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I. INTRODUCTION

Resonance fluorescence, which is the subject of this session,
has been studied for a long time. The first quantum treatment of
the scattering of resonance radiation by free atoms was given by
Weisskopf and Wigner, in the early days of quantum mechanics [I1].

The importance of this process in various fields such as
spectroscopy, optical pumping, lasers,... is obvious and does not
require further discussion. 1In the last few years, the interest
in the problem of resonance fluorescence has been renewed by the
development of tunable laser sources which made it possible to
irradiate atomic beams with intense monochromatic laser waves and
to study the characteristics of the fluorescence light. For ex-
ample, the fluorescence spectrum, which is monochromatic at very
low laser intensities, as predicted by lowest order QED for elas-
tic Rayleigh scattering, exhibits more complex structures at
higher intensities when absorption and induced emission predom-
inate over spontaneous emission. Some of these experiments, which
have been initiated by the work of Schuda, Stroud and Hercher [2],
here in Rochester, will be discussed in subsequent papers [3].

From the theoretical point of view, a lot of papers have been
devoted to this problem, and it would be impossible here to review
all of them [4]. Let's just mention the publication of Mollow
[5], who, in 1969, presented a complete and correct treatment of
the problem,starting from the Bloch equations for the atomic den-
sity matrix driven by a c-number applied field, and using the
quantum regression theorem for evaluating the correlation function
of the atomic dipole moment. Perhaps the theoretical activity in
this field can be interpreted as an attempt to build some simple
physical pictures of resonance fluoresecence at high intensities
in terms of photons. Actually this problem is not so simple and,
before entering into any calculations, it seems interesting to
point out some of these difficulties.

Let us first introduce some important physical parameters.
It's well known that an atom, irradiated by a resonant
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mon?chromatic wave, oscillates between the ground state g and the
excited state e with a frequency w;, which is the Rabi nutation
frequency, and which is equal to the product of the atomic dipole
moment d and the electric field amplitude E. w; characterizeg
the strength of absorption and stimulated emission processes

F,'th? natural width of the excited state, is the spont;n—
eous emission rate. In intense fields, when w; >>T, each atom
can oscillate back and forth between e and g severai times before
spont;niously emitting a fluorescence photon.

s the transit time of atoms through the laser beam and 1
usually much longer t i = °
e itate . g han the radiative lifetime I''! of the ex-

From the preceding considerations, it appears first that one
cannot analyze the situation in terms of a single fluorescence
process. In intense fields, when each atom spends half of its
time in e, there is on the average, for each atom, a sequence of
sgveral (v I'T/2>>1) fluorescence processes, whicﬁ cannot be con-
sidered as independent, as a consequence of the coherent charac-
ter of the laser driving field.
= Secondly, we have clearly a non equilibrium situation. An

steady-state" which can be eventually reached by the systém isy
actually a dynamical equilibrium: photons are constantly trans-—
ferred, through fluorescence processes, from the laser mode to
the empty modes of the electromagnetic field.

Finally, and this is perhaps the most difficult point, one
must not forget that, in quantum theory, the corpuscular a;d wave
aspects of light are complementary. There is not a unique physi-
cal description of the sequence of fluoresecence processes which
can be applied to all possible experiments.

Suppose for example we are interested in the time aspect of
the proPlem, more precisely in the probability p(6) for having 2
successive fluorescence photons emitted by the same atom sepa-
r?ted by a time interval 6. This can be achieved by measuring
with a broad-band photomultiplier, the intesity correlations 0%
the fluorescence light emitted by a very dilute atomic beam (for
a theoretical analysis of this problem, see references 6 and 7)
Note also that, throughout this paper, we restrict ourselves to-
very dilute atomic systems so that we can ignore any cooperative
effects such as those discussed in reference 8. Once we have de-
tected one fluorescence photon, the atom is certainly in the
ground state because of the "reduction of the wave packet". In
order to be able to emit a second photon, it must be reexcited in
the upper state by the laser light. It is therefore not surpris-
ing that p(8) is given by the Rabi transient describing the exci-
tation of the atom from the ground state. Note in particular
that p(8) + 0 when 8-+ 0, showing an "antibunching" of the fluores-
cence photons emitted by a single atom.
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One can also be interested in the frequency distribution of
the fluorescence light, and from now we will only consider this
type of problem. In such experiments, the fluorescence photons
are sent into an interferometric device, such as a high finesse
Fabry-Perot etalon, inside which they are kept for such a long
time that we lose all information concerning their order of emis-
sion. This clearly shows the complementarity between time and
frequency which cannot be simultaneously determined. This means
also that, for each ensemble of fluorescence photons with fre-
quencies wp, Wps««-sWy, WE have several indistinguishable se-
quences of fluorescence processes, differing by the order of
emission of photons, and that we must take into account possible
interferences between the corresponding quantum amplitudes. There
is another example of such a difficulty which is well known in
atomic physics: the paradox of spontaneous emission from an har-
monic oscillator [9]. It is well known that the linewidth of the
spontaneously emitted radiation is independent of the initial ex-
citation of the oscillator. Such a result can be derived quantum
mechanically only if one takes into account the interferences be-
tween the N! possible cascades through which the oscillator de-
cays from its initial excited state N to the ground state 0.

II. THE DRESSED ATOM APPROACH

In this paper, we would like to present a dressed-atom ap-
proach to resonance fluorescence, discussed in detail in refer-
ence 10, and which, in our opinion, solves the previous diffi-
culties and leads to simple interpretations for the fluorescence
and absorption spectra of atoms irradiated by intense resonant
laser beams.

Let's emphasize that such an approach does not lead to new
results which could not be derived from a c-number description of
the laser field. Actually, the c-number description may be shown
to be strictly equivalent to the quantum description provided that
the initial state of the field is a coherent one [I11]. What we
would like to show here is that introducing from the beginning
the energy levels of the combined system [atom+ laser mode] leads,
in the limit of high intensities, to simpler mathematical cal-
culations and more transparent physical discussions.

We give now the general idea of this method. In a first
step, one neglects spontaneous emission and one considers only
the total isolated system "atom+ laser mode interacting together".
We call such a system the dressed-atom or the atom dressed by
laser photons. One easily determines the energy diagram of such
a system, which exhibits a quasiperiodicity associated with the
quantization of the radiation field.



106 C.Cohen-Tannoudji and S.Reynaud

Then, we introduce the coupling with the empty modes, re-
sponsible for the transfer of photons from the laser mode to the
empty modes (Fig. 1). Resonance fluorescence can therefore be
considered as spontaneous emission from the dressed atom. Sim-—
ilarly, a sequence of fluorescence processes corresponds to a
radiative cascade of the dressed atom downwards its energy dia-

ram.
= Due to the very broad frequency spectrum of the empty modes,
it is always possible to describe the spontaneous decay of the
dressed atom by a master equation. In the limit of high inten-
sities, more precisely in the limit of well resolved spectral
lines, we will see that this equation takes a much simpler form.

Finally, it would be in principle necessary to introduce the
coupling of the laser mode with the lasing atoms and with the
cavity losses, in order to describe the injection of photons into
the laser mode and the fluctuations of the laser light.

We will suppose here that the laser fluctuations are negli-
gible and we will forget this coupling. We will describe the
laser beam as a free propagating wave corresponding to a single
mode of the radiation field, initially excited in a coherent
state, with a Poisson distribution py(n) for the photon number.
The width, An, of this distribution is very large in absolute

value, but very small compared to the mean number of photons n
(quasi classical state):

1 << an =+ n ?< n (1)

Lasing
atoms

I
'
1
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t
mode a=am : modes
|
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Losses DOressed atom

FIGURE 1. Various couplings appearing in the dressed atom
approach.
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Furthermore, n has no real physical meaning: we can always
let n and the quantization volume V tend to =, the ratio n/V re-
maining constant and related to the electromagnetic energy den-
sity experienced by the atom. This is why it will be justified
to consider the dressed atom energy diagram as periodic over a
very large range An, and to neglect the variation with n of any
matrix element when n varies within An.

III. APPLICATION TO A TWO-LEVEL ATOM

We now show how this method works in the simple case of a
two-level atom.

A. Energy Diagram

The unperturbed states of the dressed atom are labelled by
two quantum numbers: e, g for the atom; n for the number of pho-
tons in the laser mode. They are bunched in two-dimensional
multiplicities E,, E,_, separated by wy (laser frequency)(Fig.2a).
The splitting between the two states |g,n4—l> and [e,n> of E, is
the detuning § between the atomic and laser frequencies w, and wp:

6= - w (2)

An atom in g can absorb one laser photon and jump to e. This
means that the two states |g,n+—1> and ﬁe,n> are coupled by the
laser mode—atom interaction Hamiltonian V, the corresponding
matrix element being

“1
<e,n|V|g, n+ 1> = = (3)

Since § and w; are small compared to wyp, one can neglect all
other couplings between different multiplicities, which is equiva-
lent to making the rotating wave approximation. Thus, one is led
to a series of independent two-level problems. One immediately
finds that the two perturbed states associated with E, (Fig. 2b)
are separated by a splitting

_ 2 2 %)
wlZ = wy + 6

and are given by

|1,n> = cos¢|e,n> + Sin¢|g, n+ 1>
]2,n> =—sin¢]e,n> + cos¢|g, n+ 1> (5)
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where the angle ¢ is defined by
tg 2¢ = mllﬁ (6)

For the following discussion, it will be useful to know the
matrix elements of the atomic dipole operator D. This operator
does not act on the number n of laser photons and therefore the
only non-zero matrix elements of D in the unperturbed basis are

<g,n|D|e,n> = <g|D|e> = d (7

From the expansion (5) of the dressed atom states, one deduces
that D only couples states belonging to two adjacent multipli-
cities. We will call dji these matrix elements

dgy = <§, n - 1|p|i,n> (8)
One finds immediately the matrix elements corresponding to the
various allowed Bohr frequencies (arrows of Fig. 2b):

_ 2
dyy = d c052¢ (frequency w + wlz)
dj, = -d sin“¢ (frequency w - mlz) (9)
dll = —d22 = d sin¢ cos¢ (frequency wL)
jains |1.n>
’ A
A A z—_— -
i S oz
S S S e ' .
Ig,n+1> ' # 2,n>
I
)
]
]
:
woa
Ly da1 diy| |da2z di2
]
' I [1,n-1>
|e.n-1> ; A
4 . !
‘:"s i :wlz
Ig.n> N 2,n-1>
(a) (b)

" FIGURE 2. (a) Unperturbed states of the total system “"atom +
laser mode";(b) perturbed states of the same system.
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B. Secular Approximation

Let us introduce now spontaneous emission, characterized by
I'. We will not discuss the general case, but restrict ourselves
to the limit of well resolved lines:

w12 > T (10)
From Eq. (4), this condition means either intense fields (w;>>T)
or large detunings (|§| >>T) or both.

In such a case, the master equation describing spontaneous
emission can be considerably simplified. Any coupling, which is
of the order of I', between two density matrix elements evolving
at different frequencies, differing at least by w;,, can be ne-
glected.  This is the so called secular approximation which is
the starting point of an expansion in powers of I'/w,, and which
leads to independent sets of equations only coupling the elements
of the dressed atom density matrix o evolving at the same Bohr
frequency.

C. Evolution of the Populations

As a first illustration of this discussion, let us consider
the set of equations coupling the elements of ¢ evolving at fre-
quency 0, i.e. the diagonal elements of ¢ which represent the
populations I, of the dressed atom energy levels:

»
Hi,n = <i,n|o|i,n> (ll)
In these equations, important parameters appear which are
the transition rates I'sy (';; is the transition rate from |i,n>
to |j,n-1>) and which are simply related to the dipole matrix
elements introduced above:

3 2 2
Tig = |<3,n~-1|D|i,n>|" = dy;
The evolution equations of the populations Hi,n can then be
written

(12)

Hl,n

)
)

2 +
Ci by Wit ™ D, el il

(13)

e
I

= - -+ + I + Tl
2,0 ™ T+ T,y o0l n1 ¥ T22") i
These equations have an obvious physical meaning in terms of
transition rates: for example, the population Hl,n decreases be-
cause of transitions from |1,n> to the lower levels with a total
rate
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and in?r?ases because of transitions from upper levels Il,n4-1>
(transition rate I'j;) and |2,n+1> (transition rate T12) (Fig. 3):

{:} |1, n+1>

Fa |2,n+1>
' T2

o—— I

S |2,n>
' T2

{:} [1,n-1>

& 4 |2,n-1>

FIGURE 3. Evolution of the population m, n-

Because of the quasi-classical character of the laser mode
staFe Fcondition 1), all matrix elements can be considered as
periodic within the width An of the photon distribution Py (n).

Th?s Hi,n+1 and Hi,n are practically equal and they can be
written as

Iynt1 = 0y = P (@) My ~as)

where II; is a reduced population.

. One deduces from Eqs. (13) and (15) that the reduced popula-
tions Il obey the simple equations

Iy =Ty My +r

]:[ = -
z Bty 1 = Uy Wy (16)
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One easily derives the following results for the evolution
of the populations Il;. Starting from the initial values Ii; (o)
obtained by expanding on the dressed atom states the initial state
of the laser mode-atom system, the populations exhibit a transient
behavior, on a time scale of the order of I'"!, and then reach a
steady state Ij(«), or more precisely a dynamical equilibrium,
where they do not vary any more.

The populations Ij(«) are determined by the two equations

Iy () + (=) = 1 an
Tgp T (®) = Tpy My(=) (18)

The first one is the normalization condition. The second is the
detailed balance condition, obtained from Eq. (16), and express-—
ing that the number of transitions from |2,n4—1> to |l,n> compen-—
sates the number of transitions from ]1,n> to h,n-l>.

Solving these two equations leads to

r 4

I, () = 12 _ sin ¢
A F12 E I‘21 sin4¢ + cosa¢ (19)
I|21 _ cosa¢

I,(x) =
2 F12 b le sin4¢ + c034¢

D. Positions and Weights of the Various Components
of the Fluorescence Spectrum

The positions of these components are given by the allowed
Bohr frequencies of the atomic dipole moment which, according to
the previous discussion, are wp - w3, wp,w;+w;y. So, we have a
triplet of three well resolved lines since wy, >>T.

It is clear that the total number of photons emitted on the
component wL*‘wij is equal to the total number of transitions
|i,n>—+|j,n—1>, corresponding to this frequency, and occurring
during the transit time T of atoms through the laser beam. Since
T is larger than I'"l, one can consider only the dynamical equili-
brium regime. It follows that the weight GF(wLi-mij) of the
wL'Fwij component is given by:

GF(wL + wij) =T rji Hi(m) (20)

From the detailed balance condition (18), one deduces
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Cpluy, + wyy) = Gplup - ©;,) ' (21)

We have therefore a close connection between the detailed balance
and the symmetry of the spectrum.

Since we know the I'i;; and the Ilj, we can easily write analy-
tical expressions for the weights of the two sidebands and for
the weight Gp(wy) of the central component:

GF(uJL +w

4 4
i _ = sin Q cos ¢
12) = Gply —wy5) = IT —

E sin ¢ + cosa¢ (22)
GF(mL) = T(I‘ll Hl(m)i-rzz Hz(w)) =TT sin2¢ c052¢

They coincide with the now well known results concerning two
level atoms at the limit of well resolved spectral lines.

E. Widths of the Components

In order to obtain the width of the lateral components at
wy, fwy, we consider now the evolution of the off diagonal ele-
ment of the density matrix connecting Il,n> and I2,n-—1> and
which we note gjpn

+
B ™ <l,n|c|2,n-1> (23)

+

The evolution equation of 0,y 20 be written:

+ + +

¥ s 21 +
8190 = "1+ 0500, — (T FT)0 5, ¥ 41195 O1p i1 (24)

Three terms appear in this equation: the first one describes the
free evolution of ot a at the Bohr frequency wy +w,,; the second
one describes the damping of UT o by spontaneous emission with a
rate equal to the half sum of tﬁe total decay rates 'y and T,
from the two levels |l,n> and |2,n—1>. Finally, one must not for-
get the coupling of UTZn with another off diagonal element of
g, GTZ n+1? which connects |1,n+1> and P,n) and evolves at the
same Bohr frequency, the coupling coefficient being the product
of the two dipole matrix elements d,; and d,, (Fig. 4).

As above, we can use the periodicity property for replacing
2%2 - Ry Utzn in Eq. (24), which gives the damping rate Lj,

12n

1
Lyp =3 (I +T5) - d;dy, (25)
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|1,n+1>

0-!-
12n+1

1.n>

2,n>

|2,n-1>

FIGURE 4. Coupling of off-diagonal density matrix elements
evolving at the same Bohr frequency.

This rate is also the damping rate of the component of the mean
dipole moment oscillating at frequency wp +w;p, so that L;, is

also the width of the lateral components. One therefore concludes
that the width of the line emitted on the transition |l,n>—>[2,n—l>
is not simply given by the half sum of the natural widths T'; and

[, of the two involved levels. Because of the periodicity of the
energy diagram, there is a phase transfer in the radiative cas-
cade which is responsible for a correction equal to -djj;dpp. The
explicit expression of le in terms of I' and ¢ is:

le = F(% + C052¢ Sinzcb) (26)

The problem of the central component is a little more com-—
plicated. There are now two off diagonal elements

+

= <j i,n-1> ith 1 = 1,2

%in 1,n[a| ,In with 1 , (27)
which connect the same multiplicities E, and E,_, and which
evolve at the same frequency w;. One can show that, except for

the free evolution terms, the oF, and the populations I,
iin i,n
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obey the same equations. But the time evolution of the popula-
tions is given by the superposition of a transient regime and of
a steady state one. It follows that the central component is
actually the superposition of two lines: a 8-function correspond-
ing to the coherent scattering due to the undamped oscillation of
the mean dipole moment driven at wp, by the laser wave and an in-
elastic central component. Simple calculations (10) give the
weights G, and Gy, (wy) of the elastic and inelastic central
components and the width L. of the inelastic ome:

G, =T

2
o I (=) + dyy Ty(=))

11

0034 - sin

(28)
cosa¢ + sin4¢

I'T c032¢ sin2¢

ine1(®) = Gplup) - G4y

4 c036¢ sin6¢

I'T
(c054¢ + sin4¢)2

(29)

L =T, .+7T. = r(sin4¢ + c054¢) ' (30)

c 12 21

F. Absorption Spectrum

We now show how this dressed atom approach provides a
straightforward interpretation of very recent experimental re-
sults [12].

Atoms are always irradiated by an intense laser beam at wp.
Instead of looking at the fluorescence light emitted by these
atoms, one measures the absorption of a second weak probe beam w.
wp, is fixed and w is varied. One can say that, in this experi-
ment, one measures the absorption spectrum of the dressed atom.

Since the perturbation introduced by the weak probe beam can
be neglected, the energy levels |i,n> |j,n—l>... of the dressed
atom and their populations II; Il;... are the same as before. To
the transition fi,n>—*lj,n—l> of the dressed atom corresponds,
in the absorption spectrum, a component centered at w; +wjs, with
a width L;:, and a weight (Hj-Hi) I':;T determined by the %if—
ference between absorption and stimulated emission processes.

This is the main difference between fluorescence and absorp-
tion spectra. An absorption signal is proportional to the dif-
ference of populations between the two involved levels; a spon-
taneous emission signal only depends on the population of the
upper state.

y—
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We therefore arrive at the following conclusions:

(i) Because of the periodicity property, the two levels |i,n>

and [i,n—l> (with 1=1,2) have the same populations. So, the
central component at w disappears since it corresponds to transi-
tions between two equally populated levels.

(ii) If I, is larger than II;, the lateral component at wyp +uw;,
(transition |i,n>+|2,n-1>) is absorbing since the lower level
|2,n—1> is the most populated (Fig. 5). But, then, the second
lateral component at Wy, ~wyg (transition [2,n>-+|1,n—1> is ampli-
fying since it is now the upper level [2,n> which is the most
populated.

(iii)Finally, at resonance, one easily finds that II; =7, so that
all levels are equally populated and all components disappear in
the absorption spectrum.

Let's recall that all these results are only valid to Oth
order in I'/wj,. Higher order corrections to the secular approx-
imation, which is used here, would introduce smaller signals,
which do not vanish at resonance or near W -

& x |1,r1>

<::} l 2,n>
Amplification Absorption
y & | 1,n-1>
O . T

FIGURE 5. If m, > m;, the w_ + w;, component is absorbing,
whereas the w_ - w;, component is amplifying.
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It appears clearly from the previous discussion that good
amplification requires a detuning between the laser and atomic
frequencies wy and w,+ One can easily compute the optimum con-
ditions for such an amplification.

The maximum of the amplifying line is obtained by dividing
the weight of this line by its width. Let us call G the ratio of
this maximum amplification to the maximum absorption of free
atoms. One obtains

P Tl LR P IR V)

L2 T

_ sin4¢ (cosz¢ - sin2¢)
B 4 4 2 2 (31)
(cos ¢ + sin ¢)(1 + 2 sin"¢ cos ¢)

The value of the detuning which maximizes this amplifica-
tion is given by

lop, = v,
_._.]:'._.____.9....= 0.334 (32)

"1
and it corresponds to a maximum amplification

® ™ 4.647% . (33)

IV. CONCLUSION

To conclude, let us mention some further applications of the
dressed atom approach.

First, this method can be directly applied to multilevel
systems. Similar mathematical expressions having the same physi-
cal meaning can be derived for the characteristics of the various
components of fluorescence and absorption spectra. We have al-
ready used it to study several problems such as the modification
of the Raman effect at very high intensities [I3]; the simulta-
neous saturation of two atomic transitions sharing a common level
[14], a situation which occurs frequently in stepwise excitation
experiments (in that case, we have to consider atoms dressed by
two types of photons); polarization effects related to Zeeman
degeneracy and which could be observed by exciting atoms with a
given polarization and by observing the fluorescence spectrum
with a different one [15].
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Second, this method is very well suited to the study of the
effect of collisions in the presence of resonant fields [16,17,
78]. One has to add in the master equation new terms describing
the transition rates induced by collisions. The detailed balance
condition, giving the dynamical equilibrium, depends now on both
radiative and collisional rates. But. on the other hand, the
weights of the lines only depend on radiative rates. This pro-
vides very simple interpretations for the asymmetries which ap-
pear in the fluorescence spectrum and which are due to collisions.

Finally, one can easily introduce the Doppler effect in the
theory by plotting energy diagrams giving the dressed atom energy
levels versus the atomic velocity. We have shown that these dia-
grams can provide very simple interpretations for the various
saturation signals observed in laser spectroscopy. We are pres-
ently investigating some new effects suggested by such an ap-
proach [18].
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