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Abstract. — After a brief description of the Sisyphus effect, an atomic cooling process
through laser irradiation, we show thc complete formal and quantitative analogy between
this problem and that of a spin subjected to a periodic magnetic field and to relaxation
transitions. This analogy illustrates the uscfulness of the fictitious spin concept.

~ The lectures of Anatole Abragam which I have been fortunate to follow, first at Saclay

and then at the Collége de France, have transmitted to me a certain passion for problems
of spin dynamics in static or time-dependent magnetic fields. Each time I am confronted
with a problem involving a finite number of levels, I try to reformulate it in terms of a
fictitious spin. And it is seldom, then, that I am not helped by fruitful analogies and
5tmple physical pictures suggested by such an approach.

» In this article, written as a testimony of my affection and of my admiration for Anatole
Abragam Iwould like to show that one of the most effective mechanisms of laser cooling,
the Sisyphus effect, bears close analogies with a physical phenomenon studied at the end
of the 30s’, before the discovery of magnetic resonance, namely paramagnetic relaxation
inan oscillating field [1].

L. The Sisyphus effect.

Let us first recall very briefly, on a very simple system, what the Sisyphus effect consists
of [2]. Several laser configurations give rise to light fields whose polarization is spatially
‘modulated. Consider for instance two waves with the same frequency wr,, the same am-
plitude, propagating in opposite directions along the axis Oz with orthogonal linear po-
larizations, parallel to Ox and Oy respectively (Fig. 1a). The dephasing between the two
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Fig. 1. — a) Polarization of the laser field resulting from the superposition of two laser waves
propagating in opposite directions with orthogonal linear polarizations. b) Space variations of
the light shifts of the two ground sublevels g.1,2. Because of the correlations between the space !
modulations of the light shifts and of the rates of optical pumping from one sublevel to the other,
the potential hills that the moving atom climbs up are more numerous than those it goes down. ’

{

waves varies along Oz and the total field has a polarization that changes in a periodic way
in space. It goes from o™ (right circular) to o~ (left circular) every quarter wavelength
A/4, the field having in between an elliptical polarization, indeed even linear, with axes’
at 45° from Oz and Oy. »
Let us suppose that such a laser field excites an atomic transition connecting a ground
level g, of angular momentum J, = 1/2, with two Zeeman sublevels g1/, and g_; /2 tol
an excited level e, of angular momentum J, = 3/2. If the laser frequency wy is slightly
detuned towards the red of the atomic frequency wa (detuning § = wp, — wa < 0), the
two Zeeman sublevels g1/, undergo negative light shifts, which vary from one sublevel
to the other and which depend on the light polarization. Such a phenomenon has been’
known for several years. It is precisely because the two sublevels are differently shifted
that it has been possible, before the advent of laser sources, to detect very small light
shifts, in the Hertz range, by the shift of the magnetic resonance line (very narrow) in
the ground state [4]. In the case of the laser configuration of Figure 1a, one finds [2]
that the light shifts of g, /2 and g_,/; vary sinusoidally as a function of z, and in phase
opposition. To within a global constant, the same for g/, and g_;/,, one has for the
energies £, 1/, of these two states "

E 1)2(2) = U? cos 2kz, (laj
E_i)2(z) = ,_%Q cos 2kz. (1b)

The variations with z of E1y/2(z) are represented in Figure 1b. Uy is the depth of the
potential wells. The spatial period of E.;/,(z) is equal to half the laser wavelength
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“)=2n/k = 2wc/wL, because the light shifts are proportional to the laser intensity and
“not to the field. For wp, < wa, the shift of g,/ (resp. g_;/2) is maximum, downwards,
* at the points where the polarization is o+ (resp. o).

- The light shifts are due to virtual photon absorptions and reemissions by the atom.
- Real photon absorptions, followed by spontaneous emissions, can also take place, if the
“detuning ¢ is not too large. They give rise to processes of optical pumping [5] which
- transfer the atom from one sublevel to the other. At the points where the polarization
“iso*, this transfer takes place from g_, /2 t0 g41/2, whereas it takes place from g/, to
. g-1/2 at the points where the polarization is o~. More precisely, for the laser configu-
 ration of Figure 1a, it can be shown [2] that these transfer rates Iy _._ (from g,/ to
“g-172) and I'__, . (from g_y, to g1 y/2) are given by

Fy—_(2) = Acostkz = -‘3‘-(1 + cos 2kz), (2a)

I (z) = Asin’kz = %(1 — cos 2kz), (2b)

-where A is a positive constant independent of z.

Then it appears that the light shifts and the optical pumping rates are spatially modu-
lated, with the same period \/2, and are therefore correlated. More precisely, equations
(1) and (2) show that the optical pumping rate is more important from the higher Zee-
man sublevel towards the lower one. For instance, when cos 2kz = 1, the Zeeman

“sublevel g_;/; is according to (1b) the lower (U is positive), and Iy _._ is then maxi-
“mum whereas I'__, ; vanishes. It is this correlation between the two spatial modulations
- showing up in equations (1) and (2), due to the same cause, namely the spatial modula-
tion of the laser field, which is at the origin of the Sisyphus effect. Indeed let us consider
“an atom moving to the right, with velocity v, and starting from the bottom of a valley
. of the potential curve E_j/5(2) of the state g_,, the value of I'__., being zero at this
~point. Then the atom has enough time to climb the potential hill up to the top where
_the probability for it to be transferred by optical pumping to the second sublevel g1/,
-is maximum. It may then end up at the bottom of a valley and has again to climb a po-
tential hill (Fig. 1b). Such a situation is quite analogous to that of the hero of Greek
-mythology, and this is the origin of the name we have chosen with Jean Dalibard for
- this effect. When the atom climbs a potential hill, it is slowed down because its kinetic
_energy is turned into potential energy. The potential energy thus won is next dissipated
“ by spontaneous emission. Indeed, it can be seen in Figure 1b that the optical pumping
. cycle bringing back the atom to the lower sublevel corresponds to an anti-Stokes Raman
* process, during which a photon is spontaneously emitted with an energy higher than that
- of the absorbed laser photon.
. In the ground state g the atom with its two sublevels g,/ can be considered as a
“ fictitious spin 1/2. In the following we will try to understand the dynamics of such a spin.
- We will begin (Sect. II) by showing that the effect of the light shifts and of the optical
: pumping is equivalent to that of a fictitious magnetic field and to a relaxation process
“acting on the spin. Then we will relate the power necessary to move the atom along
the axis Oz to that supplied by the fictitious field acting on the spin in the rest frame of
the atom (Sect. I1I). When the atom moves with velocity v along Oz, the fictitious field
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“seen” by the spin is oscillating. The analogy thus established with a phenomenon of
paramagnetic relaxation and an oscillating field will then allow us (Sect. IV) to relate
the friction force which damps the atom velocity to the dephasing, due to relaxatlon,
between the fictitious oscillating field and the spin response to such an excitation.

IL. Fictitious magnetic field and relaxation associated with light shifts and opticall
pumping.

The light shifts produced by the laser field lift the degeneracy between the two sublevels
g+1/2 of the ground state. The same effect would be produced by a magnetic field appliedl_j
along Oz. The effect of the light shifts is then equivalent to that resulting from a fictitious
magnetic field By(z), parallel to Oz and depending on z. Let us calculate such a field
By(z2).

Let p be the magnetic moment associated to the state g, /2- For the state g_; 5, the’
magnetic moment is —. In the fictitious field By(z), the state g/, acquires an energy

—1Bo(z) which must coincide with the energy E./(z) given in (1a). We deduce from
this that

U
By(z) = "Eﬁ cos 2kz. (3)

The magnetic energy of g_,, in By(z) then coincides with (1b).

Now, let us consider the redistribution of populations among the sublevels g, /2 and
g-1/2 induced by the optical pumping, and show that it can be associated with a relaxation
process. More precisely, let us call IT; (z) and IT_(2) the populations of the states g1,
and g_,, for an atom at rest at point z and let

M, = p [l (z) - II_(2)] (4)

be the magnetization, parallel to Oz, of this atom. We will show that under the effect
of the optical pumping M (z) tends towards an equilibrium value My(z) with a well-
defined time constant. From the very definition of the optical pumping rates I'"y _, _(z)
and I'__, ,(z), one can write

Btn+(z t) = "'F+--—( )H+ (Z,f) ¥ F_..,_;.(Z)H.,(Z,t), (Sa]

5= (58 = 40 () (2,8) = T (M- (z,8). (5h)

Let us multiply both equations (5) by . and substract the second equation from the first
one. Then one obtains, owing to the definition (4), to equations (2), and from the fact
that the populations IT; are normalized (I, + II_ = 1),

5 M(2,0) = ~ADM(,0) = Mo(2)], ©
with
My(z) = —p cos 2kz. (7
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Equation (6) expresses indeed that the magnetization at point z tends towards the equi-
librium value My(z) with a time constant

11 =1/A,; (8)

gwhich is a longitudinal relaxation time.
:Note that the equilibrium magnetization My(z) has the same z-dependence as the fic-
ggtmus field (3). It would also be the case if we had a paramagnetic substance at thermal
equilibrium at high temperature (uBy < kgT'), Mo(2) being then proportional to By(z).
- However, one must emphasize that here M{}( ) reaches its saturation value +p or —p at
lhﬁ: points z where the modulus of By(z) is maximum (cos 2kz = +1). If we defined a
susceptibility x through

Mo(z) = xBo(z), 9)

fwe would then find that x is inversely proportional to the maximum value of By(z2).

EIII Energy exchange upon displacement of the atom.

g}'he analysis of energy exchange presented in this section is very analogous to that of
ireference [3].

%’HI.I ENERGY REQUIRED TO MOVE THE ATOM AND REINTERPRETATION OF THIS
- ENERGY IN TERMS OF FICTITIOUS FIELD.

In the laser configuration of Figure 1a, the atom is subjected to a radiative force calcu-
lated in reference [2], and whose average value is

F(z) = -4 (2)dE41/2(2)/dz = II_(2)dE_ 2(2)/dz. (10)

The interpretation of expression (10) is very clear. When the atom is in the state g5,
lhe energy E;1/2(2) of this state looks like a potential energy, giving rise to a force
—dE+1 /2(2)/dz. Then the force F(z) is the average of the forces associated with each of
éthe two states g /2, weighted by the probabilities I1./,(z) of occupancy of these two
‘states.

" In order to move the atom, one must exert on it an external force Fext(2) = —F(2)
;wh;ch compensates for F'(z). The work dW that one must supply to the atom to move it
by dz is equal to the work of this external force. It is then equal to

dW = Feu(2)dz = —F(2)dz

= 14 (2)dE 1 /2(2) + I_(2)dE_y/2(2). (11)

=ln order to interpret this work in terms of spin and fictitious fields, let us come back to
the equations
‘ E4172(2) = FuBo(2) (12)
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relating E1/5(z) to Bo(z). By differentiating equations (12) and transferring the result|
to equations (11), one then obtains, taking (4) into account

dW = —M(2)dBo(z), (13);

which coincides as it should with the magnetic work of an external magnetic field By(z)
acting on a magnetization M (z) (see for instance reference [6] p.441. Note however
that here we calculate the work supplied to the system and not the work produced by the
system, which is its opposite. Furthermore we use MKSA units). The power P = dW/dt
supplied to the system, that is absorbed by the system is then
dw dBo(z)

P=—=-M(2) 7

- 1

II1.2 ENERGY DISSIPATED IN THE RESERVOIRS.

We have already mentioned above that the optical pumping transitions went together:
with an energy dissipation in the reservoir consisting of the radiation. For instance, when
the atom undergoes an optical pumping transitions from level g_, s2tolevelgyyn,a Iaséﬂf
photon of energy hw vanishes and a fluorescence photon of energy hwi. +E_1/2—Ey1
is produced, so that the reservoir energy changes by E_;/; — E1/,. Likewise, in an
optical pumping transitions from g, 12 t0 g_1 2, the reservoir energy changes by E 1/~
E_y/2. Now, in the time interval d¢ during which the position change dz takes place, the’
number of optical pumpmg transitions from g_y/ to g41/2 is I'—-— 4 (2)II-(z)dt and the’
number of optical pumping transitions from g/, to g_y/3 is I't—,_(2)I1(2)dt. Then
the energy dissipated in the reservoir is

Wais = [B1/2(2) = Eyrja(2)] [Tamt (I-(2) = Ty (ML ()] . (13)

Let us multiply both sides of equations (5) by d¢ and substract the second equation from’
the first one. We get

A4 (2) — dI_(2) = 2 [F- oy (2)I_(2) = Tpm— ()4 (2)] dt. (15’)3i
Moreover, according to (12) |
B_12(2) = Eqia(2) = 2uB0(2). (w7

By carrying (16) and (17) over (15), and taking (4) into account, one obtains finally !

dWaiss = By(2)dM (z) (13‘]’“‘!
hence, for the dissipated power
) st . 19
Piss dt By(z) di ( ]1'

In the magnetic field By(z) the magnetization M(z) has a potential energy ,
U = —M(z2)By(2). (201
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It follows from equation (20) that
dif = —.Mrdeu(Z) — Bu(z)dM'(z)
= dW — dWyiss. (21)

The first term on the right-hand side, dW, is the work supplied to the system to move
[t by dz during the time dt. The second term, —dWy;, is the energy supplied by the
‘ reservoir to the system. Therefore, this second term has the same status as heat supplied
to the system.

:IV. Atom moving with an imposed velocity v.

We assume now that the atom moves along the axis Oz with a constant velocity v, so that
the coordinate z becomes a function of time

z=t. (22)

The fictitious magnetic field “seen” by the spin in the atom rest frame becomes a sine
function of time, obtained by inserting (22) into (3).

By(t) = B, cos S, (23)
‘with U
..

Bm s 2‘(51 (248)

(1= 2kv. (24b)

‘IV.1 FORCED MOTION OF THE MAGNETIZATION.

We have already mentioned earlier (in Sect. II) that the equilibrium magnetization at

point z had the same z-dependence as the fictitious field By(z). If the atom moves very
slowly, the field Bo(t) “seen” by the spin oscillates very slowly and the magnetization
- 'M(t) has time to reach the equilibrium value corresponding to that field. For larger
~values of v, M(t) will not have time to adjust instantly to the variations of Bo(t) and
' there will be a dephasing between the oscillation of By(t) and the forced oscillation of
M),

¢ Inorder to study more precisely the evolution of M (t), let us go back to the relaxation
- equation (6) of M and replace z by vt in the source term (7). One obtains, taking (8)
' into account
e + | M(t) = = cos Qt (25)
&t T - R” ‘
i"";\fhe forced solution of this equation can be written
&
M (t) = Re M exp(ift), (26)
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where )
|7 N . W 27)
® mang ( 7]

which yields
1
B ety & ALy (28)
7 1+ (7)) 1500 :

One distinguishes on the right-hand side of (28) the responses in phase and in quadrature’
of M(t) to the variations of By(t). The amplitudes of these responses vary with Q as
absorption and dispersion curves. The critical value Q. of © corresponding to the width,
of these curves is given by '

0= =—. (29).

I1V.2 ABSORBED POWER. DISSIPATED POWER.

The power absorbed by the spin is obtained by using (23) and (28) in (14). As required,,
only the component of M (t) in quadrature with By(t) yields a contribution which does’
not vanish on the average over time. A simple calculation then yields the mean absorbed:
power

2 B
L LY, . (30)'?]
4Ty 1 4+ (QTy) -
The mean dissipated power is calculated in the same way from (19) and one finds
Pdiss =P (31]

Such a result is a priori evident. In the forced regime the potential energy (20) of the
spin recovers the same value for all integer times the period 27 /2. The energy absorbed:
by the spin during this integer number of periods is therefore necessarily dissipated into
the reservoir. |

To come back to the problem of Sisyphus cooling, it is sufficient to replace in (30) byl
2 kv and T; by 1/A. Since the mean power absorbed by the atom is equal to —F'v, where
F' is the mean radiative force actmg on it, one obtains for F' an analytical expression;
function of Uy, kv and A, expression which of course coincides with that of reference_
[2]. The variations of F with v are those of a dispersion curve, whose linear part, in the|
vicinity of v = 0 makes it possible to define a friction coefficient. The force F' reaches’
its maximum value for v = v, where v, is a critical velocnty given by 2 kv, = A. Then, F
tends towards zero when v > v..

V. Conclusion.

The results obtained above make it then possible to reformulate the problem of the Sisy-
phus cooling in terms of a fictitious spin. To the atom moving in the potential hills of
Figure 1b and undergoing optical pumping transitions, we have associated a spin 1/2
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subjected to an oscillating magnetic field and to a relaxation process which, at any mo-
ment, causes its magnetization to tend to an equilibrium value proportional to the field
value at the same time. Furthermore, we have verified that there existed a perfect equiv-
Alence between the energy necessary to move the atom along Oz and the work of the
magnetic field acting on the spin magnetization.

-The problem of Slsyphus cooling is therefore completely equivalent to that of para-
magnetnc relaxation in an oscillating field [1]. A paramagnetic sample is placed in an
oscillating magnetlc field By, cos Q2t. When the field oscillates very slowly, the induced
magnetization is in phase with the field and there is no energy absorption. If the oscil-
lation period 27 /€2 of the field is not very long compared with the relaxation time T of
the magnetization M (t), the latter can no longer adjust instantly to the field variations
and there appears a dephasing between the oscillation of M(t) and that of the field,
resp0n31ble for an energy absorption.
= Retruning to the Sisyphus cooling problem, one then understands why the friction
i‘_force against which one must work in order to move the atom has its physical origin in
iretardation effects. When the atom moves, the laser field it “sees” changes. The internal
?state can adapt to this change only with a certain time constant, which is the time of op-
ncal pumping. If during this pumping time the atom moves by a non-negligible amount
compared with the optical wavelength (which yields the scale of space variation of the
laser field), the oscillation of the internal atomic state will be dephased with respect to

| ,_lhat of the laser field, and it will be necessary to spend energy to move the atom, which
_;:_characterizes the existence of a friction force.

I thank Maurice Goldman for his help in seeking references relative to paramagnetic
felaxation in an oscillating field, and for his translation into English of my original article.
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