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Abstract. - After a brief description of the Sisyphus effect, an atomic cooling pracess
thraugh laser irradiation, we show the complete formai and quantitative analogy between
this problem and that of a spin subjected to a periodic magnetic field and to relaxation
transitions. This analogy illustrates the usefulness of the tictitious spin concept.

. The lectures of Anatole Abragam which I have been fortunate to follow, first at Saclay
,andthen at the Collège de France, have transmitted to me a certain passion for problems
ofspin dynamics in static or time-dependent magnetic fields. Each time I am confronted
~ith a problem involving a finite number of levels, I try to reformulate it in terms of a
,~ctitiousspin. And it is seldom, then, that I am not helped by fruitful analogies and
simplephysical pictures suggested by such an approach .
.!~ln this article, written as a testimony of my affection and of my admiration for Anatole
Abragam,I would like to show that one of the most effective mechanisms of laser cooling,

;theSisyphus effect, bears close analogies with a physical phenomenon studied at the end
,ofthe 30s', before the discovery of magne tic resonance, namely paramagnetic relaxation
jn an oscillating field [1].
~,~

i). The Sisyphus effect.

Jet us first recall very briefly, on a very simple system, what the Sisyphus effect consists
:of[2].Severallaser configurations give rise to light fields whose polarization is spatially
~modulated.Consider for instance two waves with the same frequency WL, the same am­
'plitude,propagating in opposite directions along the axis Oz with orthogonallinear po­
Jarizations,parallel to Ox and Oy respectively (Fig. la). The dephasing between the two
~'!,.!
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Fig. 1. - a) Polarization of the laser field resulting from the superposition of two laser waves'
propagating in opposite directions with orthogonal linear polarizations. b) Space variations of

the light shifts of the two ground sublevels 9±1/2. Because of the correlations between the space'
modulations of the light shifts and of the rates of optical pumping from one sublevel to the othei,J
the potential hills that the moving atom c1imbs up are more numerous than those it goes down.·'

waves varies along Oz and the total field has a polarization that changes in a periodicway1
in space. It goes from ()+ (right circular) to ()- (left circular) every quarter wavelength~
>"/4, the field having in between an elliptical polarization, indeed even linear, with axes~

at 45° from Ox and OY'.t
Let us suppose that such a laser field excites an atomic transition connecting a groundi

level 9, of angular momentum Jg = 1/2, with two Zeeman sublevels 9+1/2 and 9-1/2, tô
an excited level e, of angular momentum Je = 3/2. If the laser frequency WL is slightly'
detuned towards the red of the atomic frequency WA (detuning {)= WL - WA < 0), thé

two Zeeman sublevels 9±1/2 undergo negative light shifts, which vary from one sublevel,
to the other and which depend on the light polarization. Such a phenomenon has beeri1

known for several years. It is precisely because the two sublevels are rlifferently shifted'.

that it has been possible, before the advent of laser sources, to detect very smalliight,
shifts, in the Hertz range, by the shift of the magnetic resonance line (very narrow) in;
the ground state [4]. ln the case of the laser configuration of Figure la, one finds [21'

that the light shifts of 9+1/2 and 9-1/2 vary sinusoidally as a function of z, and in phase,

opposition. To within a global constant, the sa me for 9+1/2 and 9-1/2, one has for the'
energies E±I/2 of these two states .

Ua

E+1/2(Z) = 2 cos 2kz,

Ua

E-l/2(Z) = -2 cos 2kz.

(la)

(lb)

The variations with z of E±I/2(Z) are represented in Figure lb. Ua is the depth of thê'
potential wells. The spatial period of E±I/2(Z) is equal to half the laser wavelength'
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;' À = 271"j k = 271"cjwL, because the light shifts are proportional to the laser intensity and

not to the field. For WL < WA, the shift of 9+1/2 (resp. 9-1/2) is maximum, downwards,
: at the points where the polarization is (7+ (resp. (7-).

The light shifts are due to virtual photon absorptions and reemissions by the atom .
. Real photon absorptions, followed by spontaneous emissions, can also take place, if the

detuning fJ is not too large. They give rise to processes of optical pumping [5] which
transfer the atom from one sublevel to the other. At the points where the polarization

is (J+, this transfer takes place from 9-1/2 to 9+1/2, whereas it takes place from 9+1/2 to
g-1/2 at the points where the polarization is (7-. More precisely, for the laser configu­
ration of Figure la, it can be shown [2] that these transfer rates r+__ (from 9+1/2 to

: g-I/2) and r__+ (from 9-1/2 to 9+1/2) are given by

A
r+ __ (z) = A cos2kz = -(1+ cos 2kz),2

r __ +(z) = A sin2kz = ~(1- cos 2kz),

(2a)

(2b)

.'where A is a positive constant independent of z.
Then it appears that the light shifts and the optical pumping rates are spatially modu­

lated, with the same period À/2, and are therefore correlated. More precisely, equations

_(1) and (2) show that the optical pumping rate is more important from the higher Zee-
man sublevel towards the lower one. For instance, when cos 2kz = 1, the Zeeman

:'sublevel 9-1/2 is according to (lb) the lower (Uo is positive), and r+__ is then maxi­
::mum whereas r__+ vanishes. It is this correlation between the two spatial modulations
;showing up in equations (1) and (2), due to the sa me cause, namely the spatial modula­
: tion of the laser field, which is at the origin of the Sisyphus efIect. Indeed let us consider
'an atom moving to the right, with velocity v, and starting from the bottom of a valley

:,of the potential curve E_I/2(Z) of the state 9-1/2, the value of r__+ being zero at this
•point. Then the atom has enough time to climb the potential hill up to the top where

c. the probability for it to be transferred by optical pumping to the second sublevel 9+ 1/2

:,ismaximum. It may then end up at the bottom of a valley and has again to climb a po­
.',tential hill (Fig. Ib). Such a situation is quite analogous to that of the hero of Greek
mythology, and this is the origin of the na me we have chosen with Jean Dalibard for

ithis effect. When the atom climbs a potential hill, it is slowed down because its kinetic
:;energy is turned into potential energy. The potential energy thus won is next dissipated
l: by spontaneous eI1).ission. Indeed, it can be seen in Figure Ib that the optical pumping
'{cyclebringing back the atom to the lower sublevel corresponds to an anti-Stokes Raman

~;process,during which a photon is spontaneously emitted with an energy higher than that
,:of the absorbed laser photon.

L ln the ground state 9 the atom with its two sublevels 9± 1/2 can be considered as a
S fictitious spin 1/2. ln the following we will try to understand the dynamics of su ch a spin.

%Wewill begin (Sect. II) by showing that the effect of the light shifts and of the optical
tpumping is equivalent to that of a fictitious magnetic field and to a relaxation process

\acting on the spin. Then we will relate the power necessary to move the atom along
'the axis Oz to that supplied by the fictitious field acting on the spin in the rest frame of
the atom (Sect. III). When the atom moves with velocity v along Oz, the fictitious field
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"seen" by the spin is oscillating. The analogy thus established with a phenomenon of
paramagnetic relaxation and an oscillating field will then allow us (Sect. IV) to relate
the friction force which damps the atom velocity to the dephasing, due to relaxation,
between the fictitious oscillating field and the spin response to such an excitation.

II. Fictitious magnetic field and relaxation associated with light shifts and opticaÎ.
pumping.

The light shifts produced by the laser field lift the degeneracy between the two stiblevels 1

9±1/2 of the ground state. The same effectwould be produced by a magnetic field applied!
along Oz. The effect of the light shifts is then equivalent to that resulting from a fictitious;
magne tic field Bo(z), parallel to Oz and depending on z. Let us ca1culate su ch a field1
Bo(z).

Let tL be the magnetic moment associated to the state 9+1/2, For the state 9-1/2, the'
magne tic moment is -tt. ln the fictitious field Bo(z), the state 9+1/2 acquires an energy
-ttBo(z) which must coincide with the energy E+l/2(Z) given in (la). We deduce from'
this that

Uo

Bo(z) = - 2tt cos 2kz. (3)

The magnetic energy of 9-1/2 in Bo(z) then coincides with (lb).

Now, let us consider the redistribution of populations among the sublevels 9+1/2 and,
9-1/2 induced by the optical pumping, and show that it can be associated with a relaxation

process. More precisely, let us call II+(z) and II_(z) the populations of the states 9+1/2
and 9-1/2 for an atom at rest at point z and let

( 4)

be the magnetization, parallel to Oz, of this atom. We will show that un der the effect

of the optical pumping M(z) tends towards an equilibrium value Mo(z) with a well·
detined time constant. From the very detinition of the optical pumping rates T+-+_(z)
and T_-++(z), one can write

a
atII+(z, t) = -T+-+_(z)I1+(z, t) + T_-++(z)I1_(z, t),

a
at I1_(z, t) = +T+-+_(z)I1+(z, t) - T_-++(z)I1_(z, t).

(Sa)

(Sb)

Let us multiply both equations (5) by tt and substract the second equation from the first
one. Then one obtains, owing to the detinition (4), to equations (2), and from the fact
that the populations I1± are normalized (I1+ + I1_ = 1),

with

a
at M(z, t) = -A [M(z, t) - Mo(z)],

Mo(z) = -tt cos 2kz.

(6)

(7)
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,Equation (6) expresses indeed that the magnetization at point z tends towards the equi­

. Jibrium value Mo(z) with a time constant
,

./ .,
Tl = liA, (8)

&w~ichis a longitudinal relaxation time ..
.~Note that the equilibrium magnetization Mo(z) has the same z-dependence as the fic­

: @Housfield (3). It would also be the case if we had a paramagnetic substance at thermal

, ~~uilibrium at high temperature (JlBo « kaT), Mo(z) being th en proportional to Bo(z).

iŒI.p..wever, one must emphasize that here N/o(z) reaches its saturation value +Jl or -Jl at
t1Jepoints z where the modulus of Bo(z) is maximum (cos 2kz = ±l). If we defined a

: susceptibility X through.. :

1 Mo(z) = XBo(z), (9)

~~would then find that X is inversely proportion al to the maximum value of Bo(z).

c
!MI. Energy exchange upon displacement of the atom.

ijne analysis of energy exchange presented in this section is very analogous to that of
[éeference [3].

~III.1 ENERGY REQUIRED TO MOYE THE ATOM AND REINTERPRETATION OF THIS
~" ..
-- ENERGY lN TERMS OF FICTITIOUS FIELD.

'ln the laser configuration of Figure la, the atom is subjected to a radiative force calcu­

)ated in reference [2], and whose average value is

(10)
..

J'he interpretation of expression (10) is very clear. When the atom is in the state 9+1/2,
:tl1eenergy E+I/2(Z) of this state looks like a potential energy, giving rise to a force
r~dE+l/2(z)/dz. Then the force F(z) is the average of the forces associated with each of

r~e two states 9±1/2, weighted by the probabilities II±I/2(z) of occupancy of these two
~"states.

";In order to move the atom, one must exert on it an external force Fext(z) = -F(z)
~~hichcompensates for F(z). The work dW that one must supply to the atom to move it

il9ydz is equal to the work of this external force. It is then equal to

dvV = Fcxt(z)dz = -F(z)dz

(11)

Un order to interpret this work in terms of spin and fictitious fields, let us come back to

,(theequations
',- E±I/2(Z) = =fJlBo(z) (12)
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1

relating E±1/2(Z) to Bo(z). By differentiating equations (12) and transferring the resuIt]
to equations (11), one then obtains, taking (4) into accountl

d

dW = -M(z)dBo(z), (13)1
- ~

which coincides as it should with the magnetic work of an external magnetic field Bo(zf

acting on a magnetization M(z) (see for instance reference [6] p.441. Note howeve(

that here we ca1culate the work supplied to the system and not the work produced by the"
system, which is its opposite. Furthermore we use MKSA units). The power P = dWjdt'
supplied to the system, that is absorbed by the system is th en

P = dW = -M(z) dBo(z).dt dt

III.2 ENERGY DISSlPATED lN THE RESERVOIRS.

(14)'

We have already mentioned above that the optical pumping transitions went together:
with an energy dissipation in the reservoir consisting of the radiation. For instance, when"

the atom undergoes an optical pumping transitions from level 9-1/2 to level 9+1/2, a laser
photon of energy hWL vanishes and a fi uorescence photon of energy hWL +E -1/2 - E+ 1/2'

is produced, so that the reservoir energy changes by E-1/2 - E+1/2' Likewise, in an
optical pumping transitions from 9+ 1/2 to 9-1/2, the reservoir energy changes by E+1/2-'­

E-l/2' Now, in the time interval dt during which the position change dz takes place, the"
number of optical pumping transitions from 9-1/2 to 9+1/2 is T +(z)II_(z)dt and the,'
number of optical pumping transitions from 9+1/2 to 9-1/2 is T+ (z)II+(z)dt. Then
the energy dissipated in the reservoir is

(15)'
1

i

Let us multiply both sides of equations (5) by dt and substract the second equation froni'!
the first one. We get

dII+(z) - dII_(z) = 2 [T +(z)II_(z) - T+ (z)II+(z)]dt. (16~]

Moreover, according to (12)

By carrying (16) and (17) over (15), and taking (4) into account, one obtains finally

dWdiss = Bo(z)dM(z) (18'i~1

hence, for the dissipated power

p., - dVVdiss _ B ( ) dM(z)
dls5 - dt - 0 z dt .

ln the magnetic field Bo(z) the magnetization M(z) has a potential energy

U = -M(z)Bo(z).

1

;

..f,

( 19)'1
. ' !

i

, i
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It follows from equation (20) that

dU = -!\1zdBo(z) - Bn(z)d!\1(z)

= d1V - d1Vdiss'

119

(21)

The first term on the right-hand side, d1V, is the work supplied to the system ta move

:it by dz during the time dt. The second term, -d1Vdiss, is the energy supplied by ther< ,

(reservoir ta the system. Therefore, this second term has the same status as heat suppliedl,.

~?the system.

LIv. Atom moving with an imposcd vclocity v.
>

Weassume now that the atom moves along the axis Oz with a constant velocity v, sa that
the coordinate z becomes a function of time

l"~·

z = vt. (22)

.The fictitious magnetic field "seen" by the spin in the atom rest frame becomes a sine
function of time, obtained by inserting (22) into (3).

twith

Bo(t) = Bm cos nt,

Un

Bm = - 2JL '

n = 2 kv.

(23)

(24a)

(24b)

We have already mentioned earlier (in Sect. II) that the equilibrium magnetization at
point z had the sa me z-dependence as the fictitious field Bo(z). If the atom moves very

;slowly, the field Bo(t) "seen" by the spin oscilla tes very slowly and the magnetization
:M(t) has time ta reach the equilibrium value corresponding ta that field. For larger
:'yalues of v, M(t) will not have time ta adjust instantly ta the variations of Bo(t) and
;there will be a dephasing between the oscillation of Bo(t) and the forced oscillation of

[,M(t).

( ln order to study more precisely the evolution of M (t), let us go back ta the relaxation

~equation (6) of M and replace z by vt in the source term (7). One ob tains, taking (8)

;)nto account

'IV.I FORCED MOTION OF THE MAGNETIZATION.

(d 1) 1dt + Tl M(t) = - Tl IL cos nt.
1

I;The forced solution of this equation can be written
\\<;'< ..

i M(t) = Re M exp(int),

(25)

(26)



120

where

which yields
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1
M = -IL -1-. -'r'.,",", , (27)f

1 1 nTI ,i

-M(t.) = - 2 cos nt- 2 sin nt. (28):
IL 1+ (nTI) 1+ (nT}) .,

One distinguishes on the right-hand side of (28) the responses in phase and in quadrature:
of M(t) to the variations of Bo(t). The amplitudes of these responses vary with n as;

absorption and dispersion curves. The critical value ne of n corresponding to the width~:
of these curves is given by ,

'"~.

(29):

IV.2 ABSORBED POWER. DISSIPATED POWER.

The power absorbed by the spin isobtained by using (23) and (28) in (14). As required,\
only the component of 111 (t) in quadrature with Bo(t) yields a contribution which does.~
not vanish on the average over time. A simple calculation then yields the mean absorbed";
power

2

P _ Uu (nTI)
- 4TI 1+ (nT})2'

The mean dissipated power is calculated in the same way from (19) and one finds

Pdiss = P.
.(

( 31)']

Such a result is a priori evident. ln the forced regime the potential energy (20) of the:
spin recovers the same value for aIl integer times the period 27r ln. The energy absorbed
by the spin during this integer number of periods is therefore necessarily dissipated int~
the reservoir.

To come back to the problem of Sisyphus cooling, it is sufficient to replace in (30) n by:!

2 kv and T} by liA. Since the mean power absorbed by the atom is equal to -Fv, whed]
P is the mean radiative force acting on it, one obtains for F an analytical expression~.
function of Ua, kv and A, expression which of course coincides with that of referencéî

[2]. The variations of P with v are those of a dispersion curve, whose linear p~rt, in the:]
vicinity of v = 0 makes it possible to define a friction coefficient. The force F reachesj
its maximum value for v = ve, where Vc is a critical velocity given by 2 kvc = A. Then, p~
tends towards zero when v » Ve •..

'Y. Conclusion.

The results obtained above make it then possible to reformulate the problem of the Sisy.:
phus cooling in terms of a fictitious spin. To the atom moving in the potential hills of

Figure 1b and undergoing optical pumping transitions, we have associated a spin 1/2
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'subjected to an oscillating magne tic field and to a relaxation process which, at any mo­

~~ent,causes its magnetization to tend to an equilibrium value proportional to the field
~yalueat the same time. Furthermore, we have verified that there existed a perfect equiv­
~alencebetween the energy necessary to move the atom along Oz and the work of the

:~magneticfield acting on the spin magnetization.
';"The problem of Sisyphus cooling is therefore completely equivalent to that of para­

;~agnetic relaxation in an oscillating field [1]. A paramagnetic sample is placed in an
':~scillatingmagne tic field Bm cos ru. When the field oscilla tes very slowly, the induced
}nagnetization is in phase with the field and there is no energy absorption. If the oscil­
Jationperiod 27r /0. of the field is not very long compared with the relaxation time Tl of
.themagnetization M(t), the latter can no longer adjust instantly to the field variations~
~andthere appears a dephasing between the oscillation of !vI(t) and that of the field,
responsible for an energy absorption.
~;.Retruning to the Sisyphus cooling problem, one then understands why the friction
Jorce against which one must work in order to move the atom has its physical origin in

l~etardation effects. When the atom moves, the laser field it "sees" changes. The internaI
fstatecan adapt to this change only with a certain time constant, which is the time of op­
~ticalpumping. If during this pumping time the atom moves by a non-negligible amount,VI'.

i;compared with the optical wavelength (which yields the scale of space variation of the
',Jaserfield), the oscillation of the internaI atomic state will be dephased with respect to

1 \thatof the laser field, and it will be necessary to spend energy to move the atom, which
.,'characterizes the existence of a friction force.

if'
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