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Optical pumping is a method for transferring to an ensemble
of atoms a fraction of the angular momentum carried by a beam of

polarized resonance radiation (1). The observation of the charac
teristics of the light absorbed or reemitted by these atoms gives
a lot of information about atomic structure. relaxation phenomena.

interaction processes between atoms and photons ...

The light sources which have been used so far in optical pum

ping experiments are ordinary spectral lamps excited by RF dischar

ges. The emitted light has in general a very broad spectral width.

of the order of a few gigahertz. Even the brightest lamps have a

relatively low intensity : this means that the pumping time, i.e.,

the mean time between 2 successive absorptions of pumping photons

by the same atom. is much longer than the radiative lifetime of
the excited state. ln other words. the absorption and induced

emission processes associated with the light beam are weak compa

red to spontaneous emission.

The spectacular development of lasers has now changed the si
tuation. We have at our disposaI light sources with very interesting

characteristics : high intensity which permits one to easily satu
rate an atomic or molecular transition-tunability over large spec

tral ranges which gives the possibility of studying more levels

monochromaticity which makes it possible to get rid of the Doppler

width for optical lines - pulsed operation which opens the way to
a time resolved spectroscopy •..

l would like in this paper to analyse sorne of the new effects
which can be observed in optical pumping experiments and which are
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a consequence of the improvement of light sources. l will put empha

sis on the theoretical problems and, more particularly, on the modi

fication of the equations describing the optical pumping cycle.

Some consequences of these modifications will be illustrated by a

few examples, chosen as simple as possible.

More complete and more detailed treatments may be found in re

ferences (2), (3). This paper will be restricted to a simple presen

tation and discussion of some physical ideas.

OPTICAL PUMPING EQUATIONS

The central problem is to find, and eventually to solve, the

equations which describe the evolution of the atomic density ma

trix. This matrix has the following form :

(5

(5
e

eg

(5

(5gge

(1 )

(5e and (5g are the density matrices describing the ensemble of
atoms inside the excited state e and the ground state g. Their dia

gonal elements are the populations of e and g sublevels, their off

diagonal elements, the "hertzian" coherences between these suble

vels. (5eg and (5ge = (5e~ contain only off diagonal elements connec
ting a sublevel of g to a sublpv~l of e; they evolve at optical

frequencies and are calleG for that reason "optical" coherences.

Let us give, as an example, the density matrix corresponding

to a Jg = 0 ++ Je = 1 transition excited by a light beam having a
(5 linear polarization, i.e.~perpendicular to the axis Oz of quanti

zation. Only sublevels m = ±I of the Je = 1 excited state and sub

level m = 0 of the Jg = 0 ground state have to be considered (we
can forget the m = 0 excited sublevel; see fig. 1), so that (1)
takes the form :
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Generally, for an atomic vapour or for a gas, one has to intro

duce such a density matrix for each velocity group. However, under

certain circumstances, it may happen, as we shall see later, that

the internal state of an atom and its velocity are uncorrelated. ln

this case, cr refers to internal variables only. For an atomic beam

perpendicular to the light beam, such a problem does not exist as

the Doppler effect disappears.

The light beam is supposed to result from the superposition of

parallel plane waves having all the same polarization ~, but diffe

rent (complex) amplitudes &~ and frequencies w~. The matrix describing the interaction between the atom and the light beam is purely

non-diagonal and can be written (in the so-called "rotating-wave

approximation") :

a
-L D&

-iw t

e ~~
eg~

-L D

&* eiw~t
0~

ge~

(3)

We have put Deg
operator.

(~.D)eg where D is the electric dipole moment

To simplify the discussion, we have treated the light beam as

a classical field. Such an approach is not correct for describing

the effect of spontaneous emission. This process may be taken into

account by just adding to the equations giving the rate of varia

tion of the components of cr the following terms (see references
(4) (5»

{

(4-a)

(4-b)

(4-c)



592 C. COHEN-TANNOUDJI

where f is the natural width of the excited state (equal to the re

ciprocal of the radiative lifetime T of this state). Equations

(4-a) and (4-b) give the damping of 0e and Oeg by spontaneous emis
sion while (4-c) describes the transfer from e to g associated with

such a process. For each element of 0g , the right hand side of
(4-c) is a linear combination of the matrix elements of 0e' Due to

the spherical symmetry of spontaneous emission, this coupling ap

pears only between quantities having the same symmetry (populations

are coupled only to populations, coherences to coherences). ln the

example considered above, the last equation (5) can be written

a
00

(5)

(8)

(a is not coupled to a and to a +) .00 +--
Finally the rate of variation of the components of a, inclu

ding the effect of the atomic Hamiltonian Ho (free evolution), the
coupling with the incident light beam, and the spontaneous emission,

is given by (we take ~ = 1) :

. r J [ -iw t * iw ta =-i H,o -fa +H D a [1e ]l -a D [1e ]l ] (6-a)
e - 0 e e]l - eg ge ]l eg ge ]l -

• 0 -\?O r; * iw t -iw t-\a =-i H,o + ~(o )+i~IP a [1e ]l-a D [1 e]l (6-b)
g 0 g- e]l - ge eg ]l ge eg ]l -

O -\ f ri ~ -iw ta = -i H,o - 2 a + i~IP a -a D [1e]l (6-c)
eg 0 eg- eg]l - eg gg ee e ]l

Sorne algebraic manipulations can be done on equations (6). We

can integrate equation (6-c) (and itshermitian conjugate) and in

sert the expression so obtained for 0eg and 0ge in the right handside of (6-a) and (6-b). One gets in this way a system of 2 inte

gro-differential equations involving only 0e and 0g' This is more
easily done in interaction representation with respect to Ho' If

we put

{

~ iH t -iH t
(7-a)

o(t) = e 0 O(t) e 0

~(t) = eiHot D e-iHot

(7-b)

[1(t) = ~ [1

-iw t

(7-c)
e ]l

]l ]l

we get after sorne simple calculations

r\, () iHot"-D() -iHota t = e 0 0e e
g f

Jt N N --et-t') * ~ J- dt' rD (t)D (t')e 2 [1 (t)[1(t')o (t')+hermit.conjug.
o - ge eg g

Jt _rJ ~ '\J -ret-t') * -+ dt' ID (t)O (t')D (t')e 2 [1 (t)[1(t')+ hermit.conjug.\
o - ge e eg -
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~

plus a similar equation for 0e.~The first integral in the right

hand side of (8) involves only 0g : it describes how the ground

state is affected by~the absorption process. The second integral,
which involves only 0e , describes the transfer from e to g by
induced emission.

The problem is now to solve equations (6) or (8) which are

equivalent. A first idea would be to get a solution of (6) in the

form of a perturbation expansion in the field amplitudes &~.Refe
rence (6) gives an example of such a calculation up to 4th order.

These types of calculations are quite laborious. l prefer here

to discuss some situations where it is possible to by-pass pertur

bation treatments and to get non-perturbative solutions of equa

tions (6) or (8). Such apossibility depends of course on the type

of light beam which is used, i.e.,on the properties of the amplitu

des &~.l will consider first the case of an ordinary spectral lamp
or of a free-running multimode laser for which it is more convenient

to start from (8). and then the case of a single mode laser where

equations (6) are simpler.

BROAD-LINE EXCITATION
2

Figure 2 shows the intensities I&~I of the various waves
forming the light beam

/:, ----*<f-----

Figure 2

>- .... <

~Cù

w

(9)

ln the case of a spectral lamp, the frequencies w~ of these waves
form a continuum. If we have a laser beam, we suppose that the

laser oscillates on a great number of modes. ln both cases, we will

assume that the width /:,of the spectral interval covered by the

frequencies w~ (see fig. 2) is very large compared to the Doppler
width /:'VD and the natural width r of the atomic line, and that the
spacing OW between 2 successive modes is small compared to r :

( /:,» /:'vD, r
1 ow < r

ln this case (see reference (2)), the different "Bennett holes"

burnt by the various modes in the Doppler profile overlap, and it
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is easy to understand that the response of an atom does not depend

on its velocity, so that ° refers to internaI variables only.

The relative phases of the various modes are assumed to be

random : we have a "free-running" multimode laser and not a "phase

locked" one. The instantaneous electric field &(t) of the light

wave (see equation (7-c» may be considered as a stationary random
function. The correlation function &(t)&*(t-T) of &(t) only depends

on T and tends to zero when T is larger than the correlation time

Tc which is of the order of 1/ l..(19)Whmthe WjJ' s form a discrete set
of equidistant frequencies, there is another correlation time T'C =
l/ow, which is much longer.

The strength of the coupling between the atom and the light

wave may be characterized by a parameter v which is the product of

the atomic electric dipole moment d by an electric field amplitude

and~which gives an order of magnitude of the evolution frequency
of O.

Let us come back to equation (8), and more precisely to the 2integrals over t'. D(t)D(t')e-f(t-t')lZ and &*(t)&(t') are the

correlation functions of the atomic dipole moment and of the elec

tric field. They have correlation times respectively equal to l/f

and to 1/6. The product of the 2 correlation functions has a memo

ry which is determined by the shorter correlation time, i.e.,by

1/6 (the other correlation time T'C = l/cwof the electric field

does not play any role as it is longer than l/f, according to con

dition (9»~ One therefore expects that the contributions of ~g(t')
[or ~e(t') J with t-t' » 1/6 will be cut down. This gives the key

for a very convenient method for solving equation~ (8). If l/v,
which is the characteristic time of evolution of ° under the influ

ence of the coupling with the light, is much longer than 1/6, i.e.,
if

v «6 (11)
~ ~

~e can rep~ace, to a very good approximation, 0g(t') and 0e(t') by
0g(t) and 0e(t). We transform the system of integro-differential
equations (8) into a set of differential equations, or "rate equa

tions" describing the coupled evolutions of 0g and 0e. The coeffi
cients y appearing in these rate equations are given by the inte
gral over t'of the product of the 2 correlation functions of D
and &. As soon as t » 1/6, the result of this integration, i.e.,y,
is independent of t : this is due to the stationary character of

the random function &(t). The order of magnitude of y is found to
be :

( 12)
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50, the evolution frequency of a under the influence of the

coupling with the light is reduced from the expected value, v, by

a factor v/~ mu ch smaller than 1. This result may be compared with

the motional narrowing appearing in the theory of relaxation in

liquids and gases (7) : if the effect of the perturbation is weak

during the correlation time, the net effect of this perturbation is
reduced even more.

Due to (9), the value of y does not depend on f or ~Vo' It
does not depend also on the static magnetic field if we assume that

the Zeeman splittings in e and gare weak compared to ~. y has in

general an imaginary part which describes the so-called light shifts,

i.e.,the displacements of atomic energy levels produced by the light
irradiation (4). l will assume here that the distribution of figu

re 2 is centered on the atomic frequency, in which case y is real.

The angular part of the coefficients appearing in th~ rate equations

giving cre and crg are determined by the polarization u of the light

and by the values Je and Jg of the angular momenta. Let us give, as
an example, these rate equations for the case considered above

(Je = l, Jg = 0, ~ being a linear polarization perpendicular to the
axis of quantization Oz). We assume in addition that a magnetic

field is applied along Oz and we call we the Larmor frequency in
level e.

Free 1 Spontaneous 1 Absorption 1 Stimulated emission

evolution 1 emission

a = 1 -fa 1 +ya 1 - y (a +a -a -a )/2++ ++ 00 ++ -- -+ +-

cr = 1 -fa 1 +ya 1 - y (a +a -a -a )/2-- -- 00 ++ -- -+ +-

cr = 2iw a 1 -fa 1 -ya 1 + y (a +a -2a )/2-+ e -+ -+ 00 ++ -- -+

cr = 1 +f(a +a ) 1 -2ya 1 +y(a +a -a -a )00 ++ -- 00 ++ -- -+ +-
( 13)

Each vertical column contains the terms corresponding to a glven

process : free evolution (in this case, the Larmor precession),

spontaneous emission, absorption and stimulated emission.

We see from equations (13) that the spontaneous and stimulated

emission terms con tain both the matrix elements of ae and in the
first case f, the second one y.

If Y « f, i.e., if according to (12)

v « Vf[; ( 14)

one can drop the stimulated emission terms which are negligible

compared to the spontaneous emission ones (note that we must keep

the absorption terms as they involve ag which may be much greater
than a ). Omitting the last column of equations (13), we get thee
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usual optical pumping equations (see references (4)) derived for

thermal sources (y is the inverse of the pumping time Tp)'

Suppose now that y is of the order of r, or larger than r
(the condition of validity (II) being conserved)

~v«6 ( 15)

ln this case, we must keep the terms contained in the last column
of (13). We will discuss later sorne of the new effects which come

from these terms and which can be observed only if optical pumping
is performed with a laser source. Let us already note that these

terms are anisotropic, contrary to those of column 2. For example,

they couple the Zeeman coherence o-+ to the population 000' This is

due to the fact that the polarization ~ of the light is a preferen
tial direction introduced by the interaction processes.

We will see later that the physical quantities calculated from

equations (13) can be expanded in powers of y, aIl powers of y ap

pearing in these expansions. This shows that the solutions obtained

from (13) are non-perturbative.

It is clear however that these solutions do not correspond to

a summation of aIl the terms of the perturbation series because an

approximation has been done when replacing t' by t in sorne terms of
equations (8). The physical meaning of this approximation is the

following : the correlation time 1/6 of the light wave is so short

that each interaction process may be considered as uncorrelated

with the previous ones if (II) is satisfied. ln other words, the

rate equations (13) take into account the effect of an indefinite

number of uncorrelated one-photon processes, but they neglect aIl

the possible interferences between 2 successive interactions.

One can now ask the question of what happens if (II) is not

satisfied, i.e.,if v ~ 6. We will come back to this problem after
having discussed the case of a monochromatic excitation.

MONOCHROMATIC EXCITATION

We now consider a single mode laser of frequency w irradia

ting an atomic beam perpendicular to it, so that there is no

Doppler effect.

The correlation time of the perturbation is, in this case, very

long and it becomes impossible to neglect the correlations between

successive interactions of the atom with the light wave. We cannot

consider that the atom undergoes, from time to time and without

any phase memory, transitions from g to e or from e to g. We have
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now a coherent oscillation between e and g, analogous to the Rabi

nutation in magnetic resonance, and which proceeds at a frequency

of the order of v [where v = d& is the coupling parame ter analo

gous to (la) ] . Furthermore) the optical coherence aeg becomes si
gnificant and oscillates at the same frequency, in quadrature with

the populations of e and g. ln the previous case, aeg was negligi

ble as the coherence time 1/6 was too short for perm~tting aeg to
build up appreciably. This was the real justification for try~ng
to eliminate the optical coherences from equations (6) and repla

cing them by equations (8). It is now better to start directly

from equations (6) which, since there is only one frequency Wv = w,
look like Bloch's equations in magnetic resonance. The only diffe

rence is that the 2 levels e and gare not simple but have a struc
ture.

A transformation analogous to the transformation to the rota

ting frame can be performed. If we put

-iwt
a = P e
eg eg

we get a set of differential equations with time independent coef

ficients, coupling ae , ag , Peg and Pge = Peg+. Let us give theseequations for the same transition and for the same polarization ~
as for equations (13)

2iwea_+

Free evolution 1

1

1

1

1

1

P 1 = -i(w-w -w )p [o 0 e 01

Po-I = -i(w-wo+we)po_1 [

Spontaneous
emission

-fa++

-fa__

-fa-+

f(a+++a __)

- r. P2 01

_ f P
2' 0-1

Coupling with the laser

-iv(p - P )01 10

+iv(p 1 - PI)0- - 0

+iv(p 1 + PI)o - 0

-iv(Plo-P-lo-Pol+Po-l)

-iv(a - a - a )
++ 00 -+

+iv(a - a - a )-- 00 +-
( 17)

We have already defined the coupling parameter v. Wo is the e-g
separation in zero magnetic field.

Here again, the solution of (17) corresponds to a summation

of the perturbation series as aIl powers of v appear in the ex
pressions calculated from (17).

Let us note first that it is also possible for a mono chroma

tic excitation to get, in sorne cases, rate equations coupling only

ae and ag• The correlation function of the atomic dipole moment
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N N -f(t-t')/2
D(t)D(t') e , which appears in equation (8) and which has

now~the shortest correlation time (as ~ = 0), cuts the contributions

of 0g(t') [or ~e(t') ] when t-t' » l/f. If the nutation frequency
v is small compared to f, it is justified to replace, as before, t'

by t in these quantities. One can say that spontaneous emission
suppresses aIl phase memory between 2 successive interactions of

the atom with the light beam. The rate equations so obtained are

however less general than equations (17) which are valid even if
v » f.

Finally, we come back to the case of a broad line excitation

so intense that v » ~ » f. From the previous discussion, we see
that the nutation frequency v is so high that several nutations

occur during the correlation time 1/~ of the light wave. It is

therefore no longer possible to introduce rate equations coupling

only 0e and ° . Moreover one cannot consider that the light wave

appears as a gmonochromatic excitation for the atom, since the

amplitude of this wave fluctuates appreciably within the decay
time l/f of the dipole moment. We are in a difficult intermediate

situation which presents sorne analogies with the problem of ther

mal relaxation when the motion narrowing condition is not satisfied.

ILLUSTRATION ON A VERY SIMPLE CASE : THE HANLE

EFFECT OF A J = 0 ++ J = 1 TRANSITION
g e

ln order to discuss sorne of the new effects which appear in

optical pumping experiments performed with laser sources, we will

consider the simplest possible transition Jg = 0 ++ Je = l, and
a resonance which does not require the use of any RF field, the

Hanle zero-field level crossing resonance. We will suppose that

the light beam, propagating along Oz, is linearly polarized along

Ox, and that a magnetic field Bo is applied along Oz [situation
considered for equations (13) and (17) J. One measures the varia

tion versus Bo of the total fluorescence light Lf , emitted along
Oy with a linear polarization parallel to Ox. One can show that
such detection signaIs are linear combinations of the matrix ele

ments of Ge' ln the present case

( 18)

ln sorne experiments, where g is not the ground state, but the
lower level of a pair of excited levels, the observation of the

fluorescencelight emitted from g, with for example a TI-polarization

gives a signal ITIproportional to the population 000 of g

l ~°
TI 00 (19)

[ln this case, equations (13) and (17) have to be slightly modi
fied to introduce the rate of preparation of atoms in levels e
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and g, the spontaneous decay

levels other than g (2). But

resul ts •J

of g, the spontaneous decay of e to

this does not modify the physical

599

We will solve equations (13) or (17) according to the type of

light irradiation which is considered. This will give us a quanti

tative expression for the 2 signals (18) and (19).

Let us first briefly recall what the situation is when an ordi

nary thermal source is used (broad line excitation with y « r).
.Neglecting the terms in the last column of (13), we readily get the

steady state solution of these equations. To lowest order in y, this
solution is :

{

o = (N - 0 )/2-- 0 00

yNo

i"=2ÜJ e

yN /ro (20-a)

(20-b)

where N = 0++ + 0__ + 000 is the total number of atoms [No is a
constan~ of motion) as can be seen by adding the 2 first equations

(13) to the last one] . We see that the Zeeman coherence 0_+ exhi

bits a resonant behaviour when the Larmor frequency we is varied

around 0, by sweeping the magnetic field Bo' This is the origin of

the Hanle zero field level crossing resonance appearing on the

fluorescence light (18) :

2yN o-r- ( 1 + r2 )

rL + 4we

(21)

and which has a Lorentzian shape and a width r independent of y,

i.e. of the light intensity. On the other hand, no resonances appear

on the populations cr++ , cr__ , croo which are independant of we'

What are the modifications which appear when we use a much mo

re intense broad-line source (for example, a free running multi-mode

laser)? We now have to keep the last column of equations (13). The

calculations are a little more difficult, but it remains possible

to get analytical expressions for the steady state solution of
these equations.

We find for the populations :

~ [o = (N -0 )/2 = __ 0 1-5
-- 0 00 r+3Y

where

rl2 ]
e

(22)
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y
S = f+4y fi = [f (f+y) (f+4y)(f+3y)
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(23)

The populations now exhibit a resonant behaviour near w = O. The

corresponding resonances are called "saturation resonan~es". They

have a Lorentzian shape. a contrast S. and a width fI (see figure 3).

S.R.

S

Figure 3 Saturation resonance S.R. normalized to 1 in high field

(we » fI). S is the contrast of the resonance. fi its

width. We = 2we/f is a normalized Larmor frequency.

The saturation resonance appearing on 000 may be interpreted

in the following way. A first interaction with the laser (absorption

process) removes the atom from the ground state and puts it in a
coherent superposition of the -1 and +1 sublevels of e (figure 4-a).

The combined effect of Larmor precession and spontaneous emission

gives rise to the weil known resonant behaviour of the Zeeman cohe

rence o-+. A second interaction with the laser (induced emission

process) brings back the atom to the ground state (figure 4-b) and

partially confers to the population 000 of this state the resonant
behaviour of o-+. Such a process cannot occur for spontaneous emis

sion which is an isotropie process and which. on the average, does

not couple o_+ to 000'

Another way of interpreting the saturation resonance is to

take the axis of quantization along the direction Ox of the laser

polarization. ln zero magnetic field. the energy levels may be ta

ken as the eigenstates of Jx and the polarization of the laser is
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+1

-1

(a)

o Figure 4

-1

o

+1

(b)
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a n-polarization (figure 5). The 0 ++ 0 transition is saturated by

the laser and the populations of these 2 sublevels tend to be equali

zed. The application of a magne tic field along Oz induces transitions

between the 3 upper sublevels of figure 5. The corresponding chan
ges in the populations of the m=O upper sublevel are transferred to

000 through stimulated emission processes.

-1 o

o

+1

Figure 5

The variations with y of the contrast S and the width f' of

the saturation resonance are represented on figures 6 and 7 (C is

the dimensionless quantity y/f). If we put Yo = f/4, the expression
(23) of S may be written for y < Yo :

00

1

S ="4 L (-I)P (-y- )p+1
p=O y 0

(24)

We obtain a perturbation expansion containing aIl orders of y
and which is not convergent for y > Yo. This clearly shows that

the solution (22) of equations (13) is non perturbative. fI, which

is equal to f for y = 0, increases linearly with y for y « f.
This may be interpreted as a radiative broadening proportional to

the laser intensity. For y »f, f' increases only as V 4yf/3;
i.e.,as the amplitude of the light wave. This shows that some care

must be taken when extracting atomic data from experimental results.

Plotting the width f' of a saturation (or Hanle) resonance as a

function of the laser intensity, and extrapolating linearly to zero

light intensity, may lead to wrong results if the majority of ex

perimental points do not fall in the linear range of figure 7
(C = y/f « 1).
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c

Figure 6 Variations with C

ration resonance.

r'

y/f of the contrast S of the satu-

r
40 c

Figure 7 : Variations with C = y/f of the width f' of the satura
tion resonance (f' is also the width of the Hanle resonance). For

C « l, f' increases linearly with C. For C » 1, f' increases as fI:.
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The steady state solution for 0_+
equations (13), and included with (22)

Lf' We get for Lf :

2yN 2yN (f+2y) f,2
L = __ 0_ + __ 0 _
f f+3y (f+3y) (f+4y)

T '-+lIle

603

may also be calculated from

in the expression (18) of

(25)

i.e.~ the sum of a constant and of a Lorentzian curve having the

same width f' as the saturation resonance. Figure 8 shows a set
of Ranle curves corresponding to different values of the dimension

less parameter C = y/f. One clearly sees the radiative broadening
of the resonances. For large values of y/f, the shape of the reso
nances does not change when y increases, provided that the scale

of the horizontal axis is contracted proportionally to ;-y.

0.1

0.03

-4 o 4

Figure 8 : Set
is broad-line.

on the figure.

of Ranle resonances detected on Lf . The excitation
Each curve corresponds to a value of y/f indicated

We = 2we/f is a normalized Larmor frequency.

A detailed experimental verification of aIl the above results

has been done on the 2s2 ++ 2Pl transition of Neon (À = 1.52 ~) (8).
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Let us summarize these new results which appear when the light sour

ce is a free running multimode laser : saturation resonances obser

vable on the populations of the Zeeman sublevels, radiative broade

ning of these resonances (arrlalso of the Ranle resonances). which

is not a simple linear function of the laser intensity.

We consider now the case of an atomic beam irradiated perpen

dicularly by a single mode laser. We have therefore to use equa

tions (17). We suppose that the illuminated portion of the beam is

sufficiently long so that each atom reaches a steady state regime

when passing through this zone. As before, 0++ + 0-- + 000 = No is
a constant of motion and represents the total number of atoms in

the illuminated zone. To simplify the discussion. we will suppose

that W = Wo , i.e.,that the laser frequency w is tuned at the cen
ter of the atomic line.

The steady state solution of equations (17) may be found in

an analytical form after sorne simple algebra. and we get for the

Ranle signal :

(26)

where :

D = 16w 4 + (8r2 + 16 v2) w 2 + (r2 + 4 v2) (r2 + 16 v2) (27)e e

Figure 9 shows a set of such curves corresponding to different

values of the dimensionless parameter 4v2/r. One sees clearly the

radiative broadening of the resonance when the laser intensity,

i.e.,v2• increases. but the shape is no more Lorentzian and the

signal does not tend to a non zero value (as in figure 8) when w

is very large. This is due to the fact that, when we increases, e

the frequencies Wo ± we of the 2 optical lines 0 ~ +1 and 0 ~ -1

are out of resonance with the laser frequency w.

When v + 0, expression (26)takes the simple form

L =

16 v2 N r2

(28)f o (4w 2
2

+ r2)e

We find the square of a Lorentz curve(20)which is easy ta understand:

a first Lorentz denominator describes, as in the previous case, the

decrease of the Zeeman coherence due to the Larmor precession, the

second one cornes from the Zeeman detuning of the 2 components of

the optical line with respect to the laser frequency. Expression

(28) may also be obtained from the Born amplitude for the resonant

scattering (9). The initial state corresponds ta the atom in the

ground state in the presence of an impinging w photon. The atom

can absorb this photon and jump to one of the 2 excited sublevels
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Figure 9 : Set
mono chroma tic.

on the figure.

of Ranle resonances detected on Lf. The excitation is

Each curve corresponds to a value of 4v2/r indicated

We = 2w Ir.e

±I of energies Wo ± w , and then fall back to the ground state by
emitting the fluoresc~nce photon. As there are 2 intermediate states

for the scattering process, the scattering amplitude A is the sum

of 2 terms which are,respectively,proportional to I/(w-w -w + i f)r 0 e
and to I/(w-w +w + i 2)' As we assume w = w , we get :o e 0

A

-w +' r +
e ~ 2

4if

4w 2 + r 2e
(29)

The cross section is proportional to IAI2 and has the same w and
r dependance as expression (28). e

For v2 » r, the shape of the curve giving Lf does not change
any more when v increases, provided that the scale of the horizon

tal axis is contracted proportionally to v.

Let us also study the variations with the magnetic field of

the quantity o-+ + 0+- (which may be experimentally observed by
opposing the ° polarized fluorescence light emitted in 2 directions

perpendicular to the magnetic field, and,respectivel~ parallel and
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perpendicular to the laser polarization). One gets from equations
(17) :

(30)

where D is given by (27). The shape of such signals is more compli

cated and is represented in figure 10 for different values of 4v2/f

(in the broad line case, the same signal consists of Lorentz cur

ves tending to zero when we + 00). (21)

/0\,\! 1\ "-

! ;' '. \ 30... ,

! ! ! :.\'0\\

: 0.1
1\

-4 o 4

Figure 10 : Set of curves giving the difference between the o-pola

rized light emitted in directions perpendicular to the magne tic

field and,respectively,parallel and perpendicular to the laser pola

rization. Each number gives the corresponding value of 4v2/f.

We = 2we/f.

We will not consider the variations of °00, They result from
the combination of different factors : coupling between 0_+ and

°00 as in the broad line case, Zeeman detuning of the atomic lines.

To summarize, we see that the essentially new results obtained

in the absence of Doppler effect (single mode laser and atomic beam)

come from the Zeeman detuning of the atomic lines. The zero-field

level crossing resonances have more complicated shapes (non-Lorentz

ian), but they still have a width which is of the order of f at low

laser intensity and which increases with the laser intensity.
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MORE COMPLICATED SITUATIONS

ln the examples studied above. no structure was existing in

level g. There was only one Zeeman coherence in level e, and the
Hanle effect was only observable in this level.

We would like now to give an idea of what happens when Zeeman

coherences and Hanle effects exist in both levels e and g, and.

for that purpose. we take the simplest possible example of such a

situation. the case of a transition Jg = 1/2 ++ Je = 1/2.

We restrict ourselves to a broad-line excitation. The light

beam is supposed to be 0+ polarized and to propagate along Oz, the

magnetic field being applied along Ox. The relaxation of the ground

state (which was absent in the previous case as Jg = 0) is supposed
to be produced by the leakage of atoms from the cell through a

small hole (the probability per unit time of escaping from the

cell is I/T). A balance is provided by an entering flux of no
atoms per unit time, aIl in the ground state and completely unpola
rized. If the collisions with the inner walls of the cell are not

disorienting. the relaxation time is simply T.

RelRxation Larmor precession
'e 1 e ". e e '
o = -0 /T +1W (0 -0 )/2++ ++ e +- -+

·eo

·e
0_+

-foe
++

-iw (oe _oe )/2e +- -+
e

-fo __

-iw (oe _oe )/2e ++ --

-foe-+

og =n /2-og /T++ 0 ++

(31 )\
stimulated

emission

-YO~+/3
~bsorption

+iw (og -og )/2
g +- -+

+foe /3+2foe /3++ --

-iw (og -og )/2
g +- -+

+foe /3+2foe /3-- ++

-iw (og -og )/2
g ++ --

-foe /3--=-±
spontaneous
emission

og =n /2-og /T-- 0 --
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Eq ua tions
cre cre++' --

(31) are the rate equation for the various matrix elements

'cre ,and crg , crg , crg of cr ,and cr , and are derived
-+ ++ -- -+ e g

using the same method as above. w is the Larmor precession in g.g
As before, y is the reciprocal of the pumping time. We note that

the absorption and stimulated emission terms are simpler than in

(13), whereas the Larmor precession terms are a little more compli

cated. This is due to the choice of the axis of quantization Oz

which is parallel not to the magnetic field, but to the direction

of propagation of the cr+polarized laser beam.

ln a Hanle experiment performed on a J =~1/2 level, one
detects components of the atomic orientation J perpendicular to the

magne tic field Bo. As Bo is along Ox, we are interested here in J~
(z component of the orientation of level e), i.e.,in cr~+ -cre__

(one can for example measure the difference between the cr+ and cr

fluorescence light reemitted along Oz). To study these Hanle si

gnaIs, we have to find the steady state solution of (31). Putting

{

1

{r' "r + y

r = r + - e T
e e 3

r

1
r' = r + 1.

g

T g g 3

e

e
we get for cr++ - cr

n

T rr'
1

e e0 ee
cr -cr =---

-
++ -- 2 w 2+ rr'

D

e

ee

where

(32)

(33)

3r 1 r ri 1 r r
D= 1 + __ e+_ e e +_~ g

2y 2 w 2 +r r' 2 r '(;)Z+
e e e g g g

(w w -ri ri ) r r
e g e g e g

(w 2 +r ri ) (w 2 +r r' )
e e e g g g

1 r
+ -r

3 g

+

(34)

Figures 1l, 12, 13 show the variations with the magne tic

field of the Hanle signal computed from (33). The various curves

correspond to different values of the dimensionless parameter y/3r,

indicated on the figures. We have supposed that rT = 100, i.e., that

the relaxation time T of the ground state is 100 times longer than
the radiative lifetime I/r of the excited state.

Let us first interpret the results at very low intensities

(y « r). We see on figure Il that the Hanle signal appears as a

superposition of 2 curves. The broad resonance is the Hanle effect

of the excited state. lt has a width equal to r (as y « r, the

radiative broadening is negligible). The amplitude of this resonance
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increases proportionally to y. The narrow resonance is the Hanle

effect of the ground state which has a width determined by liT
(similar resonances have been observed in the ground state of 87Rb
atoms optically pumped by a discharge lamp. Relaxation times as long

as ] second may be obtained, so that the width of the resonance

may be as low as ]0-6 gauss) (10). For the last curve of figure] 1

(y/3f = 0.0]), y is of the order of ]/T, and the radiative broade

ning becomes visible. The intensity of the resonance increases as

y2 and not as y. This is due to the fact that we detect this reso

nance indirectly on the fluorescence light (and not on the absorbed

light, as this is done usually). We need at least 2 interactions

with the pumping beam in order to get the resonance : the first one,

to create an atomic orientation in the ground state which gives rise
to the Hanle effect of this state, the second one, to transfer this
orientation to the excited state from which it is detected on the

fluorescence light. This explains why the ground state resonance is

so small for the first curve of figure]] (y/3f = 0.00]).

0.03

0.001

-0.4 o 0.4

Figure ]1 : Set of curves giving the Hanle effect of a J~ = 1/2 +7
Je = ]/2 transition. J~ is proportional to o~+ -0:_ and ~s in
arbitrary units. Each curve corresponds to a value of y/3f indica

ted on the figure. fT is equal to ]00. To simplify, levels e and

gare supposed to have the same Landé factor (we = wg). We = we/f
is a dimensionless Larmor frequency.
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When y increases the width of the ground state resonance in

creases more rapidly than the width of the other one (figure 12).

0.6

1.2 o 1.2 w.

Figure 12 Same signal as for figure Il but for higher value of

y/3f. The horizontal and vertical scales have been

changed.

For very large values of y/3f (see figure 13), we get the

same result as for figures 8, 9, ID. The shape of the curve does

not change any more if we contract the horizontal axis proportio

nally to ~ . The 2 Ranle effects of both states are completely

mixed in a time short compared to I/f (and of course to T).
This mixing does not smooth out the structure apparent on figure

II. We get the superposition of 2 resonances with different

widths and opposite signs giving rise to a curve with 2 maxima.

More complicated structures may be observed if the values

of the angular momenta Je and Jg are higher than 1/2. For example,

in the case of a Je = 1 ++ Jg = 2 transition, and for a 0 linearly
polarized excitation, one can observe Ranle signaIs with 3 maxima.

As in the previous example, the coupling between the 2 transverse

alignments of e and g (perpendicular to the magnetic field) gives

rise to a structure similar to that of figures Il, 12, 13. But

as Jg > l, there is also in the ground state g a "hexadecapole"

moment (hertzian coherence O~2 +2) which can be induced in this,
state after 2 interactions with the laser, one absorption and one

induced emission processes (see figure 14-a). A third interaction
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0.6

J~

1;: :; /
1.' "••

\V::::i
\: :i 1

:..:
\ ..:

-3 o 3

Figure 13 Same signal as for figures II and 12. but for still

higher values of y/3r. The horizontal and vertical

scales have been changed.

with the laser (absorption) can couple this hexadecapole moment to

the transverse alignment of e (a_~ +1) (see figure 14-b). As the•

Hanle resonance associated to a~2 2 has a smaller width (the re-2 .+

sonant denominator is r~ + 16wg). the total result of these various
couplings is to give for sorne values of y a structure with 3 maxima.

This effect has been observed on the 3S2 ++ 2P4 transition of Ne

(À = 6328 A) and interpreted quantitatively (11). It would be in

teresting to see if other recent observations (12) could be explai

ned in the same way.

-0 +1

+2

+1o-1

-2
Figure 14

-2



612 C. COHEN-TANNOUDJI

Optical pumping of molecules also provide several examples of

Hanle resonances observed in levels having very high angular momen

tum (13). Sorne efforts are being done to write the optical pumping

equations in a basis of quasiclassical states weil adapted to the

high values of J (14).

To summarize the results of this paragraph, we see that one

can observe)on the fluorescence light emitted from e)level crossing
resonances having a width much smaller than the natural width of e.
This is not related to the broad-line or narrow-line character of

the pumping light (as it appears already on the results of the

previous paragraph). These narrow resonances must be attributed to

the other state g of the optical line which has a longer lifetime

or a higher J value.

OTHER PROBLEMS

ln the previous paragraphs, we have discussed sorne new effects

appearing in optical pumping experiments performed with lasers.

This review is far from being complete. Let us just mention a few

other interesting problems.

We have restricted ourselves to the study of the intensity of

the total fluorescence light, a signal which is proportional to

sorne observables of the excited state (see expression (18) for

example). Another possibility would be to study the spectral dis

tribution of this fluorescence light, which gives information on
the correlation function of the atomic dipole moment driven by the

incident light wave. The lowest order theory predicts that a mono

chromatic wave is scattered elastically by an atom moving perpendi

cularly to it (it is the same type of theory which leads to the

Born expression~9)for the scattering amplitude). At high laser
intensities non linear processes take place which of course con

serve the total energy but change the spectrum of the scattered

light. Experimental evidence for such effects has just been obtai
ned (see ref. (15) and references in).

We have also considered only steady state processes correspon

ding to stationary light beams. This does not mean of course that
short light pulses, such as those delivered by mode locked lasers,

are not interesting. ln particular, the observation of the quantum

beats appearing in the light spontaneously emitted by an atom which

has been prepared by a short light pulse in a coherent superposi

tion of different excited sublevels (16), provides a very powerful

method for determining various Zeeman, hyperfine or fine structures

(17). Furthermore, the spectral range covered by pulsed dye lasers

and the peak power of such sources are much larger than for c.w.

operation, which increases considerably the number of atomic or
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molecular transitions which can be optically pumped.

613

Let us finally mention a very interesting possibility, which

has recently be demonstrated independently by several groups (18),

of getting rid of the Doppler effect in 2 photon absorption proces

ses. This possibility rests on the high intensity and monochromati

city of the light delivered by dye lasers. It opens the way to a

high resolution study of atomic or molecular transitions connecting
2 levels with the same parity. This would be interesting for exam

pIe for determining the absolute position of metastable levels.
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