian associated with

equation (24). in full lines. the better approximation (27). Since f(E) vanishes for E < 0 and

tends to zero for E » Wo' one sees first that the wings of the curve in full lines tend to

zero more rapidly than for a lorentzian and that the domain of existence of this curve is an

interval of width Wo' It follows that. at very short times (t « ~ ). the decay amplitudef. 0

Ui(t) may be shown to vary not linearly in t. as 1-À2( 21 + itli ) t. but quadratically as

À 2~ 2 t2
1 - 1 . Another correction cornes from the fact that f(E) = 0 for E < 0 and consequently

bitE) = 0 for E < O. The long time behaviour of the decay amplitude is determined by the E de­

pendence of b. (E) around E = O. If one assumes for f(E) a power law dependence. f(E) ~ En for1
E small. one finds that. at very long times (t » 1/fi). the decay amplitude does not decrease

exponentially but as 1/tn+1.



When \ increases,more important deviations from the exponential decay law occur,

due to the appearance of broad structures in the wings of bi (E). New zeros of E-Ei-\2Ô(E)

can appear, giving rise to new maximums for bilE). It is therefore useful to understand the

shape of bi (E) near these maximums.

4.2. Expansion of bi(E) near a maximum

Around a zero Em of equation (18), one can write
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r
m

(E-E ) Ô' (E )
m m

Ô + (E-E ) Ô'
m m m

(28)

E-E.-\2ME) = E -E.-",26CE ) + E-E _\2 [ME)-ME ) ]l m l m m m
~

= 0

so that we get

(29)

with

b. (E)l (30)

(31)

We therefore conclude that, around E = Em' bi (E) has the shape of a lorentzian,

centered at E = Em' having a width Ym and a weight 1 / (1-\2Ô'm)'

Of course, these results are only valid if r(E) and ÔtE) do not vary rapidly with E

in an interval Ym around E = Em"

4.3. Physical meaning of the critical coupling

When \ > \c' one zero Em of equation (18) becomes negative. Since r(E) = 0 for E < 0,

it follows that r(Em) = rm = 0, and consequently, according to (31) :

E' ->- 0 (32)

The expansion (30) of bi (E) around E Em becomes (this expansion is certainly valid since Ym
0)

b. (E)l
E'/2

E-E)2 + (E'/2)2
m

(33)
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We therefore conclude that, above the critical coupling, a ôfunction appears in

bitE) in the negative region of the E axis, i.e. below the continuum, giving rise to an

undamped oscillation

(34)

in the decay amplitude. This means that, above the critical coupling, a new discrete state

appears below the continuum.

It will be useful for the following to determine the position Em and the weight

1/(1-À2~. ) of this discrete state when À still increases and becomes verylarge. We have alreadym

seen in § 3.2 that Em tends to E~ = -À~l (see equation 23). Replacing ~(E) by its asymptotic

expression (14), one easily finds ~. (E) = -~12/E2 and ~'m = ~'(-À~l) = -1/À2 so that :

1
2

if (35)

It follows that, for very strong couplings, the new discrete state has an energy

-À~l and a weight 1/2.

4.4. Strong coupling limit. Corrections to the Rabi oscillation

We have already mentioned in § 3.2 that, when À » 1, bitE) exhibits 3 maximums

located at El, E 2 " -À~l ' E 3 "À~lm m m

From the results of the previous section, a delta function with a weight 1/2,

~ Ô(E+À~l)' is associated with E~

The expansion (30) of b. (E) shows that, around E 3 = À~l' b. (E) has the shape of al m l
lorentzian, with a weight 1/(1-À2~, ) which can be shown, as in § 4.3, to tend to 1/2 whenm

À + 00, and with a width which, according to (31), is equal to :

À2 rcÀ~l)

1-À2~'(À~1)

1
2

(36)

If [(E) decreases asymptotically more rapidly than 1/E2, it follows from (36) that

Ym tends to zero when À + 00 (Ym tends to a constant value if [(E) behaves asymptotically as

1/E2 and diverges if [(E) decreases more slowly than 1/E2).

It remains to understand the contribution of E l which is close to the zero of ~(E)
m

(see Fig. 4). Coming back to the expression (15) of bitE), one sees that, in the interval

o ~ E ~ Wo' E-Ei can be neglected in comparison to À2[(E) and À2~(E) since À » 1, so that
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b. CE)l

E 2
m

o E 1
m

W
o

y 3m

E

b. CE)l

Fig. 6

TI

Shape of bi(E) for a strong coupling

fCE)/2

( ME) V + ( fCE)/2 )2

(37)

ln the interval 0 ~ E ~ Wo' bi CE) behaves as a curve having a width of the order of

Wo and a weight tending to zero as 1/À2 when À + 00 Cwe don't use the expansion (30) since fCE)

and ôCE) vary rapidly in the interval 0 ~ E ~ Wo)'

AlI these results are summarized in Fig. 6. One deduces the following conclusions

for the Fourier transform U.Ct) of b.CE).l l

Since the weight of the central curve of Fig. 6 tends to zero when À + 00, whereas

the weights of the two other narrow curves

. 1 [ iÀl11t -iÀ~lt ]latlon of the form 2 e + e

transforms of the two narrow curves. This

tend to 1/2, we have essentially for Ui Ct) an oscil­

= COSÀ~lt due to the beat between the Fourier

is precisely the Rabi oscillation. There are however

corrections to this oscillation :

Ci) At very short times Ct « 1/Wo)' small corrections in 1/À2 appear, associated with the

central curve of Fig. 6 and damped with a time constant of the order of 1/Wo'

Cii) The contribution to U. Ct) of the narrow curve located at E 3 = À~ is damped with a timel m ---

constant of the order of 1/y , so that, at very long times Ct » 1/y ), only survives the

contribution eiÀ~lt / 2 of ~he delta function. m

This last point clearly shows that we can never get an undamped Rabi oscillation.

The coupling with the continuum introduces a fundamental irreversibility in the problem, which

cannot completely disappear, even at very strong couplings.

Remark

So far, we have 80nsidered a true continuum, with a density of states starting at

E = 0, and equal to zero below this value. ln some simple models, one can als~ consider a

continuum extending over the whole E axis, and giving rise to a fCE) function having a

lorentzian shape with a width Wo' and centered at E = Eo



104

nE) (38)

[ The coefficient 2~12 is put in (38) in order to maintain the relation (12) J. In such a

case, the delta function of Fig. 6 has to be replaced by a lorentzian as the one centered

at E = E 3 , both curves having a width tending to a constant when À 700 (since [(E) behavesm

asymptotically as 1/E2 ) :

W o7-
2

(39)

One therefore finds that, in the limit of strong coupling, the Rabi oscillation is completely

damped to zero with a time constant 4/Wo'

This simple result can be obtained more easily by considering the continuum as an

unstable state with a complex energy Eo - iWo/2 and by describing the coupling between the

dis crete state and the continuum by a "non hermitian hamiltonian",

E. À~l

(40)

l

1WoÀ~l

E- i -
o 2

5. Conclusion

In this paper, we have presented a model of a discrete state coupled to a continuum,

sufficiently simple for allowing an exact solution. Using graphic constructions we have shown

how the Weisskopf-Wigner's exponential decay is progressively changed into a Rabi type damped

oscillation when the coupling constant increases from very small to very high values.

It would be interesting to investigate possible applications of this model. Suppose

that one excites with a monochromatic light a transition connecting a discrete bound state

to a narrow autoi6nizing level near the ionization limit. The atom in the bound state in

presence of N photons can be associated with the discrete state l~i > of this model whereas

the autoionizing continuum with N-1 photons can be associated with the states Is,E > .

Varying N, i.e. the light intensity, amounts to vary the coupling which is proportional to lN.

At very low intensities, one can of course define a probability of ionization per unit time.

At very high intensities, one expects to find some ringings in the photocurrent associated;with

a Rabi type oscillation. Of course, other atomic states exist and a simple [(E) function of

the type of Fig. 1 is not realistic so that it would be necessary to complicate the model.

Another possible application would be to extend this formalism to Liouville space in order

to study the transition between Markovian and non-Markovian regimes in quantum statistical

problems.
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Calculation of Gjill

Lat G[Z) ~ [Z - H - \V)-l and G [Z)o 0
rasolvant oparators. Using tha idantity

-1
[Z - Ho) ba tha parturbad and unparturbad

ona gats tha aquation

1
A

.1. + ..1. [B-A) .1
B B A

[A-1 )

G[Z)

which can ba itaratad to giva

G [Z) + G [Z) ÀV G[Z)
o 0 [A-2)

G[Z) G [Z) + \ G [Z) V G [Z) + \2 G [Z) V G [Z) V G[Z)00000 [A-3)

Taking tha matrix alamant of [A-3) batwaan I~. > and < ~.I and using tha propartiasl l
[2) and[~ of V. ona gats

G. [Z)l
Z~E. + 0 + Z~E ff dS' dE' p[S' .E') Iv[S' .E') 12l i Z - E' Gi[Z)

(A-4)

from which ona daducas. using [S)

G. [Z)l
Z-E.­l f dE'

r (E')
z::-E'

[A-5)

If ona is only intarastad in tha valu as Gi[E ± iE) of Gi[Z) naar tha raal axis, ona

gats from [A-5) :

G. [E±Ü;)l nE' )
dE' E-E'±iE

[A-5)

Sinca

Lim

1 9 1
+ i'ITô[E-E')

E + 0

E-E'±iE ~ E-E'

+
wa finally hava.

according to[ 13)

[A-7)

Lim Gi[E±iE)
E + 0 +

Lim

E + 0+ [E-Ei-\2ME) ] ± i [E + \2 r~E) ]

[A-S)

This shows that Gi[Z) has a cut along tha raal axis [Tha limits of Gi[Z) ara not

tha sama according as Z tands to tha raal axis from balow and from abova).
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Connection between bitE) and Gi(E±iE)

From the evolution operator U(t) ~ e-iHt, one ean introduee the 2 operators

K± (t) ~ ± 6 (±t) U(tJ (A-9)

where 6(x) is the Heaviside funetion [6(x) ~ 1 for x > 0, 6(x) o for x < 0 ] .

Let us now define the Fourier transforms of K±(t) by

1
- 2iTi

J+co dE e-iEt G±(E)
-co

(A-10)

Inverting (A-10), one gets

dE eiCE-H+iE)t
~+ Lim rE-+O 0

+

r dE eiEt U(t)o

(A-11)
1

E+iE-H
Lim

E -+ 0+

idE eiEt K (t)- +
J+co-co

i

and similarly

G (E) Lim
E -+ 0+

1
E-iE-H (A-12)

Now, sinee 6(x) + 6(-x) ~ 1, we have from (A-9)

U(t) K (t) - K (t)+ (A-13)

Inserting (A-11) and (A-12) into (A-10) and then into (A-13), we finally get

U. (t)l
J+co-co

dE e-iEt b. (E)l (A-14)

where

1 Lim

b . (E) ~ 21Ti E -+ 0l +

1
E-iE-H 14>· > - < 4>·1l l

1
E+iE-H

1 4>i > }

Lim

21Ti E -+ 0+

[ G. (E-iE) - G. (E+iE) ]l l· (A-15)

whieh proves equation (7), Inserting (A-ô) into (A-15) gives equation (15).


