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1. - Introduction.

When one wants to deseribe the mechanical effects of light on an atom, the
most natural approach is the so-called semi-classical treatment[1]. The atom is
treated as a pointlike object with a classical trajectory, so that we can use the
classical notions of position and of velocity: the effect of light can thus be de-
scribed by a force, which can be decomposed in a constant part (average force)
and a fluctuating part (Langevin force). In order to calculate this force, one
must describe the atom-light interaction within the framework of quantum me-
chanies: first, the internal degrees of freedom of the atom are quantized; sec-
ond, the quantization of light also plays an essential role (even if a classical de-
seription of the laser beam is used), since it is responsible for the fluctuations of
the radiative force around its mean value, through the randomness occurring in
the absorption and the emission of photons.

In order to evaluate the validity of the semi-classical treatment, one can
start from a full quantum treatment, in which the atomic motion is described by
a statistical mixture of wave packets[1]. The complete description thus relies
on a density matrix involving internal and external degrees of freedom of the
atom. The semi-classical description of the first paragraph can be considered as
an approximation of the full quantum treatment, valid only if the atomic wave
packets are well localized both in real space and in momentum space. The sharp
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localization in space requires the coherence length L. of the wave packets to be
small compared to the wavelength 2, of the light. Using the relation L. = #/2p,
where 3p is the width of the atomic-momentum distribution, we obtain a first
condition:

(1 8p > hky, ,

where we have introduced the one-photon recoil momentum hk,, (i.e. the atom-
ie-momentum change when the atom absorbs or emits one photon). The second
condition (localization in the momentum space) states that the variation of the
Doppler effect over the momentum width of the wave packet is small compared
to the damping rate I' of the internal degrees of freedom of the atom (I" is the
natural linewidth in the case of a two-level atom). This condition reads:

2 3p < MI'/k.

These two conditions can be simultaneously fulfilled, provided that the one-
photon recoil energy (fik; )2 /2M be small compared to Al'. In that case, the first-
order expansion of the full quantum treatment allows one to derive a partial dif-
ferential equation for the atomic-momentum distribution (Fokker-Planck equa-
tion) [2], whose coefficients can be interpreted as an average radiative force and
a momentum diffusion coefficient related to fluctuations of the radiative
force.

When the average force and the momentum diffusion coefficient can be di-
rectly calculated[1], the semi-classical treatment above is very fruitful. For in-
stance, the result of the so-called Doppler cooling, or of laser cooling by polar-
ization gradients, may be studied by finding the steady-state solution of the
Fokker-Planck equation[3,4]. The validity of the semi-classical approach can
be checked by verifying that the corresponding momentum distribution obeys
conditions (1) and (2). (

However, it is possible to achieve very efficient cooling, yielding a momen-
tum distribution with a width close to the one-photon recoil [5], or even be-
low [6], and condition (1) is no longer fulfilled. In such cases, a full quantum de-
scription is required. The evolution of the density matrix describing the atoms
is then determined by the so-called generalized optical Bloch equations[T7],
which are a set of first-order differential equations relative to time, quite easy
to solve numerically step by step (the main difficulty is the size of the density
matrix which may be quite large). One then obtains the time evolution of the
momentum distribution. This method has been applied successfully to the cool-
ing below the one-photon recoil[6], or to polarization gradient cooling[8].

In this seminar, we would like to point out other situations in which the use
of generalized optical Bloch equations may be preferred to a semi-classical
treatment, even though conditions (1) and (2) are satisfied. First, in order to
calculate the momentum distribution with an accuracy better than the one-pho-
ton recoil Ak, the Fokker-Planck equation—which results from an expansion as
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a function of #ik;, /p—is not a good enough approximation. This situation pre-
cisely happens in the case of metastable helium interacting with a laser at A}, =
= 1.083 ym on the transition 23S,-2%P, ; ,: the one-photon recoil velocity is as large
as 92ems ™!, and it is possible to measure the atomic velocities with a quite
better accuracy. In sect. 2, we present experimental results on the mechanical
Hanle effect observed on the 23S,-23P; transition of He*. These results can be
completely understood only by taking into account the finite value of the one-
photon recoil, which is done naturally in the quantum approach.

Surprisingly, in the situation of sect. 2, it turns out that the quantum treat-
ment is not only more accurate but also simpler than the semi-classical treat-
ment! As a matter of fact, the quantum solution only requires a numerical inte-
gration, step by step, of a set of ordinary first-order differential equations. This
treatment is specially well suited to the description of the transient regime,
which corresponds to our experimental situation where the steady-state regime
is not reached. On the other hand, the complete semi-classical treatment re-
quires the average force and the momentum diffusion coefficient to be calculat-
ed as a function of the momentum. These values are then introduced into the
Fokker-Planck equation, which is not easy to solve numerically, particularly in
the transient regime, since it is a partial differential equation. This semi-classi-
cal procedure is more complicated than solving the generalized optical Bloch
equations.

In sect. 3, we will present another effect observed on the 23S,-23P, transi-
tion of He*: magnetically assisted Sisyphus effect. This effect is a new example
of the «Sisyphus type»[3, 4] radiative forces which can be observed when the
multilevel structure of the ground state plays a role, because of optical pumping
between the differently light-shifted ground sublevels. An originality of the
magnetically assisted Sisyphus effect is that the Sisyphus force exhibits a be-
haviour opposed to the behaviour of the standard resonant radiation pressure,
which continues to play a role at large velocities: the net result is a bistability in
the momentum space, and the corresponding bimodal momentum distribution
has been observed. The study of this effect will again allow us to discuss the se-
mi-classical description vs. a full quantum treatment based on the generalized
optical Bloch equations.

2. - Mechanica] Hanle effect.

2'1. Simple presentation of the effect. — We consider an atomic beam, propa-
gating along the Ox axis, and irradiated at right angle by a resonant laser beam
propagating along Oz (fig. 1). In such a situation, one expects a deflection of the
atomic beam due to the resonant radiation pressure from the laser (absorption
of laser photons, each changing the atomic linear momentum by #k;, and fol-
lowed by a spontaneous emission that does not change the atomic momentum on
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Fig. 1. — Configuration for observing the mechanical Hanle effect. ) Experimental con-
figuration: the laser beam is applied transversely to the atomic beam, and can deflect the
atoms. This deflection exhibits a resonant variation when the transverse magnetic field is
scanned: it is minimum at zero magnetic field. b) Simplest atomie-level scheme for obser-
vation of the effect: at zero magnetic field, the atoms are optically pumped by the o circu-
lar polarization into g., where they no longer interact with the laser, so that there is no
deflection. We have indicated the Clebsch-Gordan coefficients characterizing the strength
of the transitions.

the average). However, if the laser is ¢, circularly polarized, and the atomic
transition is a J, =J —J, = J transition with the angular momentum ./ differ-
ent from zero, the atom is readily pumped into the ground sublevel g. associat-
ed to the largest value of the angular-momentum component (m; = .J), where it
no longer interacts with the laser: there is no deflection.

If now we apply a magnetic field B along the third axis Oy, there is a Lar-
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Fig. 2. - Experimental setup. A supersonic beam of metastable helium with a well-defined
longitudinal velocity (1100 ms™!), transversely limited by the slit S; (0.2 mm wide), is
scanned by an electron multiplier with a similar width. This yields the transverse velocity
profile. When the laser beam is applied, the beam is deflected, and the modification of the
transverse velocity profile is studied.

mor precession in the ground state between g, and the other ground sublevels,
from which absorption can resume, giving rise to a deflection. If we scan the
transverse magnetic field around zero, we thus expect to observe a deflection
exhibiting a minimum at zero magnetic field. An order of magnitude of the
width of the dip around zero is readily obtained by noticing that the deflection
decreases when the Larmor frequency {p becomes small compared to the opti-

signal (a.u.)
=

Fig. 3. - Direct detection of the mechanical Hanle effect: signal obtained with the detector
fixed in the far wing (opposed to the laser) of the atomic-beam profile. This signal reflects
the deflection.
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cal pumping rate I, from g_ to g, . This width may be much narrower than the
natural width of the transition, and this signal has all the features of the usual
Hanle effect in the ground state[9], except that it is detected by a mechanical
effect rather than by optical means.

This effect has been observed[10] with the setup sketched in fig. 2, using an
atomic beam of 2°S; metastable helium interacting on the 23S;-2%P, transition
with a laser at 1.083 pm. An electron multiplier sensitive to He* can scan the
transverse profile of the beam, and it can thus detect a deflection. Figure 3
shows a direct observation of the mechanical Hanle effect, with the detector
fixed in the far wing (i.e. opposed to the laser) of the atomic-beam profile. Such
experiments have proven to be very useful for zeroing with a good sensitivity
the magnetic field applied to the atoms[6].

2'2. Semi-classical calculation. — We now give the great lines of the semi-
classical calculation that we have performed in order to render a quantitative
account of the experiment. Within the framework of this approximation, the
mean radiative force can be written

3) F=—(VWa),
where
(4) VAL _— == d'E L

is the electrie-dipole interaction Hamiltonian deseribing the coupling between
the atomic dipole moment d and the laser electric field E7, treated as a c-number
external field evaluated at the atomic position r. In this approach, the atom is
considered as a point, and the quantum average appearing in (3) involves only
the internal degrees of freedom, so that F' can be expressed as a function of the
density matrix ¢ deseribing the internal atomic state. In order to calculate s, we
use the optical Bloch equations, which deseribe the evolution of the internal de-
grees of freedom, taking into account the Hamiltonian interaction with the ex-
ternal magnetic and laser fields, and the damping due to spontaneous
emission. _

In the so-called rotating-wave approximation, these equations can be writ-
ten as a set of coupled linear first-order differential equations, with constant
(time independent) coefficients, provided that the Doppler effect associated
with the velocity change during the interaction remains small compared to the .
natural width I" of the transition. The interaction time T is usually long com-
pared to the internal damping time I', ', and the atoms rapidly reach a steady
state: it is thus possible to only look for the steady-state solution of the optical
Bloch equations, which is quite simple since it only requires the resolution of a
set of linear equations. The results are used to calculate the average force, with
formula (3).

A detailed calculation of this type has been presented in ref.[10], in the case
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Fig. 4. — This curve presents the result of the semi-classical calculation of the average
force exerted by the laser on the atom, in the situation of fig. 1. {2 is the Larmor fre-
quency associated to the transverse magnetic field; ;, = 0.2I"is the Rabi frequency associ-
ated to the atom-laser coupling; I' is the natural linewidth of the transition; ¢ = 0. The me-
chanical Hanle effect is characterized by the narrow dip around the null value of the mag-
netic field. The width of this dip, narrower than the natural linewidth I, is of the order of
the optical-pumping rate I', from g_ to g, .

of a J, = 1/2 — J, = 1/2 transition. The result is shown in fig. 4,.and we see that
the average force exhibits a behaviour qualitatively similar to the measurement
presented in fig. 3.

2'3. Quantitative comparison with experiments. — It must be realized that a
completely quantitative interpretation of the experimental results of fig. 3
would require a much more complicated calculation. Indeed, these results re-
flect the evolution of the momentum distribution, which depends not only on
the average force but also on the fluctuations of the force. As indicated in the in-
troduction, this requires the caleulation of the momentum diffusion coefficient,
and the integration of a Fokker-Planck equation.

In order to be able to compare the experiment to a simpler calculation, we
have measured, for each value of the magnetic field, the change Ap of the aver-
age transverse atomic momentum: it is easy to show that this quantity is inde-
pendent of the momentum diffusion coefficient, and that it is related to the av-
erage force by the simple equation

(5) Ap=FT

(T is the interaction time between the atoms and the laser). We have plotted in
fig. 5 both the experimental and the calculated value of Ap (the calculation, rep-
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Fig. b. — Average transverse-momentum change of the atomic beam as a function of the
magnetic field. The experimental points are obtained by averaging the profiles obtained
with the scanning detector, with and without the laser. The dashed curve is the prediction
of the semi-classical treatment of subsect. 2'2. The full curve is the theoretical prediction
of the full quantum treatment (subsect. 2'4), where the internal and the external degrees
of freedom are quantized: it renders a good account of the transient regime (change of 1.3
hk;, at zero magnetic field) and of the shape of the wings at large magnetic field.
Q L= 3 4

resented by the dotted line, has been done for a J, = 1—J, = 1 transition, cor-
responding to the experiment). Although there is reasonable agreement, we
clearly see two differences, at large values of the magnetic field and around the
null magnetic field.

The difference at large magnetic field happens when the transverse-momen-
tum change is larger than 15#k; , i.e. when the Doppler effect associated to this
momentum change is not negligible compared to the natural linewidth of the
transition of metastable helium used in this experiment (1.6 MHz). We know
that the calculation above, which uses the steady-state solution at constant vel-
ocity, is not valid in this situation.

At zero magnetic field, we attribute the difference to the transient regime,
which has been ignored in the calculation. The calculated force is zero, because
in the steady state all the atoms are pumped into the ground magnetic sublevel
my = 1, where they no longer interact with the circularly polarized laser. But,
in fact, we start with a statistical mixture with equal populations in the three
ground-state sublevels, and it requires some fluorescence cycles for all the
atoms be pumped into the m; =1 ground sublevel. A straightforward calcula-
tion shows that the average number of cycles per atom is 4/3, which corre-
sponds exactly to the observed momentum change Ap = 1.3%k;,
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Both differences between the observation and the caleulation are related to
the failure of the steady-state approximation. It would be possible to take into
account the transient regime, as well as the velocity change during the interac-
tion time, in a semi-classical treatment generalizing the caleulation above, but
we would then lose the simplicity of the calculation. In fact, it would not be sim-
pler than the full quantum calculation that we are going to present now.

2'4. Full quantum treatment. — In this subsection, we switch to a complete-
ly quantum deseription of the atoms, in which the external degrees of freedom
(i.e. the motion) are described by a wave function. We use for that a basis | p)
of plane de Broglie waves with a given momentum p along 0z, so that the state
of the atom can be expressed in a basis

(6) {19:, ) lei, )},

where g; and e; stand for the ground and excited sublevels (internal degrees of
freedom), and p can take any value.

In this problem, a remarkable simplification happens: because of the selec-
tion rules corresponding to the conservation of angular momentum and of linear
momentum, the interaction of the atom with the laser and the magnetic field
can only couple a finite number of states (fig. 6). As in ref.[6], we can thus in-
troduce families of states which are closed under the effect of the magnetic field
and of absorption and stimulated emission. A family is completely characterized

le_, p+hi) 2 le., p+hk)
I R . 2

lg_,p) l9.,p)

Fig. 6. — Family of states coupled by the laser and the magnetic field, for a J, = 1/2 —
— J, = 1/2 transition. Because of the conservation of linear momentum, and of angular mo-
mentum, the family is closed, i.e. there is no other state coupled to this family by the laser
or the magnetic field.
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by a single value of p. In the case of the J, = 1/2 — J, = 1/2 transition, a family
is

(7 Fp)={lg-,p) lg+,p); le-, p +hky); |e., p+ hky,)}.

If now we consider intrafamily density matrix elements, i.e. terms of the
form

® (@, plo|Bp’),

where | a,p) and |3, p') belong to the same family, they are only coupled to in-
trafamily elements of the same family by the interaction of the atom with the
laser and the magnetic field.

Spontaneous emission allows the atoms to jump between different families:
an atom in the state |e;, p + fiky,) in the family #(p) can emit a photon with
a linear momentum u along Oz (— hk;, < u < fik;,), and arrive into the state
lg;, p + hky, — ) in the family Z#(p + hk;, — u). However, spontaneous emission
can only couple intrafamily terms of a family to intrafamily terms of another
family, and not to interfamily terms, i.e. terms between two different
Sfamilies.

Finally, the evolution equations (generalized optical Bloch equations) couple
internal terms of a family to other internal terms of the same family or of other
families. We can restrict our study to this type of terms, since our final goal is
the calculation of the atomic-momentum distribution which only depends on
terms diagonal in p. As an example of such an equation, we give the evolution
equation of the population of |g_, p), which is coupled to internal coherences of
the same family, and which is fed by spontaneous emission from excited states
of other families. It reads

9) %{g— ’ }0|G]9— ’ P) = 1(.9[{/2}(9_ . P|g|3+ ,p+ ﬁkL) +ce. +
+i@Qp/2Xg+, plolg-, p) + ce. +(1/3)1‘J du HuXe,,p — ulcle,, p —u) +

+(2/3) J'I*duH(u)(e_ ,p—u|cle_, p —u,

where H(u) is a normalized kernel related to the radiation pattern of the transi-
tion, £y, is the Rabi frequency associated to the atom-laser coupling, and Qp is
the frequency associated to the Larmor precession in the ground state.

We thus have a set of first-order differential equations, which can be numer-
ically integrated step by step, after discretization and truncation in p, yielding
the density matrix evolution. The atomic-linear-momentum distribution is then
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Fig. 7. — Full quantum calculation of the evolution of the atomic-momentum distribution,
in the situation of fig. 1. The discontinuous curve is the initial distribution, while the full
line represents the distribution after an interaction time of 300" ~'. The average displace-
ment corresponds to the semi-classical average force. The spread of the distribution corre-
sponds to the fluctuations of the semi-classical force, expressed by a coefficient of diffusion
of the momentum. This calculation also renders an account of the transient regime. B =
=50mG, &, =0, Q;, = 0.77, by, = 30001,

obtained by a trace over the internal degrees of freedom:
(10) N(p) = 2(i, p|sli, p).

Figure 7 presents the result of such a calculation, obtained after a few sec-
onds of calculation on a personal computer. The calculation not only shows a
global displacement, corresponding to an average force, but also a spread of the
distribution, corresponding to a diffusion of the linear momentum. From such a
calculation, it is easy to extract the average linear-momentum change after a
given time of interaction. The full curve of fig. 5 displays the results of this cal-
culation, and we see now that” these results, obtained without any adjustable
parameter, are in excellent agreement with the measurement. Note in particu-
lar that the 1.34k; change at zero magnetic field is perfectly reproduced, since
our calculation takes into account the transient evolution starting from the real
initial situation. Also, the agreement at large magnetic field reflects the fact
that our calculation correctly takes into account the change of the Doppler effect
when the atom is deflected.

We thus find that the full quantum treatment gives results in excellent
agreement with the experimental data, including features (diffusion, transient
effects) which would require complicated calculations in the framework of the
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semi-classical approach. The quantum calculation is specially simple in this
case, because of the existence of the closed families. For this problem, the quan-
tum calculation is not only more rigorous than the semi-classical calculation, it
is also simpler.

3. — Magnetically assisted Sisyphus effect.

3'1. Physical idea. — Let us consider again the situation of fig. 1, but the cir-
cularly polarized laser beam is now a standing wave. In the absence of a mag-
netic field, the ground-state sublevels have their degeneracy removed by the
laser wave, which interacts with g_ and produces a light shift, while g, , which
does not interact with the laser, remains unchanged. Since we have a standing
wave, the light shift of g_ is modulated in space, maximum at an antinode and
null at a node, as shown in fig. 8. If an atom travels in the standing wave, it is
optically pumped into g, , where it experiences no force since the energy of this
level is constant.

Suppose now that we apply a weak transverse magnetic field, producing be-

I

energy

g

b
1

A N A N z-axis

Fig. 8. - Energy values of the ground sublevels for a J, = 1/2 — J, = 1/2 transition excit-
ed by a o, circularly polarized standing wave, detuned below resonance. g_ , which is cou-
pled to the light, experiences light shifts null at a node and maximum at an antinode. g, is
not coupled to the &, polarized light, and it is not light-shifted. Note that optical pumping
tends to put the atom in the g. sublevel; this is more efficient around the antinodes, where
the light intensity is maximum.
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Fig. 9. - Magnetically assisted Sisyphus effect for a J, = 1/2 — J, = 1/2 transition, in the
case of a negative detuning. When an atom travels through a node, it experiences a preces-
sion because of the transverse magnetic field, and it can leave the nodal region in the g _
sublevel, where it is accelerated, until it is optically pumped to g ., where it has a uniform
motion. The process can resume at the next node, and the net result is an increase of the
velocity of the atom.

tween g and g, a coupling smaller than the value of the light shift at an anti-
node, so that the levels are almost unchanged at an antinode, and an atom mov-
ing around an antinode is still optically pumped into g, , where it experiences no
force. On the opposite, around a node, there is a precession between g_ and ¢, ,
so that an atom travelling through a node may be found in g_ just after the
node. On a g_ level, which is modulated, the atom experiences a force: in the
case of fig. 8, corresponding to a negative detuning of the laser, the atom is ac-
celerated between the node and the antinode. If the atom remained on the same
sublevel, it would then decelerate between the antinode and the following node,
and after one period (i.e. half a wavelength) the kinetic energy would remain
unchanged. In fact, the circularly polarized laser tends to optically pump the
atom from g_ to g,, and this is more likely to happen around the antinode,
where the laser intensity is larger. For small velocities such that the usual
Doppler cooling plays no role, the kinetic energy does not change (on the aver-
age) during the optical-pumping process, and the atom then proceeds on g,
which is flat. This process is visualized in fig. 9, and we see that the net result is
an increase of the kinetic energy of the moving atom. For a positive laser detun-
ing, we would have the opposite conclusion: the kinetic energy of the atom
decreases.

The reasoning above is analogous to the one of ref.[3], describing the Sisy-
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phus effect in the case of a gradient of ellipticity of the polarization of light. In
the case presented here, the magnetic field plays an essential role[11], and we
call this effect magnetically assisted Sisyphus effect. As for any kind of Sisy-
phus effect, it would be possible to show that the corresponding force varies lin-
early with the velocity around 0. However, there is a striking difference: the
sign of our effect is the opposite of the sign in the usual situations[3,4,11],
since we have here a heating force (the force increases with the velocity) for a
negative detuning, and a cooling force for a positive detuning. This different
sign has dramatic consequences on the behaviour of the foree as a function of
velocity, when one does not restrict the study to very small velocities. Indeed,
it is well known that Sisyphus cooling is efficient only at velocities smaller than
a critical velocity V. This velocity is such that the atom travels a distance
smaller than a fraction of a wavelength during (I,) " (the optical-pumping time
from g_ to g.,). This critical velocity can be defined by

11) V,=T,/k.

When the atomic velocity is larger than V,, the Sisyphus force vanishes, while
the optical-pumping process becomes sensitive to the atomic velocity: because
of the Doppler effect, the probabilities of excitation by the two components of
the standing wave are no longer equal. The result is the usual Doppler cooling
force, which is efficient on a velocity range of the order of Vp, defined by

(12) Vo =T/ky

(note that Vp is larger than V). This Doppler force is cooling for a negative de-
tuning, and heating for a positive detuning. The force at large velocities has
thus a sign opposed to the Sisyphus force at low velocity (while in the usual cas-
es the two effects have the same sign and just add up).

In order to intuitively understand the physical consequences of this situ-
ation, we can add these two forces. First we take the Doppler force in the typi-
cal situation of a negative detuning equal to I'/2: it is the sum of two opposite
Lorentzian curves centred at — Vp, /2 and + V}, /2. We model the Sisyphus force
by the expression [8]

Fq:a—v
1+ V2/V?

with V, of the order of V,, i.e. smaller than Vy.

Figure 10 shows the result of this addition. The total force vanishes not only
at the null velocity, but also at the values V; and — V;, so that there are three
«equilibrium» points in the velocity space. For a negative detuning (fig. 10), the
two points at V; and — V; are stable, while V = 0 is unstable (this results from
the sign of the slope around each point). If we let an atom ensemble evolve un-
der such a force, we thus expect that the atoms will get bunched around V; and
— Vy, with a velocity distribution exhibiting two bumps, the width of which is

(13)
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Fig. 10. - Combined effects of the Sisyphus force (dotted curve) and of the Doppler cooling
force (discontinuous curve). Since the two effects have opposite signs, and they act on dif-
ferent velocity ranges, the addition results in a curve (full line) crossing the horizontal axis
on three points. The two points at — V; and + V] are stable-equilibrium points, while zero
is unstable.

determined by the unavoidable fluctuations of the force around its average
value.

In the case of a positive detuning, we expect a force with the same shape but
a reversed sign. The physical consequences are then completely different since
we have now only one stable point around V = 0, and two unstable points at V;
and — V;. Atoms initially distributed in the interval [ — V;, V] will thus be «at-
tracted» towards V = 0, and we expeect a final velocity distribution exhibiting a
single bump around zero.

Remark. In fact, in the last case, there is no real steady-state distribution
since there is a diffusion process in the welocity space, allowing atoms to
«jump» above the values Vy or — V. However, provided that this escape mech-
anism has a characteristic time longer than the bunching time, we will be able
to observe a «metastable» situation with atoms bunched around V = 0.

32. Experiments. — We have performed some experiments in order to check
the validity of the heuristic predictions of subsect. 3'1. The apparatus is the
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Fig. 11. — Observation of the magnetically assisted Sisyphus effect final for a negative de-
tuning. The final transverse-velocity distribution shows a double bump, corresponding to
the two stable points of fig. 10. Q= 15T, ¢ = — 1T, Q= 0.055T.

same as the one described in fig. 2, but with a mirror added for retroreflecting
the laser beam, to produce a standing wave. Figure 11 presents an example of a
doubly-peaked velocity distribution obtained with a negative detuning. This
has been obtained with a laser intensity and detuning giving an optical-pump-
ing rate at the antinodes I', = 0.4I". The corresponding «Sisyphus velocity» (eq.
(11)) is V., = 0.6 ms . As predicted by our heuristic reasoning, the velocity V; of
the maximum of the bumps (0.5 ms™!) is slightly smaller than V;. The other im-
portant experimental parameter is the magnetic field (44 mG). It has been ad-
justed for giving the best visibility of the bumps, and the corresponding Lar-
mor frequency (0.05I") is a fraction of the light shift at the antinodes (0.47"). This
was expected from the intuitive reasoning of subsect. 3°1.

We have also studied the case of a positive detuning. As shown in fig. 12, it
is possible to obtain a bump around zero. The large background reflects the in-
itial velocity distribution, which has not yet been washed out because the inter-
action time is not long enough (3007""!). A result such as fig. 12 is obtained only
if the initial velocity distribution is centred around zero. This confirms that only
the atoms which are initially in the interval [— V;, V;] can be «attracted» to-
wards V = 0.
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gignal

transverse velocity

Fig. 12. — Observation of the magnetically assisted Sisyphus effect final for a positive de-
tuning. The final transverse-velocity distribution shows a single bump around the null vel-
ocity. The large background reflects the initial velocity distribution which has not yet been
washed out at the end of the interaction time (300I'™%). Q; =151, é=45T, Qz=
= 0.055T.

More generally, all the experimental results obtained with various sets of
parameters confirm the trends that can be predicted from the intuitive analysis
of subsect. 3'1. We have thus tried to give a more quantitative account of the
experiments.

3'3. Semi-classical analysis. — We now give the great lines of the semi-clas-
sical treatment of the magnetically assisted Sisyphus effect, following the same
approach as for the mechanical Hanle effect (subsect. 22 and ref.[10]). We will
thus concentrate on the calculation of the average force exerted by the laser up-
on the atom, in the steady-state situation corresponding to a constant velocity
for the atom.

In order to simplify the reasoning, we suppose that there is no Zeeman ef-
fect in the excited state, so that there is no magnetic coupling between e¢_ and
e, ; since there is no coupling between the laser and e_, we can restrict the sys-
tem to the 3 levels (g_, g., e, ). There are then 9 optical Bloch equations, de-
scribing the evolution of the density matrix for these three levels. Because of

27 - Rendiconti S.I.F. - CXVIII
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the modulation of the light, the coefficients corresponding to the coupling with
the laser are now modulated in time when the atom travels in the standing
wave, and the notion of steady state is not as simple as previously. However,
for an atom moving at constant velocity, this modulation is periodic, and we can
look for a modulated solution with the same period: this will be the steady-state
solution. A Fourier expansion allows one to express each Fourier component of
the density matrix elements as a continued-fraction expansion[12] depending
only on the laser detuning and intensity, on the magnetic field and on the atom-
ic velocity. It is well known that such continued-fraction expansions converge
rapidly, and are very well suited to numerical calculations.

In fact, since we are only interested in the average force exerted by the laser
standing wave, we only need to know the optical coherence (g_ |o|e, ). More
precisely, in order to obtain the constant part of this average force, it is enough
to calculate the first term of (g _ |s|e. ), which is modulated as the laser intensi-
ty in the standing wave. Such a calculation, repeated for the various values of
the velocity, has allowed us to plot the average force as a function of the veloe-
ity, for the interesting sets of parameters (laser detuning and intensity, and
magnetic field).

Figure 13 shows an example of such a plot, for parameters similar to the ex-
perimental ones for fig. 11. We see that the calculated value has a general shape
as predicted by the heuristic argument of subsect. 3'1, and displayed in fig. 10.
It thus confirms that the appearance of a double bump corresponds to a bistable
equilibrium. We can even check that the position of these bumps corresponds
roughly to the points — V; and + V| where the plot of fig. 13 intersects the zero-
force axis with a negative slope.

However, as in the case of the mechanical Hanle effect, a detailed compari-
son with experimental data obtained in various situations reveals some discrep-
ancies. Here again, these discrepancies can be related to the fact that the
knowledge of the steady-state average force does not describe the whole phe-
nomenon. First, the interaction time is not very long compared to the time re-
quired for the atoms to bunch around the equilibrium points under the effeet of
the average force (this required time may be very long for atoms initially at
zero velocity). Second, one should take into account the diffusion of the velocity
due to fluctuations in the exchange of momentum between the light and the
atoms: this diffusion has an effect not only on the transient regime, but also on
the shape of the steady-state velocity distribution[13]: for instance, the bump
around V; may be strongly asymmetric if the slope of the average force is not
constant; taking into account the noise in the measurement, this can lead to an
apparent shift of the average position of the bump. We thus come again to the
conclusion that a precise comparison with the experiment demands that the the-
ory take into account the diffusion and the transient behaviour. Following the
previous line, we have rather tried to take these effects into account by resort-
ing to a full quantum deseription.
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foree/hkl”

Fig. 13. — Result of the semi-classical calculation of the average force for parameters cor-
responding to those of fig. 11. This calculation, based on a continued-fraction expansion,
has been performed for the J, = 1 —J, = 1 transition of metastable helium used in the ex-
periment. 8 = — 051, O, =T, Q5= 0.055T.

34. Full quantum treatment. — We now describe the atomic state in a basis
incorporating a quantum number p associated to the quantized linear momen-
tum of the atom. We can then write generalized optical Bloch equations, de-
scribing the evolution of the generalized density matrix under the effect of the
Hamiltonian and of the spontaneous emission. In the sitnation considered here,
there are no closed families of states, and, as shown in[8], the study bears on a
large number of density matrix elements. More precisely, one must study the
evolution of terms (i, p'|s|j, p") with all possible values of momentum for p’
and p”, and of internal degrees of freedom for 7 and j. This makes the numerical
resolution of the generalized optical equations somewhat lengthy, because of
the large number of such elements. Suppose, for instance, that p is discretized
on 40 values, and that we consider the 6 levels of a J, =1—J, =1 transition;
there are 57600 such terms, and thus 57600 equations to integrate step by step.
This has been done on a work station, and fig. 14 shows a preliminary result.
Although our analysis is not yet completed, the checks that we have done con-
firm that these caleulations, which describe accurately the transient regime in-
cluding diffusion effects, give a better agreement with the experimental
data.
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Fig. 14. — Result of a full quantum calculation of MASE for a negative detuning. The initial
distribution has been taken asymmetric, and the shape of the velocity distribution during
the transient regime strongly depends on this asymmetry. The profiles are plotted every
50r1 6= —11T, Q;,=24T, Qz=0.061T.

4, — Conclusion.

In this seminar, we have presented two new mechanical effects of a laser on
an atom, for a J, =J —J, = J transition, in the presence of a magnetic field.
The mechanical Hanle effect is very sensitive to the magnetic field, and it can
be used as a test of compensation of stray magnetic fields. The magnetically as-
sisted Sisyphus effect has, in this case, the interesting feature to be opposed to
the usual Doppler cooling effect, and the atoms have a bistable behaviour in the
velocity space. _

Both effects can be understood within the framework of a semi-classical
treatment, but a precise comparison with the experimental data is not easy to
obtain in this framework. On the opposite, we have seen that a full quantum
treatment can be derived in a straightforward way, and that the corresponding
equations may be quite easy to solve, even though this sometimes demands a
large computer memory. Since the full quantum treatment takes automatically
into account all the features which are difficult to handle in the semi-classical
treatment (fluctuations of the force, transient regime), this treatment may be
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preferred when one wants precise calculations, even in the case when the semi-
classical treatment is valid in principle.

We would like nevertheless to add a caveat. All the physical ideas and intu-
itive predictions are easy to present within the framework of the semi-classical
picture, where we think of an atom as a pointlike particle interacting with light.
It seems much more difficult to get intuitions from a full quantum deseription of
the atom in terms of density matrix including the external degrees of free-
dom[14]. Our experience is that the semi-classical deseription can be very use-
ful for finding situations in which interesting effects may appear.

As an example, we can raise the question of the effect of a longitudinal com-
ponent of the magnetic field in the situation of MASE. A simple inspection of
fig. 8 and 9 allows us to find an interesting situation: for a well-chosen longitu-
dinal magnetic field, the ground level g. may be shifted to the lowest position of
g, so that, for a negative detuning, the Sisyphus effect will now cool instead of
heating. This dramatic change of behaviour has been observed experimentally,
after it had been guessed thanks to the semi-classical description.
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