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ln 1955, Autler and Townes showed that a microwave transition of the

OCS molecule can split into two components when one of the two levels

involved in the transition is coupled to a third one by a strong resonant
microwave field [1]. The corresponding doublet is called the Autler-Townes

doublet, or the dynamic Stark splitting. Such an effect is in fact quite general.

Using a dressed-atom approach, 1 would like to show in this paper that the
basic features of the Autler- Townes effect show themselves in several new

research fields, such as high resolution optical spectroscopy, cavity quantum

electrodynamics and laser cooling. This will be a way for me to express

my admiration and gratitude to Charles Townes. My admiration for the

fundamental concepts that he has so fruitfully introduced in so many different

branches of physics ; my gratitude for aUthat 1have learned from his writings
and his lectures.
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1 Dressed-atom approach to the Autler­
Townes effect

The first theoretical treatment of the Autler-Townes effect used a semi­

classical theory where the strong resonant microwave field is described as a

c-number sinusoidal field. Such a description is perfectly valid and can be

rigorously justified when the driving field is in a coherent state [2]. Quan­

tizing the driving field, however, provides interesting physical insights. AI­

though not essential, such a quantum treatment dealing with the total cou­

pIed system "atom + driving photons", also called "dressed atom", has the

advantage of correlating all the observable phenomena with the properties

of the energy diagram of a time-independent Hamiltonian. ln particular,

the Autler- Townes effect is associated with a level anticrossing in this en­

ergy diagram [3]. Furthermore, in certain new domains, like cavity quantum

electrodynamics, the quantization of the field becomes essential. We will

therefore introduce here the Autler- Townes effect from a dressed-atom point

of view. We will restrict ourselves to the essential points which will be useful

for the discussions presented in the next sections. More details about the

dressed-atom approach may be found elsewhere [4].

We consider a three-Ievel atom a, b, c (Fig. 1), with two allowed tran­

sitions a +----+ b and b +----+ c, the energy splittings being 1ïwo and 1ïw~,

respectively. An intense quasi-resonant field, with frequency WL, drives the

transition a +----+ b. The detuning

D=WL-WO (1)

between WL and Wo is very small compared to Wo and w~. The difference

between Wo and w~ is sufficiently large to allow one to consider the field WL as

beeing completely nonresonant for the transition b +----+ c. A very weak field

with frequency W probes the transition b +----+ c. The problem is to understand

how the absorption of the probe field is modified when the transition a +----+ b

is driven by the field WL.
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Figure 1: Three-level atom. The intense quasi-resonant field WL drives the
transition a f---t b. The weak field W probes the transition b ~ e.

The Hamiltonian H of the atom dressed by the field WL may be written

(2)

where HA is the atomic Hamiltonian, HL the Hamiltonian of the field

mode L corresponding to the driving field, and VAL the atom-field coupling.

The left part of Fig. 2 represents a few eigenstates of HA + HL (uncoupled

states), labelled by two quantum numbers, one (a, b or e) for the atom, and

one (N) for the number of photons WL' The two states la, N + 1) (atom in a

in the presence of N + 1photons WL) and Ib, N) (atom in b in the presence

of N photons) are separated by a distance Ea + (N + l)n,WL - Eb - N1iwL =
n, (WL - wo) = n,8 which is very small compared to the distance 1iwb between

le, N) and Ib, N). At resonance (8 = 0), the two states la, N + 1) and Ib, N)

are degenerate. The interaction Hamiltonian VAL couples these two states:

the atom in the state la) can absorb one photon WL and go to the state Ib).
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Figure 2: A few uncoupled states (left part) and corresponding perturbed or
dressed states (right part) of the atom + photons WL system. The dotted
lines indicate the energy splittings between states. The wavy lines give the
allowed transitions between dressed states which can be probed by the weak
field w.
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The corresponding matrix element is written

(b, NIVALla, N + 1) = llJJd2 (3)

where nI is the so-called "Rabi frequency" which is proportional to the field

amplitude and to the transition dipole moment between a and b. Strictly

speaking, nI is proportional to yN + 1 and thus depends on N. We shaH

neglect this dependence here, assuming that the field WL is initially excited in

a coherent state with a Poisson distribution for N having a width ~N much

smaller than the mean value (N) of N. As a result of the coupling (3), the two

uncoupled states la, N + 1) and Ib, N) repel each other and are transformed
into two perturbed or dressed states 11(N)) and 12(N)), which are given by

two orthogonallinear combinations of la, N + 1) and Ib, N) whose energies

are separated by a distance tin with

(4)

(see right part of Fig. 2). Because we assume that the field WL is completely

off resonance for the transition b ----+ e, we neglect any effect of VAL on

le,N).

The transitions with frequencies close to wb which are probed by the

weak field W are those which reduce to the transition le, N) +---+ Ib, N) in the

limit nI ~ O. Because the two dressed states 11(N)) and 12(N)) contain

both admixtures of Ib,N), we see that the two transitions le, N) ----+ 11(N))

and le, N) +---+ 12(N)), represented by the wavy lines of Fig. 2, are both

allowed for the probe field. The absorption spectrum of this probe field,

which reduces to a single line of frequency wb in the absence of VAL becomes

a doublet when the a ----+ b transition is driven by the field WL. This is the
Autler- Townes doublet.

ln order to understand how the frequencies of the two lines of the dou­

blet vary with the detuning 8 of the driving field, it is convenient to introduce

an energy diagram giving the energies of the dressed states of Fig. 2 versus

tiwL (see Fig. 3). The uncoupled state la, N) is chosen as the energy origin.
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The energies of the uncoupled states Ib, N) and le, N) are then represented

by horizontal dashed lines with ordinates equal to nwo and n (wo + wb) , re­

spectively. The energy of la, N + 1) is represented by a dashed straight line

with slope 1 passing through the origin and intersecting the horizontal line

associated with Ib, N) at nwL = nwo. When the effect of VAL is taken into

account, we get the two dressed states 11(N)) and 12(N)), represented by

the solid lines of Fig. 3, which form the two branches of a hyperbola having

the above-mentioned dashed lines as asymptotes. The minimum distance be­

tween the two branches of the hyperbola occurs for nWL = nwo and is equal

to nOI. Finally, the state le, N) is (in the neighbourhood of nWL = nwo)

unaffected by the coupling VAL and remains represented by a horizontal line.

The effect of the coupling VAL is thus to transform the crossing between

la, N + 1) and Ib, N), which occurs at nwL = nwo, into an "anticrossing". One

clearly sees in Fig. 3 how the two components of the Autler- Townes dou­

blet, represented by the wavy arrows, vary with the detuning. At resonance

(WL = wo) , one gets two lines with frequencies Wb ± (01/2). Off resonance
(181 » Od , one of the two lines of the doublet has a frequency close to Wb, the
other line a frequency close to Wo+ wb - WL. By evaluating the admixture of

Ib, N) in each dressed state, one can determine the intensities of the two com­
ponents of the doublet. One finds that they are equal at resonance, whereas

the line with a frequency close to wb becomes the most intense off-resonance.

Note that, near the asymptotes of Fig. 3, i.e. for 181 » 01, the distance

between each dressed state and its corresponding asymptote is nothing but

the ac Stark shift of level a or b due to its coupling with the field WL which is

then nonresonant. If WL lies in the optical domain, such a shift is also called

light shift and it has been observed in optical pumping experiments [5].
ln the previous discussion, we have neglected the width "1 of the levels

due to various damping processes such as spontaneous emission and collisions.

We have supposed implicitly that the Rabi frequency 01 is sufficiently large

compared to "1. Such a situation corresponds to a "strong coupling" regime

where the two lines of the doublet are clearly resolved, even at resonance.
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Figure 3: Energies of the dressed states of Fig. 2 (solid lines) versus hw L. The
dashed lines represent the energies of the uncoupled states. Whereas the two
uncoupled states la, N + 1) and Ib, N) cross for nwL = nwo, the two dressed
states 11(N)) and 12(N)) form an "anticrossing". The wavy lines represent,
for different values of nwL, the two components of the Autler- Townes doublet.
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2 The Autler-Townes effect in the optical
domain

The spectacular development of laser sources in the early seventies stimulated

several experimental and theoretical studies dealing with the behaviour of
atoms submitted to intense monochromatic optical fields. The light intensity

became high enough to achieve Rabi frequencies larger than the width of

the levels. The tunability of laser sources allowed also the frequency of the

laser light to be continuously varied across the atomic frequency. Finally,

spontaneous emission of radiation, which is negligible in the microwave and
RF domains, becomes important in the optical domain and gives rise to

new types of signals, such as the intensity or the spectral distribution of the

fluorescence light, which can be used for probing the consequences of the
laser-atom interaction. Note also that the Doppler effect is important for

opticallines and must be taken into account for moving atoms. We briefly
review in this section a few experiments showing how the Autler- Townes

effect manifests itself in the optical domain.

2.1 Case of two optical transitions sharing a cornrnon
level

Such a case corresponds to a straightforward extension of the experiments

performed in the microwave domain. One intense laser field WL drives an op­
tical transition a ~ b. A second weak laser field probes a second transition

b ~ c sharing a common level b with the first transition. The three levels

a, b, c can form a "cascade" configuration as in Fig. 1, or a V -configuration,

or a A-configuration.

A few experiments used an atomic beam, perpendicular to both the

driving and probe laser fields [6], in which case the Doppler effect for both

transitions vanishes. The detection signal is then the intensity IF of the fluo­

rescence light emitted Fromlevel c (or Fromexcited levels populated From c),
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which is proportional to the population of level c, and also to the absorption

of the probe field w. A clear splitting of the curve giving IF versus w, for

a fixed resonant value of WL, was observed, giving evidence for an Autler­

Townes splitting of the opticalline b ~ c. It was also checked that the
frequency splitting between the two components of the doublet was propor­

tional to ..;7L, where h is the intensity of the driving field WL, as expected

for a Rabi frequency whieh is proportional to the laser electric field.

A few experiments have been also performed with atomic vapors [7].

The Doppler width of opticallines is generally much larger than the natural

width of the atomic states. As a consequence of the large Doppler shifts

which modify WL and W for a moving atom, the Autler- Townes splitting of

the b ~ cline generally washes out when the average is taken over atomic

velocities. It may be shown, however, that narrow Doppler-free structures

can survive in certain conditions the Doppler averaging and give evidence

for the Autler-Townes splitting of the b ~ cline [8]. For example, for the

cascade configuration of Fig. 1, the driving field WL and the probe field must

propagate in opposite directions. Simple graphie constructions, using energy

diagrams analogous to the one of Fig. 3, have been proposed for interpreting

these narrow Doppler-free structures [9]. They lead to the idea that the

Doppler effect cau be compensated by velocity-dependent light shifts [10].

Experiments have been performed to demonstrate this idea [11].

2.2 Single optical transition - The Mollow triplet

Suppose now that the probe field W is switched off and that we have a single

laser beam with frequency WL driving the a ~ b transition. For detect­
ing the perturbation of the a ~ b transition by the field WL, we use the

fluorescence light spontaneously emitted by the atom from the excited state

b. More precisely, we consider the spectral distribution of this fluorescence

light. Using optical Bloch equations, Mollow [12]has calculated the correla­
tion function of the atomic dipole moment and shown that, at high intensity
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Figure 4: Dressed atom interpretation of the Mollow fluorescence triplet. The
left part of the figure represents two adjacent manifolds of uncoupled states,
the right part the corresponding Autler- Townes doublets of dressed states.
The wavy arrows give the allowed transitions between dressed states whose
frequencies give the centers of the various components of the fluorescence
spectrum.
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or large detuning (181 or 01 » natural width r), the fluorescence spectrum

consists of a triplet. Several groups have observed experimentally such a

triplet [13].

We will not discuss here the various features of the Mollow fluorescence

triplet. We just want to point out that it can be related, as the Autler- Townes

effect, to the existence of doublets of dressed states [14]. The left part of

Fig. 4 represents two adjacent manifolds of uncoupled states, analogous to

the one of Fig. 2 : {la, N + 1), Ib,N)} and {la, N), Ib,N -1)}. Since la,N + 1)
and la, N) differ by one laser photon, as weIl as Ib,N) and Ib, N - 1), the

distance between the two manifolds is nwL' When the coupling VAL is taken

into account, one gets the two doublets of dressed states {Il (N)), 12(N))} and

{11(N -1)), 12(N-1))} represented in the right part of Fig. 4. ln each doublet
the splitting is nO, and the distance between the two doublets is nwL. The

allowed spontaneous transitions between dressed states correspond to pairs

of levels between which the atomic dipole moment operator d has a nonzero

matrix element. ln the uncoupled basis, d, which cannot change the quantum

number N, couples only Ib,N) and la, N). The two dressed states 11(N)) and

12(N)) are both "contaminated" by Ib,N). Similarly, the two dressed states

11(N -1)) and Ib(N -1)) are both contaminated by la, N). It follows that the
four transitions connecting 11(N)) and 12(N)) to 11(N - 1)) and 12(N - 1))

are allowed (wavy lines of Fig. 4). One immediately understands in this
way why the fluorescence spectrum consists of three lines with frequencies

WL+O, WL-O and WL associated with the transitions 11(N)) --+ 12(N -1)),

12(N)) --+ 11(N-1)) and li(N)) --+ li(N -1)) (with i= 1, 2), respectively.
We suppose here that 0 is large compared to the natural width r, so that the

three lines are weIl resolved. According to (4), such a condition is equivalent

to Dl » r or 181 »r.
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3 The Autler-Townes effect in cavity quan­
tum electrodynamics

ln the previous discussion, the number N of photons is not a well-defined

quantity. The field is quantized in a fictitious box, having a volume V which

can be arbitrarily large. Only the energy density NIV at the position of the

atom is relevant to the experiment being analyzed.

During the last few years, spectacular progress has been made allowing

one to study the behavior of atoms put in resonant cavities having a very

high finesse. ln such (real) cavities, the number N of photons has a definite

meaning. For example, the cavity can be empty (N = 0) and one can then
study how the spontaneous emission rates and the Lamb shift are modified

by the boundary conditions imposed by the cavity walls. By introducing

excited atoms in the cavity, one can produce a maser or a laser action with

a very small number of atoms and a very small number of photons. For a

survey of the field, we refer the reader to recent reviews [15]. We will focus

here on an effect usually called "vacuum Rabi splitting" in cavity quantum

electrodynamics and which is in fact quite similar to the Autler- Townes effect.

We will use the so-called Jaynes-Cummings model [16]. This model is quite
similar to the dressed-atom model used in the previous sections, except that

the two-level atom is now coupled to a single mode of an actual cavity, so

that N can take very small values and it is no longer possible to neglect the

variations with N of the Rabi frequency.
The left part of Fig. 5 represents a few uncoupled states of the system

formed by a two-level atom a - b with frequency Wo and a single mode field of

the cavity with frequency WL' The state la, 0) (atom in the lower state a with 0

photon in the cavity) is nondegenerate and has the lowest energy. We suppose

that the cavity is resonant (WL = wo) , so that the two states la,l) and Ib,O)

are degenerate, as weIl as la,2) and Ib, 1). When the atom-field coupling VAL

is taken into account, one finds that level la,O) is not perturbed (in the

rotating wave approximation). Levels la,l) and Ib,O) are coupled by VAL, as
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Figure 5: Uncoupled states (left part) and coupled or dressed states (right
part) of the atom-cavity mode system.
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weIl as la,2) and Ib, 1). One thus gets the series of doublets of dressed states

represented in the right part of Fig. 5. Since (a, NIVALlb, N -1) varies as yIN,

the splittings of the first two doublets are equal to liO and liOV2, respectively.

The frequency 0 can be considered as the Rabi frequency corresponding to
the field associated with a single photon in the cavity. We suppose here that

we are in a strong coupling regime : the damping rate of the field in the

cavity and the damping rate of the atom are slow enough compared to n
that the two dressed states of each doublet are weIl resolved.

Suppose now that a very weak probe field with frequency W close to WL

is sent through the cavity and that one measures the transmission T(w) of the

cavity versus w. lnitially, no photon is present in the cavity which contains a

single atom in the lower state a, so that the total system is in the state la, 0).

The probe field can enter into the cavity only if its frequency w coincides

with an eigenfrequency of the cavity. The frequencies of the new modes of

the cavity in the presence of the atom-field coupling are the frequencies of

the two transitions connecting la,O) to the first two dressed states of Fig. 5.

One thus expects the transmission spectrum T(w) to exhibit two peaks at

w = WL ± (0/2). ln particular, if the two peaks are weIl resolved, T(w)

can become negligible in the middle, i.e. when w = WL. This means that a

resonant probe field W = WL which can enter into the empty cavity is refiected

from the cavity if the cavity contains a single atom. AIl the previous results

can be easily extended to the case where the cavity contains n identical atoms

instead of 1. If the coupling is symmetric, Le. if all atoms are identically

coupled to the field, one can show that the first doublet above the ground

state has a splitting liO.;n instead of liO.

Recent experiments [17] have reached the strong coupling regime and
have allowed the observation of a doublet in the transmission spectrum of a

probe field in conditions where the cavity contains a very small number of

atoms, down to 1. This shows that the physical mechanism responsible for

the Autler-Townes effect (transitions involving doublets of dressed states)

can give rise to observable phenomena even in the limit of a single atom
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coupled to a single photon.

4 Doublets of dressed states with a position
dependent Rabi frequency

We come back to an atom in free space, which we suppose to interact with a

laser electric field varying in space. The Rabi frequency nI(r) characterizing

the atom-field coupling for an atom at r thus depends on r. By considering, as

in the previous sections, doublets of dressed states, which now have position­

dependent splittings and position-dependent widths, we want to show in this

section that it is possible to get physical insights into important features of

the radiative forces which govern atornic motion in laser light. This will be

another example of the close connections which exist between the Autler­

Townes effect and new research fields, such as laser cooling and trapping.

4.1 Gradient (or dipole) forces

The splitting hn between the two dressed states 11(N)) and 12(N)) of Fig. 2

increases when the Rabi frequency nI increases [see equation (4)]. Figure 6

gives the variations of the energies of these two dressed states when the

position of the atom is varied across a laser beam with a finite waist. lnside

the laser beam, nI is large and the splitting between the dressed states is

large. Outside the laser beam, this splitting tends to a constant value h6,

equal to the energy separation between the uncoupled states la, N + 1) and

Ib, N), and the dressed states tend to the uncoupled states. For a positive

detuning (WL > wo), la, N + 1) is above Ib, N), so that 11(N)) and 12(N))

tend to la, N + 1) and Ib, N), respectively, outside the laser beam (Fig. 6a).

For WL < wo, the previous conclusions are reversed (Fig. 6;3).

Consider now an atom, initially at rest, at a certain position in the

laser beam and suppose that it is in a certain dressed state. Because the

dressed state energy is position-dependent, the atom experiences a gradient
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Figure 6: Energies of the two dressed states 11(N)) and 12(N)) versus the
position of the atom across a laser beam. The splitting between the dressed
states is maximum in the center of the laser beam. Outside the laser beam the

dressed states tend to the uncoupled states la, N + 1) and Ib, 1). Figures 60::

and 6;3 correspond to 8 > 0 (WL > wo) and 8 < 0 (WL < wo) , respectively.
The size of each filled circle is proportional to the probability of occupation
of the corresponding dressed state.

force whose direction is indicated by the arrows of Fig. 6. If the atom is in

the other dressed state, the gradient force has the opposite sign. To get the

mean gradient force experienced by the atom, one must average the gradient

forces associated with each dressed state using the probability of occupation

III or II2 of these states which are indicated by the size of the filled circles

of Fig. 6. For 8 > 0 (Fig. 60::), the dressed state 12(N)), which tends to

Ib, N) outside the laser beam, is more contaminated by the unstable state

Ib,N) than 11(N)) is. It is therefore less populated than 11(N)), because it

has a shorter lifetime : III > II2• The sign of the mean gradient force is

thus determined by the sign of the gradient force associated with 11(N)) and

this explains why the atom is expelled from the high intensity regions when

WL > Wo. For WL < Wo (Fig. 6;3) these conclusions are reversed and the atom

is attracted towards the high intensity regions. This explains how an atom

can be trapped in a focal zone of a red detuned laser beam. For WL = Wo,
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the two dressed states contain equal admixtures of Ib, N), they are equally

populated, and the mean gradient force vanishes.

The previous picture gives also a simple interpretation of the fluctua­

tions of gradient forces. Consider the radiative transitions induced by spon­

taneous emission between doublets of dressed states (see the wavy lines of

Fig. 4). They are at the origin of a radiative cascade of the dressed atom

falling down its ladder of dressed states. For example, the dressed atom

can jump from 11(N)) to 12(N - 1)), then from 12(N - 1)) to 11(N - 2))
and so on. The probabilities of occupation III and II2 of the two dressed

states, introduced above, are nothing but the proportions of time spent in

dressed states of type 1 and 2 during such a radiative cascade. Every time

the dressed atom jumps from a dressed state of type 1 to a dressed state of

type 2, or vice versa, the sign of the instantaneous gradient force changes.

We thus arrive at the picture of a radiative force oscillating back and forth in

a random way between two opposite values. Such an analysis can be made

quantitative and provides correct results for the mean value of dipole forces
and for the momentum diffusion coefficient associated with their fluctuations

[18].

4.2 High intensity Sisyphus effect

We consider now an atom moving with velocity v in an inhomogeneous laser
beam, for example an intense laser standing wave, and we try to understand

the velocity dependence of the mean force. Velocity damping forces are of

course important for laser cooling. Here also, we will consider doublets of

dressed states. We will put the emphasis on the correlations which exist,

in a standing wave, between the modulations of the dressed-state energies

and the modulations of the spontaneous departure rates from these dressed
states.

The Rabi frequency associated with a laser standing wave along the

17



z - axis can be written

(5)

Its variation with z is represented in Fig. 70:.. The modulus of nIeZ)

is maximum at the antinodes A, at z = 0, >-'/2, >-.... , where >-.is the laser

wavelength, and vanishes at the nodes N, at z = >-'/4, 3>-'/4... The dashed

lines of Fig. 7{3give the energies of the uncoupled states la, N + 1) and

Ib, N), which are independent of z. We suppose here 8 > 0 (WL > wo), so

that la, N + 1) is above Ib, N). The splitting between the two dressed states

11(N)) and 12(N)), represented by the fulllines of Fig. 7{3,is nn(z), where,

according to (4) and (5)

(6)

This splitting is an oscillating function of z. It is maximum at the

antinodes A and minimum and equal to 17,8at the nodes N. Each dressed state

is also represented in Fig. 7{3with a thickness proportional to its radiative

width, Le. to the departure rate from this state due to spontaneousemission.

At the nodes N, 11(N)) reduces to la, N + 1) which is radiatively stable and

has no width (we suppose that a is the atomic ground state), whereas 12(N))

reduces to Ib, N) which has a width r equal to the natural width of the

atomic excited state b. When one goes from anode N to an antinode A,

the contamination of 11(N)) by Ib, N) increases progressively, so that the

width of 11(N)) increases from zero to a maximum value at the antinode.

Conversely, the admixture of Ib, N) in 12(N)) decreases, so that the width of

12(N)) decreases from r at the node to a minimum value at the antinode.

The radiative widths of the dressed states are therefore spatially modulated

as their energies are. The important point here is the correlation which exists

between these two modulations and which clearly appears in Fig. 7{3.When

one moves along each dressed state, one sees a succession of potential bills,

centered at A for 11(N)), and N for 12(N)), and potential valleys, centered

at N for 11(N)), and A for 12(N)). ln either case, the width of this dressed
state is maximum at the tops of the potential hills.
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Figure 7: Œ : Variations of the Rabi frequency n1(z) along the axis of a
standing wave with wavelength À. The nodes and antinodes are labelled by
N and A, respectively.
/3 : Variations with z of the energies of the uncoupled states la, N + 1)
and Ib, N) (dashed lines) and of the dressed states 11(N)) and 12(N)) (full
lines). The thickness of the fulllines is proportion al to the radiative width of
the corresponding dressed state. We suppose that 8 > 0 (WL > wo) , so that
la, N + 1) is above Ib, N).
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Figure 8: Radiative cascade for an atom moving along a blue detuned
(WL > wo) intense laser standing wave. The fulllines represent the dressed
state occupied by the atom between two successive spontaneous transitions
(wavy lines). Because of the correlations which exist between the modula­
tions of the energies of the dressed states and the departures rates from the
dressed states, the dressed atom is running up potential hills more frequently
than down, as did Sisyphus in the Greek mythology.
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Suppose now that the atom is moving along the standing wave with a

velocity v such that it can travel over a distance of the order of À in a time

r-1. The atom can thus remain in a dressed state and go from anode to

an antinode, or vice versa, before leaving this dressed state by spontaneous

emission. Figure 8 represents a few steps of the radiative cascade of the

moving atom. The full lines represent the dressed state occupied by the

atom between two successive spontaneous emission pro cesses represented by

the wavy lines. According to the previous discussion, the atom has the

largest chance to leave a dressed state, be it of type lor 2, at the top of a

hill. If the atom jumps to the other type of dressed state (from 1 to 2, or

from 2 to 1), it arrives in the bottom of a valley from where it must climb

to the top of a hill of this new dressed state before leaving it, and so on.

We therefore have an atomic realization of the Sisyphus myth, because the

atom is running up the potential hills more frequently than down. Such an

argument can be made more quantitative [18] and it can explain physically

all the features of the velocity dependence of the radiative forces in a high

intensity laser standing wave, a problem which has been extensively studied

by several authors [19]. Note that we obtain here a velocity damping force

for WL > Wo, whereas the usual Doppler cooling force in a weak standing
wave [20]appears for WL < Wo. Experimental demonstration of the change of

sign of the velocity-dependent force at high intensity has been achieved [21].

Evidence has been also obtained for a channeling of atoms in the nodes of a

blue detuned standing wave [22].

Note also that similar effects occur for an atom having several Zeeman

sublevels in the ground state and moving in a low intensity laser configuration

exhibiting a spatiaIly modulated polarization. The light shifts of two ground

state sublevels can then be spatiaIly modulated as weIl as the optical pumping

rates from one Zeeman sublevel to the other, the two modulations being

correlated in such a way that they give rise to a low intensity Sisyphus effect

[23]. Such a laser cooling mechanism turns out to be two orders of magnitude

more efficient than the usual Doppler cooling mechanism (see the review
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paper [24] and references therein).
Although other physical problerns may be analyzed along the same

Hnes, 1will stop here, with the hope that 1have given an idea of the generality

of the basic ingredients of the Autler- Townes effect.

* Laboratoire associé au CNRS et à l'Université Pierre et Marie Curie.
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