
EUROPHYSICS LElTERS 

Europhys. Lett., 1 (91, pp. 441-448 (1986) 

1 May 1986 

Single-Atom Laser Spectroscopy. Looking for Dark Periods in 
Fluorescence Light. 

C. COHEN-TANNOUDJI and J. DALIBARD 

Collège de France 
and Laboratoire de Spectmscopie Hertzienne de 1'Ecole Normale Supérimre (*) 
24, rue Lhorwnd F 75231 Paris Cedex 05, France 

(received 23 January 1986; aecepted 6 March 1986) 

PACS. 32.80. - Photon interactions with atoms. 
PACS. 35.80. - Atomie and moleeular measurements and tecniques, 
PACS. 42.50. - Quantum optics. 

Abstract. -The random sequenee of pulses given by a photodeteetor recording the fluoreseenee 
light emitted by a single atom can exhibit periods of darkness if two transitions, one weak and 
one strong, are simultaneously driven (Dehmelt's electron shelving scheme). We introduce new 
statistical functions for characteriring these periods of darkness (average length, repetition 
rate) and we show how to extraet spectmscopic information from this type of signals. 

Recent developments in methods of laser spectroscopy make it possible now to observe 
the fluorescence light emitted by a single atom or a single ion. Severai experiments of this 
type have been perfonned on very dilute atomic beams [Il or laser cooled trapped ions [21. 

The signai given by a broadband photodeteetor recording the fluorescence light looks like 
a random sequence of pulses. One interesting property of this sequence of pulses, in the case 
of a single atomic emitter, ia  the so-called photon anti-bunching. The probability per unit 
time g2(t, t + T) = g2(r) (l), if one has detected one photon at time t, to detect another one at 
time t + T, tends to zero when T tends to zero [Il. The interpretation of this effect is that the 
detection of one photon projects the atom into the ground state, so that we have to wait that 
the laser re-excites the atom, before we can detect a second photon [3-51. 

Another interesting example of single-atom effect is the phenomenon of eelectron 
shelvingn proposed by DEHMELT as a very sensitive double-resonance scheme for detecting 
very weak transitions on a single trapped ion [6]. Consider for example the 3-level atom of 
fig. la), with two transitions starting from the ground state g, one very weak g e e ~ ,  one 

(*) Laboratoire Associe au CNRS (LA 18) et l'université Paris VI. 
(') We only consider in this letter stationary random processes, so that al1 correlation funetions such 

as g2 only depend on r. 
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Fig. 1. - a) 3-level atom with two transitions starting h m  the gound state g. b) Random sequenee of 
pulses given by a photodeteetor recording the fluorescence of a single atom. The penods of darkness 
correspond to the shelving of the eleetmn on the metastable level e ~ .  

very intense g tt e~ (which we w i U  cail for convenience the sred- and the .-blues transitions), 
and the suppose that two lasers drive these two transitions. When the atom ahsorbs a red 
photon, it is sshelvedn on eR, and this switches off the intense blue fluorescence for a time of 
the order of Tc1. We expect, therefore, in this case that the sequence of pulses given by the 
broadhand photodetector recording the fluorescence light should exhihit speriods of 
brightness~, with closely spaced puises, corresponding ta the intense hlue resonance 
fluorescence, alternated with eperiods of darknessp corresponding to the periods of shelving 
in rR (fig. lb)). The absorption of one red photon could thus be detected by the abseme of a 
large number of blue fluorescence photons [Tl. I t  has been recently pointed out [El] that such 
a fluorescence signal couid provide a direct observation of .-quantum jumps. between g and 
eR, and several theoretical models have heen presented for this effect, using rate equations 
and random telegraph signal theory [El], or optical Bloch equations and second (and higher) 
order correlation functions such as g2 [9-121. 

The purpose of this letter is to intmduce another statistical function which we w i U  the 
delay function w2 and which, in our opinion, is more suitable than gz for the analysis of 
signals such as the one of fig. lb). We defuie w2(s) as the prohabiiity, if one has detected one 
photon at time t, to detect the m z t  one a t  time t + T (and not any 0 t h  one, as it is the ease 
for g,) [131. We suppose for the moment that the detection efficiency is equal to 1, so that w2 
and gl refer also to emission processes. The delay function w2(s) is diiectly related to the 
repartition of delays T hetween two successive puises and thus provides simple evidence for 
the possible existence of periods of darkness. We would üke also to show in this letter that 
w ~ ( T )  is very simple to calculate and is a very convenient tool for extracting aii the 
spectroscopic information contained in the sequence of pulses of fig. lb). 

We first introduce, in paraiiel with w2(s), a related function P(T) defined by 

From the definition of w,, it is clear that P(T) is the probabiiity for not having any emission 
of photons between t and t + T, after the emission of a photon at time t. P(T) starts from 1 a t  
T = O  and decreases to zero as T tends to infinity. We now make the hypothesis that P and w2 
evolve in t h e  with at least two very different time constants. More precisely, we suppose 
that P(T) can be written as 



C. COHEN-TANNOWI et al.: SINGLE-An>M LASER SPECTROûCOPY. EW. 443 

where 

P I ~ ~ ~ ( T )  = p exp [- T~TI., J , (3) 

and where Pshort(r) tends to zero very rapidly, i .e.  with one (or several) time constant(s) 
rShort much shorter than ~l..,. We shall see later on that this splitting effectively occurs for 
thethree-level system described above. 

Our main point is that this form for P(T) proves the existence of bright and dark periods in 
the photodetection signal, and furthermore allows the calculations of ail their characteristics 
(average duration, repetition rate, ... ). Our anaiysis directly foUows the experimental 
procedure that one would use in order to exhibit such dark and iight periods in the signal. 
We introduce a f i e  delay e such as 

and we -store. the intervals At between successive pulses in two ~channelsn: the internai 
At is considered as  short, if At < 8, as long, if At > 6. We now evaluate quantities such as the 
probability 17 for having a long interval after a given pulse and the average durations Tl,, 
and Ta,,, of long and short intervals. If none of these three quantities depends (in îïrst 
approximation) on O, this clearly demonstrates the existence of bright periods (i.e. 
succession of short intervals) and of dark ones (i.e. occurence of a long interval). 

The probabiiity II for having an interval At larger than 8 is directly obtained from 
the function P:II= P(O). Using the double inequaiity (4), we get Pah,,(0) = O and 
P1.,,(8) = Pi,.,(O) = p, so that 

The average durations TI,, and Tshort of long and short intervals are given by 

After an integration by parts, and using again the double inequality (4), this becomes 

We see that the average length of long intervals is just the long-time constant of P(r), while 
the average length of short intervals is related to the rapidly decreasing part of P(r). None 
of the three quantities obtained in (5) and (7) depends on 0, which indicates the intnnsic 
existence of dark periods and of bright ones. The average duration of a dark period 7~ is 
just TI..,, while the average duration of a bright period 4 is the product of the duration of 







and a density of final state 2WB, and corresponds to the width of the ground state 
induced by the blue laser. On the other hand, the long time constant in P(T) is proportional 
to Ts: 

P h y s i d y ,  Br3 represents the departure rate from eR, due to both spontaneous (first term 
of (15~)) and stimulated (second term of (15c)) transitions. The second term of (15c) can be 
written (&/2)Z~Z and then appears as a Fermi golden d e  expression. I t  gives the 
stimulated emission rate of a red photon from eR (matrix element QR/2) to the ground state g 
broadened by the blue laser (density of States T ~ z ) .  Note that the condition T,o,,>> T,,, 
implies 

From now on, we choose SaR such that the two spontaneous and stimulated rates of (15~)  are 
equal, and we calculate from (&) and (10) the variation with the red detuning AR of the ratio 
3d YB. We find that this ratio exhibits a resonant variation with AR (fig. k)) 

This shows that it is possible to detect the g - eR resonance by studying the ratio between 
the lengths of dark and bright periods. Note that this ratio can be as large as 1 (for A R  = 0) 
and that the width of the resonance is determined by the width of the ground state induced 
by the laser. We have supposed here that A ,  = O; if this were not the case, one would get a 
shifi of the resonance given in (19) due to the light shifi of g. 

Fig. 2. - Variation with the red laser detuning A R  of the ratio Z ~ 1 7 ~  between the average lengths 
of dark and bright periods. a) Weak-intensity limit, b) high-intensity limit. 

Consider now the high-intensity limit (QB>>TB, blue transition saturated). We still 
suppose A B  = O. The two short time constants TI and T, of (14) are now equal to 4/rB,  so that 
Teh,, = 2 G .  The correspondhg two mots q and rz of the characteristic equation of (14) 








