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LASER-ATOM INTERACTIONS : RECENT THEORETICAL DEVELOPMENTS

Jean DALIBARD and Claude COHEN-TANNOUDJI

Laboratoire de Spectroscopi e Hertzienne de l'Ecole Normale Supérieure* et
Collège de France, 24 rue Lhomond, F 75231 Paris Cedex 05 France

ln intense laser beams, when perturbative treatments are no longer val id,
the dressed atom approach provides a quantitative understanding of the
main features of dipole or intensity gradient forces (mean value, fluctu
ations, velocity dependence). ln this lecture, we present such an approach
and we apply it to atomic motion in an intense standing wave. New efficient

laser cooling schemes taking advantage of stimulated processes are proposed.
They work for a blue detuning and do not saturate at high intensity.

1. INTRODUCTION

During the last few years, several experiments have demonstrated that laser

atom interactions provide the possibility to control the velocity1,2 and the

position3 of an atom. A new exciting field of research is emerging which is

called laser cooling and trapping4.

ln order to introduce the subject of this talk, we consider first the

simplest possible example of an atom irradiated by a laser plane wave with

wave vector k. When the atom absorbs a laser photon, the momentum gain is fik.

If the atom falls back to the ground state by stimulated emission, the atomic

momentum returns to its initial value. But, if the emission process is a

spontaneous one, the momentum loss during such a process is zero by symmetry,

because spontaneous emission can occur with equal probabilities in opposite

directions. It follows that the net atomic momentum gain in a fluorescence

cycle (absorption + spontaneous emission) is fik. Consequently, the mean force

<F> experienced by the atom is given by

<F> = fik r Gee ( 1)

where r Gee is the mean number of fluorescence cycles per unit time, equal to

the product of the population Gee of the excited atomic state e by the sponta

neous emission rate r , which is also the natural width of e. Such a force is

nothing but the well known radiation pressure5-7 which has been used for slowing

down atomic beams1. At high intensities, Gee tends to 1/2 and <F> saturates

to the value fik r/2.

Suppose now that the atom is irradiated by two counterpropagating laser
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beams, with the same intensity, and with a frequency wL detuned to the red with

respect to the atomic one Wo (the detuning 8 = wL - Wo is negative). If the in

tensity of such a standing wave is weak enough, the radiation pressures of the

two counterpropagating waves can be added independently. Because of the Doppler

effect, the atom gets closer to resonance with the opposing wave, farther from

resonance with the copropagating one. It is slowed down. This is the principle

of usual radiative cooling8,9. Such a scheme leads to velocity damping times of

the order of

To = Ii/R

where

R = Ii 2 k2 /2M

is the recoil energy and M the atomic mass,and to minimum kinetic temperatures

T of the order of

kB T = Ii r/2

where kB is Boltzmann's constant10. For sodium atoms, To is of the order of a

few microseconds and T is as low as 240 vK. The possibility of cooling atoms

with such "optical molasses" has been recently demonstrated2,4.

If the intensity of the laser standing wave is increased (saturation para

meter s» 1), the physical picture given above breaks down. Stimulated emission

processes, responsible for a coherent redistribution of photons between the two

counterpropagating waves, become predominant: the absorption of a photon in a

plane wave can be followed by the stimulated emission of a photon in the coun

terpropagating wave, giving rise to a change of atomic momentum equal to

± 2 lik11,12. Such stimulated processes, which occur at a rate of the order of

the Rabi frequency w1' are at the origin of dipole forces or intensity gradient

forces5,6 (which have been recently used for trapping atoms3,4). ln a strong

standing wave, it has been shown theoretically that they produce a heating of

the atoms for a red detuning (8<0) and a cooling for a blue one (8)0)5,13,14,

contrarily to what happens in the "radiation pressure mol asses" described above.

The purpose of this lecture is to present recent theoretical developments

which have provided a simple physical interpretation of atomic motion in an

intense laser wave, and in particular in an intense standing wave15. Such an

interpretation is based on the dressed atom approach which is briefly recalled

in section 2. We then show in section 3 how dipole or intensity gradient forces

can be interpreted in terms of two valued dressed state dependent forces (opti

cal Stern and Gerlach effect). The particular case of an intense standing wave

is considered in section 4, and a new efficient laser cooling mechanism, which
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does not saturate at high intensity, is introduced ("Stimulated molasses").

Finally, possible appl ications of stimulated molasses are investigated in sec

tion 5.
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2. THE DRESSED ATOM APPROACH. CONNECTION WITH RESONANCE FLUORESCENCE16-18

ln the high intensity limit, the Rabi frequency w1' characterizing the

strength of the laser-atom coupl"ing, is large compared ta the spontaneous emission

rate r. We therefore considerin a firststep the energy levels of the combined

system atom + laser photons interacting together (dressed states). Then, in a

second step, we take inta account the coupl ing with the vacuum field which gives

rise to spontaneous transitions between dressed states. Resonance fluorescence

thus appears as spontaneous emission of radiation from the dressed atom.
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FIGURE 1

Left part: unperturbed states of the combined atom-laser photons system, in
absence of coupling,bunched in well-separated two dimensional manifolds

Right part: dressed states resulting from the atom-laser coupling

Let us first introduce the dressed states for a 2-level atom at rest in a

given point~. ln absence of coupling, the energy levels of the combined system

atom + laser photons are labelled by two quantum numbers, e or 9 for the atom

(excited or ground state), n for the number of laser photons. Such "unperturbed"

states are represented on the left part on Fig. 1. When the laser frequency wL

is close to the atomic one wo, these states are bunched into two dimensional

manifolds ... &n = {Ig,n + 1 >, le,n >}, &n-1 = {Ig,n> , e,n - 1>} ...,
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the distance between the two levels of a given manifol~being ho = (WL - wo)

and the distance between two adjacent manifolds being hwL. The laser-atom

coupling V connects the two states of a given manifold. For example, the

atom in the ground state 9 and in presence of n + 1 laser photons can absorb

one laser photon and jump into the excited state e. This means that V has

a non zero matrix element between the two states Ig,n + 1> and le,n> of & .n

Actually, one can show that

h . (,
<e,njVlg,n + 1> ="Z w1(r) el\? rJ

where \?(r) is the phase of the laser field and w1(r) the

related to the amplitude &o(r) of the laser field and to

moment d by

(2)

Rabi frequency

the transition dipole

(3)

This coupling gives rise to two perturbed states, Il,n> and 12,n> (for &n)'

represented on the right part of Fig. 1. These dressed states are both linear

combinations of the unperturbed states je,n> and Ig,n + 1> and are separated

by a splitting h~ given by

~(r) = [02 + w](r)] If2 (4)

Consider now the effect of spontaneous emission. The emission frequencies

correspond to transitions allowed between dressed levels, i.e. to transitions

between states connected by a non zero matrix element of the atomic dipole

operator D. ln the uncoupled basis, D, which does not change the number of

laser photons, connects only ie,n> and Ig,n>. Since both dressed states Il,n>

and !2,n> of &n are contaminated by \e,n>, and both dressed states \l,n - 1>

and 12,n - 1> of &n-1 are contaminated by Ig,n>, we find 4 allowed transitions

between &n and &n-1 : transition i1,n> ~ [2,n - 1> corresponding to a frequency

wL + ~, transition 12,n> ~ !l,n - 1> corresponding to a frequency wL - ~, and

transitions li,n> ~ li,n - 1> (with i = 1,2) corresponding both to a frequency

wL' The dressed atom approach thus provides a straightforward interpretation

of the "fluorescence triplet,,19 emitted by a 2 level atom irradiated by a

resonant laser beam. Similarly, various features of photon correlations obser

ved on the fluorescence light can be easily understood by considering the

sequence of fluorescence photons as being emitted in a "radiative cascade" by

the dressed atom18.

3. DRESSED ATOM INTERPRETATION OF DIPOLE FORCES1S

We apply now the dressed atom approach to the interpretation of dipole

forces which are associated with the intensity gradients of the laser beam.
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(5)

ln an inhomogeneous laser beam, the laser intensity is position dependent.

lt follows that w2 (r), and consequently ~(r) according to (4), vary in space.
1

ln Fig. 2, we have represented the variations of the energies of the dressed

states across a gaussian laser beam. Out of the laser beam, the dressed levels

coincide with the bare ones, and their splitting is just ho. lnside the laser

beam, each dressed level Il,n> or 12,n> is a linear superposition of Ig, n + 1>

and le,n> and the splitting between the two dressed states of a given manifold

becomes h~(r), which is larger than ho.

_ Out--
'JO

Position

FIGURE 2

Variations across a gaussian laser beam of the dressed-atom energy levels. Out
of the laser beam, the energy levels connect with the uncoupled states ofng. 2,

segarated by o. ln the laser beam, the splitting between the dressed states is
~(r» 0

Within each manifold, the energy diagram of Fig. 2 is similar to the one of

a spin 1/2 magnetic moment in an inhomogeneous static magnetic field. lt

follows that, in absence of spontaneous emission, we can define a two-valued

dressed state dependent force, equal to minus the gradient of the dressed

state energy

7; -+ -+ -+-+
Tl = - VEln(r) = - (h/2) V ~(r)

-;>.- -+ -+ -+-+-;>.-
T2 = - VE2n(r) = +.(h/2) V ~(r) = - Tl

As in the ordinary Stern and Gerlach effect, we have a force that depends on

the internal state of the dressed atom, but the basic interaction occurs now
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between an optical dipole moment and an inhomogeneous laser electric field

(optical Stern and Gerlach effect).

The effect of spontaneous emission is to produce, at random times, transi

tions between dressed states of type 1 and dressed states of type Z, or vice

versa. This changes in a random way the sign of the instantaneous two valued

dressed state dependent force. Such a picture of an instantaneous force swit

ching back and forth between two opposite values provides a simple understan

ding of the mean value and of the fluctuations of dipole forces.

Consider first the mean force. It can be written as

(6)

where TI. is the proportion of time spent in a dressed state of type i (i = 1,2).l
For 0>0 (case of Fig. Z), the unperturbed state Ig,n + 1> is above le,n>, since

wL > wo, and the dressed state Il,n> connects to Ig,n + 1> out of the laser

beam. It follows that Il,n> is less contaminated by le,n> than IZ,n>, and is

therefore more stable with respect to spontaneous emission, so that TIl> TI2 '

and the atom spends more time in dressed states of type 1 than in dressed

states of type Z. We conclude that, for 0>0, the sign of the mean force is the

one corresponding to level Il,n> : the atom is expelled out of the high inten

sity regions. For 0<0, the conclusions are reversed. The dressed state IZ,n>

connects to Ig,n + 1> out of the laser beam, is more populated than Il,n> and

imposes its sign to the mean dipole force which attracts the atom towards the

high intensity regions. Finally, for 0 = 0, the Z dressed states contain the

same admixture of le,n>, are equally populated (TIl= TI2), so that the mean

force vanishes. We understand in this way why the variations of the mean dipole

force (for an atom initially at rest) versus the detuning 0 = wL - Wo are of a

dispersive type. The argument given above is not only qualitative but also

quantitative. If one calculates TIland TIZ from the mas ter equation giving the

spontaneous transition rates between the various dressed states, and if one

puts their values in (6), one gets the exact value of the mean dipole force,

(to lowest order in f/w1)15.

Similarly, by studying the correlation function of the instantaneous force

switching back and forth between *1 and *Z = - *1' it is possible to get a

quantitative interpretation of the diffusion coefficient associated with the

fluctuations of dipole forces5,15.

4. DRESSED STATES lN A STANDING WAVE. STIMULATED MOLASSES

We come back now to the problem mentioned at the end of the introduction

concerning the importance of stimulated processes in a strong standing wave.

Atomic motion in a strong standing wave has been studied by several
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authors20,13,5,21,15. We have recently proposed a physical picture, based on

the dressed atom approach, and which provides some physical insight in this

problem15. We present in this section a summary of this theoretical work.

ln a plane standing wave, along Oz, the Rabi frequency w1(z) is a periodic

function of z

371

(7)

It follows that the 2 dressed states of a givenmanifold oscillate periodically

in space since their splitting is according to (4) and (7).

r/(z) = [w~ cos' k z + (wL - wo)'] I/i (8)

Fig. 3 represents these dressed states for a positive detuning (dashed lines).

At a node of the standing wave (z = \/4 ,3\/4 ...), w1(z) vanishes and the

two dressed states Il,n> and 12,n> respecti~ely coincide with the unperturbed

states Ig,n + 1> and \e,n>, separated by 0 (dotted lines). Out of anode,

w1(z) is different from zero, the dressed states are linear combinations of

Ig,n + 1> and je,n> and their splitting is maximum at the antinodes

(z = 0, \/2, \ ...) where w2 (z) reaches its maximum value. Consider now the1

effect of spontaneous emission. As we have seen in section 2 above, an atom in

level Il,n> or 12,n> can emit a spontaneous photon and decay to levels

Il,n - 1> or 12,n - 1>. The key point is that, in a standing wave, the various

rates for such spontaneous processes vary in space because of the z dependence

of the wave functions. For example, if 0 is positive and if the atom is in the

level j1,n>,its decay rate is zero at anode where Il,n> = Ig,n + 1> and

maximum at an antinode where the contamination of \l,n> by le,n> is maximum.

On the contrary, for an atom in level [2,n>, the decay rate is maximum at the

nodes where 12,n> coincides with le,n>.

The previous considerations will allow us now to understand why an atom is

slowed down in an intense standing wave, when 0 is positive, contrarily to what

happens in usual radiation pressure molasses (weak standing waves). We can for

example follow the "trajectory" of a moving atom starting at a node of the

standing wave, in level Il,n + 1> (full lines of Fig. 3). Starting from this

valley, the atom climbs uphill until it approaches the top (antinode) where

its decay rate is maximum. It may jump either in level Il,n> (which does not

change anything from a mechanical point of view) or in level 12,n>, in which

case the atom is again in a valley. It has now to climb up again until it

reaches a new top (node) where \2,n> is the most unstable, and so on ...

It is clear that the atomic velocity is decreased in such a process, since

the atom sees on the average more "uphill" parts than "downhill" ones. Such a

scheme can be actually considered as a microscopic realization of the
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"Sisyphus myth" : every time the atom has climbed a hill, it may be put back at

the bottom of another one by spontaneous emission and it has to climb up again.

\ /"\ I~\ ,' , 11,n + 1>..:...l....\..I ....\./. .

i~·~~;::{\~·T\7\··l\..ï2 n+1>' '~I '''' ' 1
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FIGURE 3

Laser cooling in a strong standing wave with a blue detuning (8)0). The dashed
lines represent the spatial variations of the dressed atom energy levels which

coincide with the unperturbed levels (dotted lines) at the nodes. The full
lines represent the "trajectory" of a slowly moving atom. Because of the spa
tial variation of the dressed wave functions, spontaneous emission occurs
preferentially at an antinode (node) for a dressed state of type 1 (2).
Between two spontaneous emissions (wavy lines), the atom sees on the average
more uphill parts than downhill ones and is therefore slowed down.

We have used such a picture to derive quantitative results for the velocity

dependence of the force acting upon the atom15. At very low velocities

(k v « r), we have a linear dependence with a slope which can be much higher

than for usual radiation pressure molasses (by a factor of the order of w1/r).
The force reaches its maximum value for velocities such kv ~ r, or in other

words, for situations in which, as in Fig. 3, the atom travels over a distance

of the order of a wavelength between two spontaneous emissions. The important

point is that the magnitude of this friction force is directly related to the

modulation depth of the dressed energy levels, i.e. to the Rabi frequency wl'

As a consequence, this force increases indefinitely with the laser intensity.

After this maximum, when kv becomes large compared to r, the force decreases
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as v-l and finally, at very large velocities, resonances appear which are due

to non-adiabatic Landau-Zener· transitions between the two dressed states of

each manifold2l.

To conclude this section, it may be useful to analyze the energy-momentum

balance in the cooling process associated with these "stimulated molasses".

Between two spontaneous emission processes, the total (kinetic + potential)

energy of the atom is conserved. When the atom climbs uphill, its kinetic

energy is transformed into potential energy by stimulated emission processes

which redistribute photons between the two counterpropagating waves at a rate

wl· Atomic momentum is therefore transferred to laser photons. The total

atomic energy is then dissipated by spontaneous emission processes which carry

away part of the atomic potential energy.

5. APPLICATIONS

5.1 Transverse cooling of an atomic beam

By irradiating at right angle an atomic beam with an intense standing

wave detuned to the blue, it is possible to cool the transverse atomic velo

cities (along the direction of the standing wave) by the mechanism described

in the previous section. If the transverse velocity spread ~v is such that

k~v ~ r, the cooling efficiency is maximum and it is possible to cool the beam

with an interactionlength much shorter than the one required for usual radia

tion pressure molasses.

Actually, such an experiment has just been done in our group on a

Cesium atomic beam22. An example of experimental results is represented in

Fig. 4. Fig. 4a gives the transverse velocity profile of the atomic beam

(measured by a hot wire detector located 2 meters downstream) in absence of

laser. The velocity spread is ± 2 m/s. Fig. 4b shows the effect of a laser

standing wave detuned + 30 MHz above resonance which corresponds to 0 = + 6 r
(the power is 70 mW, and the beam waist in the interaction region is

w = 1,8 mm leading to wl = 50 r). The width of the velocity profile is 5 times

narrower than the one of the unperturbed beam. Finally, if the laser frequency

is detuned - 30 MHz below resonance, the atomic beam is decollimated and

exhibits a double peak structure (Fig. 4c).

Such an experiment demonstrates the efficiency of stimulated molasses.

Realization of the same cooling with the usual radiation pressure molasses

would have required an interaction length one order of magnitude larger.

Furthermore, since stimulated forces do not saturate, the damping time for

stimulated molasses, which is inversely proportional to wl' could be yet

more decreased, by increasing the laser power.
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FIGURE 4

Transverse velocity profile of the Cs atomic beam
a - ln absence of laser beam

b - ln presence of an intense standing wave (w1 = 50 r) perpendicular to the
atomic beam and detuned to the blue (8 = + 6 r)

c - Same conditions as b except for the detuning which is now negative
(8 = - 6 r)

5.2 Longitudinal slowing down of an atomic beam

Suppose now that the atomic beam and the laser standing wave are paral

lel. If the standing wave could be swept in order to have a weak enough rela

tive velocity with respect to the atoms, corresponding to the maximum value of

the decelerating force (kv ~ r), it would be possible to slow down an atomic

beam with an efficiency much higher than in experiments using radiation pres

sure. For Cesium, a laser intensity of 100 mW/mm2 would allow to reduce the

stopping distance from 1 meter to 10 centimeters. This might be of special

interest for the real ization of a compact atomic clock.

The realization of such an experiment would require two counterpropagating

laser beams with frequencies w + 6w and w - 6w (in order to have a standing

wave moving with a velocity c 6w/w). The frequency offset 6w should also vary

in time (in order to have a standing wave moving with the decelerating atoms).

The development of high power single mode laser diodes could provide a simple

way to realize such an experimental scheme.
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