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Abstract. — The random sequence of pulses given by a photodetector recording the fluorescence
light emitted by a single atom can exhibit periods of darkness if two transitions, one weak and
one strong, are simultaneously driven (Dehmelt's electron shelving scheme). We introduce new
statistical funetions for characterizing these periods of darkness (average length, repetition
rate) and we show how to extract spectroscopic information from this type of signals.

Recent developments in methods of laser spectroscopy make it possible now to observe
the fluorescence light emitted by a single atom or a single jon. Several experiments of this
type have been performed on very dilute atomic beams [1] or laser cooled trapped ions [2].

The signal given by a broadband photodetector recording the fluorescence light looks like
a random sequence of pulses. One interesting property of this sequence of pulses, in the case
of a single atomic emitter, is the so-called photon anti-bunching. The probability per unit
time go(f, t + T) = go(T) (1), if one has detected one photon at time #, to detect another one at
time ¢+ 7, tends to zero when 1 tends to zero [1]. The interpretation of this effect is that the
detection of one photon projects the atom into the ground state, so that we have to wait that
the laser re-exeites the atom, before we can detect a second photon [3-5].

Another interesting example of single-atom effect is the phenomenon of «electron
shelving» proposed by DEEMELT as a very sensitive double-resonance scheme for detecting
very weak transitions on a single trapped ion [6]. Consider for example the 3-level atom of
fig. 1a), with two transitions starting from the ground state g, one very weak g < eg, one
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(*) We only consider in this letter stationary random processes, so that all correlation functions such
as g only depend on T.
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Fig. 1. — g} 3-level atom with two transitions starting from the gound state g. ) Random sequence of
pulses given by a photodetector recording the fluorescence of a single atom. The periods of darkness
correspond to the shelving of the electron on the metastable level ep.

very intense g <> eg (Which we will call for convenience the «red» and the «blue» transitions),
and the suppose that two lasers drive these two transitions. When the atom absorbs a red
photon, it is «shelved» on e, and this switches off the intense blue fluorescence for a time of
the order of I'y 1. We expect, therefore, in this case that the sequence of pulses given by the
broadband photodetector recording the fluorescence light should exhibit «periods of
brightness», with closely spaced pulses, corresponding to the intense blue resonance
fluorescence, alternated with «periods of darkness» corresponding to the periods of shelving
in rg (fig. 15)). The absorption of one red photon could thus be detected by the absence of a
large number of blue fluorescence photons [7]. It has been recently pointed out [8] that such
a fluorescence signal could provide a direct observation of «quantum jumps» between g and
er, and several theoretical models have been presented for this effect, using rate equations
and random telegraph signal theory [8], or optical Bloch equations and second (and higher)
order correlation functions such as g, [9-12].

The purpose of this letter is to introduce another statistical function which we will call the
delay function w, and which, in our opinion, is more suitable than g, for the analysis of
signals such as the one of fig. 18). We define w,(t) as the probability, if one has detected one
photon at time £, to detect the next one at time ¢ + t (and not any other one, as it is the case
for g») [13]. We suppose for the moment that the detection efficiency is equal to 1, so that w,
and g refer also to emission processes. The delay function w(r) is directly related to the
repartition of delays t between two successive pulses and thus provides simple evidence for
the possible existence of periods of darkness. We would like also to show in this letter that
wy(7) is very simple to caleulate and is a very convenient tool for extracting all the
spectroscopic information contained in the sequence of pulses of fig. 15).

We first introduce, in parallel with ws(1), a related function P(r) defined by

P(x)=1- f de wylt') . Q)
Q

From the definition of w,, it is clear that P(z) is the probability for not having any emission
of photons between ¢ and ¢ + , after the emission of a photon at time ¢. P(1) starts from 1 at
7 = 0 and decreases to zero as r tends to infinity. We now make the hypothesis that P and w,
evolve in time with at least two very different time constants. More precisely, we suppose
that P(7) ecan be written as

P(T) = Pshort('r) + Plong("'-) ’ (2)
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where

Plong(T) =pexp [— T/T!nng} ’ (3)

and where P,,,+(t) tends to zero very rapidly, i.e. with one (or several) time constant(s)
Tehort Much shorter than 7y,,,. We shall see later on that this splitting effectively occurs for
the three-level system deseribed above.

Qur main point is that this form for P(z) proves the existence of bright and dark periods in
the photodetection signal, and furthermore ailows the calculations of all their characteristics
(average duration, repetition rate, ...). Our analysis directly follows the experimental
procedure that cne would use in order to exhibit such dark and light periods in the signal.
We introduce a time delay 6 such as

Tehort <O <K T long 4)

and we «store» the intervals At between successive pulses in two «channels»: the interval
At is considered as short, if Af < 6, as long, if At > §. We now evaluate quantities such as the
probability /7 for having a long interval after a given pulse and the average durations Ty,
and T of long and short intervals. If none of these three gquantities depends (in first
approximation) on §, this clearly demonstrates the existence of bright periods (i.e.
succession of short intervals) and of dark ones (i.e. occurence of a long interval).

The probability IT for having an interval At larger than § is directly obtained from
the function P:II=P(§). Using the double inequality (4), we get Puyp.(6)=0 and
P]ong(6)=P10ng(0) =p, 50 that

I=p. (5)

The average durations T\, and Tgo of long and short intervals are given by

1 o

Tlong = _II— f dr T’M)z(T) '

31 0 (6)
Tshort = __1 T f dfmg(’r) .

0

After an integration by parts, and using again the double inequality (4), this becomes

Tlong = Tlong »

1 M
Tohort= —— f d7 Paport(T).
1-p .

We see that the average length of long intervals is just the long-time constant of P(r), while
the average length of short intervals is related to the rapidly decreasing part of P{r). None
of the three quantities obtained in (5) and (7) depends on 6, which indicates the intringic
existence of dark periods and of bright ones. The average duration of a dark period 7 is
just Tiong, While the average duration of a bright period .45 is the product of the duration of
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a short interval Ty, by the average number N of consecutive short intervals (%)

% = Tlong » ' (8a)
Fp= Tahort.N_ . (8b)

This average number N can be written >, NPy, where Py = (1 — p)Vp is the probability for
N

having N short intervals followed by a long one. Actually, the notion of «<brightness» for a
period has a sense only if it contains many pulses. We are then led to suppose p << 1, so that

_  1- 1
N=—P o %1, 9

p P
Using (7) and (8)), the length of a bright period can finally be written as

1 -3
Fo=— f dr Pypors(7). (10)
p
. 1]

Note that if the efficiency of the detection ¢ is not 100%, results (8a) and (10) are still
valid, provided certain conditions hold. Remark first that in a bright pertod, the mean
number of pulses is multiplied by ¢, and that the interval between two successive pulses is
divided by ¢. In order to still observe dark and bright perieds, one has to detect many pulses
in a given bright period, and the average delay between two detected pulses must be much
shorter than the length of a dark period:

{1 «<eN, an

Tshort./ -4 Tlong .

Provided these two inequalities are satisfied, it is still possible to detect dark and bright
periods, whose lengths are again given by (8a) and (10).

We now tackle the problem of the calculation of w» and P for the 3-level atom described
above, for which we shall use a dressed-atom approach. Immediately after the detection of a
first fluorescence photon at time ¢, the system is in the state |go) = g, Ng, Nr), i.€. atom in
the ground state in the presence of Ny blue photons and Ny red photons. Neglecting
antiresonant terms, we see that this state is only coupled by the laser-atom interactions to
the two other states |p;) = leg, Ng — 1, Ng) and |pg) = |¢g, Ng, Ng — 1) (the atom absorbs
a blue or a red photon and jumps from g to ex or eg). These three states form a nearly
degenerate 3-dimensional manifold # (Ng, Ng) from which the atom can escape only by
emitting a second fluorescence photon. The detection of this photon then projects the atom
in a lower manifold. Consequently, the probability P(r) for not having any emission of
photon between ¢ and ¢t + T after the detection of a photon at time ¢ is simply equal to the
population of the manifold # (Ng, Ng) at time ¢ + v knowing that the system starts from
the state |po) at time ¢.

(®) We treat here durations of intervals between pulses as independent variables. This is correct,
since two successive intervals are uncorrelated. At the end of a given interval, the detection of a
photon projects the atom in the ground state, so that any information concerning the length of this
interval is lost. This is to be contrasted with the fact that two successive pulses are correlated
(antibunching effect for example).
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In order to calculate this population, we look for a solution for the total wave function of
the form

|pE+ 1)) = 2, agz)|e;) X |0 fluorescence photon) +
i=0,1,2

+ 2 bi(1) |j: states involving fluorescence photons) (12)
3

with ay(0) =1, all other coefficients being equal to zero at time ¢. From {12), we then ex-
tract P:

P()=2 |ado)f?. (13)

The equations of motion for the a;/s read

Oy
iy = — 0, + — g,
2
0 .
1 8 =—2ap— (AB+ ﬁ) a, (14)
2 2
0
mz——ﬁao—(dﬂ ——R—)az,

where (g and (y represent the blue and red Rabi frequencies, Ap{dg) the detuning
between the blue (red) laser and the blue (red) atomic transition, and where 'y and [y are
the natural widths of levels eg and eg. This differential system is easily solved by Laplace
transform, and each a1) appears as a superposition of 3 (eventually complex) exponentials.
The main result is then that, provided I'y and Qp are small enough compared to I'gs and Qp,
P(7) can be written as in (2)-(3): this proves the existence of periods of darkness in the
photodetection sagnal

We shall not give here the details of the general calculations, and we shall only
investigate the two limiting cases of weak and strong blue excitations.

We begin by the low intensity limit ({25 <<I'g, blue transition not saturated). We suppose
the blue laser tuned at resonance (4g = 0) and we consider first Ag = 0. The system (14) has
3 time constants, 2 short ones 7, and 7, and a long one 13

— (15a)
1 2

1 [0}

=B , (158)
T2 2r B

1 0%
= s + s Or . (15¢)
3 2 2 0%

The weight of 1; is predominant in P,.(7) and we find
Tshm-t, = T2I’2 . (16)

Physically, 2/1; represents the absorption rate of a blue photon from ¢ to eg. It can be
interpreted as the {ransition rate given by the Fermi golden rule, with a matrix element
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{3p/2 and a density of final state 2/nl'g, and corresponds to the width of the ground state
induced by the blue laser. On the other hand, the long time constant in P(1) is proportional
to 74

Tiong =74/2 . amn

Physically, 2/7; represents the departure rate from ey, due to both spontaneous {first term
of (15¢)) and stimulated (second term of (15¢)) transitions. The second term of (15¢) can be
written (Qg/2)°7, and then appears as a Fermi golden rule expression. It gives the
stimulated emission rate of a red photon from eg (matrix element {25/2) to the ground state g
broadened by the blue laser (density of states 72/x). Note that the condition T,g > Topon
implies
2
I'g, g <<& . (18
I's

From now on, we choose {2y such that the two spontaneous and stimulated rates of (15¢) are
equal, and we calculate from (8a) and (10) the variation with the red detuning Ay of the ratio
71/ #p. We find that this ratio exhibits a resonant variation with Ag (fig. 2a))

o 1
To 24 (mAgF

(19)

This shows that it is possible to detect the g — eg resonance by studying the ratio between
the lengths of dark and bright periods. Note that this ratio can be as large as 4 (for Ag =0)
and that the width of the resonance is determined by the width of the ground state induced
by the laser. We have supposed here that Ag = 0; if this were not the case, one would get a
shift of the resonance given in (19) due to the light shift of g.

Y 7,1, 7,1,
a) b)
7Y N —— =t
V2 ggiry RIV2 RiV2
1 - 1 1 -
0 4g —.QBIZ 0 9312 4y

Fig. 2. — Variation with the red laser detuning Ay of the ratio J3,/7; between the average lengths
of dark and bright periods. a) Weak-intensity limit, ) high-intensity limit.

Consider now the high-intensity limit ({2 >>I's, blue transition saturated). We still
suppose Ag = 0. The two short time constants 7, and 7, of (14) are now equal to 4/['p, so that
Tanore = 2/'p. The corresponding two roots r; and »; of the characteristic equation of (14)

ne-t8 _; 88 (200)
4 2
=B ;88 (20b)
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have now an imaginary part + iQp/2, which describes a removal of degeneracy induced in
the manifold # (Ng, Ng) by the atom blue laser coupling: the two unperturbed states |@,)
and |g;) of & (Ng, Ng), which are degenerate for Ag=0, are transformed by this
coupling into two perturbed dressed states

1
= + o)), 1)
be) vz (9o} £ o)
having a width I'g/4 and separated by the well-known dynamical Stark splitting Qg [14].
The interaction with the red laser couples the third level |g;) to |¢..) with matrix elements
+ Qy/2V/2. This coupling is resonant when |,) is degenerate with |¢..) or |¢_), i.e. when
Ag = £ Qp/2. Such a resonant behaviour appears on the general expression of the slow-time
constant =3 of (14)

1 Iw & (079K

1 _Ir_ BLE , 22)

5 2 32 (Qf4- %P+ aRThM

which reaches its maximum value

T3 2 Z.FB

for Ag=*0g/2. As in (15¢), the first term of (22) or (23) represents the effect of
spontaneous transitions from eg. The second term of (23) can be written as (Qgr/2V2)?-
-(4/I'g) and appears as a stimulated emission rate of a red photon from eg to the broad |¢ . )
or {_) states. If, as above, we choose Qg such that the 2 rates of (23) are equal, we get for
Ip!Fs the double-peaked structure of fig. 2b). The two peaks have a maximum value of {
and a width I'g/V2 (for Ag= /7 =I%/22% «1, so that the weight of the dark
periods becomes very small). This shows that measuring in this case the ratio between the
lengths of dark and bright periods gives the possibility to detect, on a single atom, the
Autler-Townes effect induced on the weak red transition by the intense blue laser
excitation.

In conelusion, we have introduced in this paper new statistical funections which allow a
simple analysis of the electron shelving scheme proposed by DEHMELT for detecting very
weak transitions on a single trapped ion. We have shown that there exist, in the sequence of
pulses given by the photodetector recording the fluorescence light, periods of darkness. The
average length 74 of such dark periods, which is determined by the spontaneous and
stimulated lifetimes of the shelving state, ean reach values of the order of the average length
Fg of the bright periods. They should then be clearly visible on the recording of the
fluorescence signal. We have also shown that it is possible to get spectroscopic information
by plotting the ratio .75/75 vs. the detuning of the laser driving the weak transition. The
smallest width obtained in this way is the width of the ground state due to the intense laser.
Note that this width is still large compared to the natural width of the shelving state. It is
clear that, in order to get resonances as narrow as possible, the two lasers should be
alternated in time.

1 r 2
~Ir | OR (23)
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