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Several recent studies have shown that the time evolution of an atom submitted to coherent laser fields and to
dissipative processes, such as spontaneous emission of photons or excitation by a broadband incoherent field,
can be considered to consist of a sequence of coherent evolution periods separated by quantum jumps occurring
at random times. A general statistical analysis of this random sequence is presented for the case in which the
number of relevant atomic states is finite and the delay functions giving the distribution of the time intervals
between two successive jumps can easily be calculated. These general considerations are then applied to a
simple model recently proposed for demonstrating the possibility of amplification without inversion of popula-
tions. We show how the quantum-jump approach allows one to calculate the respective contributions of the
various physical processes responsible for the amplification or the attenuation of the probe field and to get new
insights into the relevant physical mechanisms.

1. INTRODUCTION

During the past few years several experiments have shown
that the time evolution of a single atomic system driven by
coherent laser fields and subjected to dissipative processes
such as spontaneous emission can exhibit discontinuous
abrupt changes, also called quantum jumps.-3 The
analysis of these experiments has stimulated the develop-
ment of new theoretical approaches to dissipative pro-
cesses in which the time evolution of the atomic system is
pictured as consisting of a series of coherent evolution pe-
riods separated by quantum jumps occurring at random
times.4̀ 0 The equivalence between these quantum-jump
approaches and the usual description of dissipative pro-
cesses in terms of master equations for the atomic-density
operator has been demonstrated. 7 ' Some connection
seems also to exist between these analyses and general
stochastic formulations of quantum mechanics.9 "l'

When the number of relevant atomic states involved in
dissipative processes is finite and when the Hamiltonian
is time independent, the method of delay functions intro-
duced in Refs. 4 and 5 is particularly convenient for per-
forming Monte Carlo simulations of the sequence of
quantum jumps.5 6 In this paper we show how this delay-
function approach can be used to derive general statistical
properties of the coherent evolution periods taking place
between two successive quantum jumps. In order to keep
the discussion as physical as possible, we introduce the
method by dealing with a simple model that was recently
proposed for demonstrating the possibility of an amplifi-
cation withcdt inversion.", 3 We show that the quantum-
jump aproach, based on the delay functions, gives the
same results as the master-equation approach followed in
Ref. 12 and provides in addition new insights into the
underlying physical mechanisms. A brief account of

these results, without any demonstration, was presented
elsewhere.' 4

The paper is organized as follows. We first give in
Section 2 a general qualitative presentation of the method.
Starting from the model of Ref. 12, we introduce the basic
ideas that are used throughout the paper: quantum
jumps associated with dissipative processes, coherent evo-
lution periods between two successive quantum jumps,
and physical processes associated with each coherent evo-
lution period. We then introduce in Section 3 the various
quantities that fully characterize the stochastic evolution
of the atom, in particular the delay functions. Some re-
sults of Monte Carlo simulations are also presented.
Section 4 is devoted to the derivation of general statistical
properties of the sequence of quantum jumps, and we ex-
plain how it is possible to calculate various properties of
the coherent evolution periods, such as their probabilities
or their mean duration. This general method is applied
in Section 5 to the model introduced in Section 2, and the
probabilities of the various coherent evolution periods are
calculated analytically. Finally, the results of this calcu-
lation are discussed in Section 6; these allow one to pre-
sent a detailed analysis of the various competing physical
mechanisms. Appendixes A and B are devoted to the
derivation of some properties of the coherent evolution
periods.

2. PRINCIPLE OF THE METHOD

A. Model
As in Ref. 12, we consider a three-level atom with one ex-
cited state e and two lower states g, and g2, forming a A
configuration (Fig. 1). We denote by COel and We2 the fre-
quencies of the two allowed transitions g, <-> e and g 2 <-> e.
These two transitions are excited by two laser fields with
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Fig. 1. Three-level atom forming a A configuration and sub-
jected to dissipative processes, inducing transitions between the
three levels e, gl, g2 with rates F,, r 2, RI, R2 (arrows). The atom
is also driven by two laser fields with frequencies L1 and WL2

that are close, respectively, to the frequencies coe and &
0e2 of the

two transitions g, <- e and g2 -> e.

frequencies WL1 and WL2 that are close, respectively, to wel
and We2, with the corresponding detunings being

8i= JLi ei, i = 1, 2. (2.1)

By spontaneous emission the atom can decay from e to g,
or to g2 with rates equal, respectively, to 1, and 2 (wavy
oblique arrows of Fig. 1). The atom is also assumed to be
subjected to broadband incoherent fields that induce both
absorption and stimulated-emission processes between e
and gi, on the one hand, and e and g2 on the other hand,
with rates equal, respectively, to R, and R2 (straight
oblique arrows of Fig. 1).

Such a purely radiative and closed system has been in-
troduced by the authors of Ref. 12 to show that the field
WL1, considered as a weak probe beam, can be amplified
for certain values of the parameters, even if the lowest
sublevel g, contains more than one half of the total popula-
tion. Such a result is derived in Ref. 12 from the solution
of the optical Bloch equations, which describe the evolu-
tion of the atomic-density operator driven by the coherent
fields WL, and L2 and subjected to the dissipative pro-
cesses described by F1, F2 , R,, and R2. Rather than solving
the optical Bloch equations, we follow here the evolution of
the state vector li) of a single atom. The usual results
provided by the optical Bloch equations are recovered by
averaging over different realizations of the atomic sto-
chastic evolution.

B. Manifolds of Atom + Laser Photon States
It is convenient to use here a quantum description of the
two laser fields CWL, and L2. If these fields are quasi-
resonant (18,1 << Wde, 1821 << W)e2), the states of the total
system atom + laser photons are grouped into manifolds
ce (NI, N2) of three quasi-degenerate states, which become
degenerate if 81 = 82 0 (see Fig. 2):

%(Ni, N2) = {e, N1, N2), Igi, N + 1, N2 ),1g2 , NI, N 2 + 1)}.

(2.2)

As a result of the above quasi-resonant assumption, the
energy distance between two different manifolds is very
large compared with the energy splittings within a given
manifold.

The atom in g, (g2) can absorb one WL1 (sL2) photon and
be transferred to e, with the corresponding coupling being
characterized by the Rabi frequency fl (2). More pre-
cisely, we have

(2.3a)

(2.3b)

where VAL is the atom-laser interaction Hamiltonian.
These couplings are represented by the horizontal arrows
of Fig. 2 and exist only within a given manifold. In the
absence of dissipative processes, the system, initially in
'6(N,, N2), would remain forever in the same manifold,
and its coherent evolution could be described entirely in
terms of Rabi nutations between the three states of
5(N,, N 2 )-

C. Quantum Jumps Associated with Dissipative Processes
The system can leave (N1, N 2) only by a quantum jump
that brings it into a neighboring manifold (oblique arrows
starting from '6(N1, N2) in Fig. 2). For example, it can
jump from le, N,, N2) into g,, N1, N2), which belongs to
%(N - 1, N2), by a spontaneous-emission process or by an
incoherent stimulated emission process with a total rate
F, given by IF = , + R,. (2.4a)

Similar quantum jumps can take place between le, N1, N2)
and 1g2, N,, N2), which belongs to %(N,, N 2 - 1), with a
rate 12= r2+ R2 - (2.4b)

The system can also jump from Igi, N, + 1, N2 )
(1g2 , N1, N 2 + 1)) into le, N, + 1, N 2) (le, N1, N 2 + 1)), which
belongs to 6(N1 + 1, N 2) [(N1, N 2 + 1)] by an incoherent
absorption process with a rate R, (R 2).

Figure 2 also represents the quantum jumps bringing
the system into (N,, N2) [oblique arrows arriving in
%(N1, N 2)], from g1, N1, N 2) (g 2 , N1, N 2)) into e, N1, N 2)
with a rate R, (R2 ), and from e, N, + 1, N2) (e, N1, N2 + 1))
into 1g2, N, + 1, N2) (1g2, N1, N 2 + 1)) with a rate F, ( 2 ).

Fig. 2. Manifolds %(N,, N2) of states of the atom + laser photon
system. The coherent couplings within a given manifold (hori-
zontal arrows) are characterized by the Rabi frequencies fl, and
f1 2. The oblique arrows represent quantum jumps bringing the
system from one manifold to another.
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which corresponds to the stimulated emission of one pho-
ton WL1 without any change of N2,

j k I m n

t
Fig. 3. Sequence of coherent evolution periods ...(i,j), (k, 1),
(m,n)... separated by quantum jumps fromj to k, from to m, and
so on. Each coherent evolution period (i, j) is characterized by
the state of entry i and the state of exit j. The duration of each
period is a random variable whose distribution is given by the de-
lay functions introduced in the text.

D. Picturing the Time Evolution
Each coherent evolution period (i, j) in a given manifold
% (N,, N2) may be characterized by the state i of (N,, N2 )
in which the system enters %(N,, N2), after the quantum
jump of entry, and by the state j of %(N,, N2) from which
the system leaves W(N,, N2), through the quantum jump of
exit. To keep the notation as simple as possible, we label
the states of %(N,, N2 ) according to the atomic state
(i, j = 1, 2, or e), and we do not write the photon quantum
numbers.

The time evolution of the system can thus be pictured
as consisting of a series of coherent evolution periods (i, j)
(k, 1) (m, n) separated by quantum jumps, from the state j
of %(N1, N2) to the state k of a neighboring manifold, from
1 to m, and so on (Fig. 3). In subsequent sections we show
how it is possible to calculate the various statistical prop-
erties of the random sequence of Fig. 3. Beforehand we
now explain why it is interesting to calculate the probabil-
ities of the various periods (i, j) if we want to determine
whether the field WOL1 is amplified or absorbed during the
time evolution.

E. Time Evolution of N1 and N2

During a coherent evolution period in a given manifold
%(N,, N2 ) the state vector of the system is in general a
linear superposition of the three states of W(N,, N2), so
that N, and N2 are not well defined. In contrast, it clearly
appears in Fig. 2 that each quantum jump connects two
states in which N, and N2 have well-defined values, which
are the same just before the jump and just after the jump.
Each quantum jump can thus be considered a determina-
tion of N, and N2, with each period (i, j) corresponding to
well-defined variations AN, and AN2 of N, and N2 be-
tween the jump of entry and the jump of exit.

There are actually four periods (i,j) for which AN, is
not equal to zero, i.e., during which the number of probe
photons, N1, varies. Consider, for example, a period (2,1).
The system enters %(Ni,N2) in 12) = ig2, N,, N2 + 1) and
leaves %(N1, N2) from 11) = 1g2, N, + 1, N2), so that

period (1, 2) -* AN, = +1, AN2 = -1. (2.5a)

Such a period thus corresponds to a two-photon stimu-
lated Raman process g2 -* g1, where the field WOL2 loses
one photon, whereas the field WL1 gains one. The period
(1,2) corresponds to the inverse stimulated Raman pro-
cess g, -> g2 , where the field WL1 loses one photon,
whereas the field WOL2 gains one:

period (1, 2) -> AN, = -1, AN 2 = +1. (2.5b)

We must also consider the periods (e, 1), where the system,
starting in le) = e, N1, N2), ends in 11) = g,, N, + 1, N2 ),

period (e,1) - AN, = +1,A N2 = 0, (2.5c)

and consider the reverse periods (1, e), which corresponds
to the absorption of one photon WL, without any change of
N2,

period (1, e) - AN, = -1,A N2 = 0- (2.5d)

It may easily be checked that, for the five remaining peri-
ods (i,j), AN, = 0.

If we are able to calculate the relative probabilities of
the four periods (2,1), (1, 2), (e, 1) and (1, e), we can thus
determine whether the field WL1 will be amplified or attenu-
ated and identify the respective contributions of the vari-
ous physical processes, stimulated Raman gain, stimu-
lated Raman loss, induced emission, absorption, which are
involved. This is the great advantage of the quantum-
jump approach presented here as compared with the opti-
cal Bloch equations approach, which gives only the total
gain (or loss).

3. CHARACTERIZATION OF THE
STOCHASTIC EVOLUTION

In this section, we introduce the various quantities that
are needed for characterizing completely the stochastic
properties of the random sequence of Fig. 3.

A. Evolution within a Manifold
Consider first a coherent evolution period. We know that
the system entered the manifold %(N,, N2) in the state Ii)
at time t, and we want to study the subsequent time evolu-
tion of the projection of the state vector of the system onto
%(N,, N2). Since dissipative processes make the system
leave the various states I j) of %(N,, N2) with well-defined
rates Gj given by (see Fig. 2)

G, = R1, G2 = R2, Ge = f + f2 f, (3.1)

one can show that the time evolution within t(N,, N2 ) is
governed by an effective non-Hermitian Hamiltonian Heff
obtained by adding to the energies of the three states I j)
of (N1, N2) an imaginary part -ihGj/ 2 . One possible
method for demonstrating such a result is to study the
projection of the resolvent operator onto %(N,, N2) (see, for
example, Chap. 3 of Ref. 15 and Sec. 1 of Ref. 16). Using
Eqs. (2.1) and (2.3), we thus get

-iG1/2 + 81

Heff = 0
fl,/2

0 f1/2

-iG 2/2 + 2 fl2/2 .
fl2/2 -iG,12_

(3.2)

From Eq. (3.2) one can calculate the probability amplitude

Ci(T) = (jlexp(-iHeff/1i)Ii) (3.3)

for the system to be found in the state Ii) of %(N,, N2 ) at
time t + -, when it is known that it started from the state
li) of 6(N1, N2) at time t. Multiplying ICCi-(T)2 by Gjdr then
gives the conditional probability,

Wij()dr = Gjlcij()I 2dr, (3.4)
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that the system leaves %(N,, N2 ) by a quantum jump from
the state I j) between times t + - and t + r + d. The
nine functions Wij(T), with i, j = 1, 2, e, give the distribu-
tions of the time intervals spent by the system in a given
period (i, j). These delay functions are quite analogous to
those introduced previously4' 5 for analyzing the intermit-
tent fluorescence that can be observed on a single trapped
ion.'-' The delay functions obey the normalization condi-
tion

2 Wij(T)dT = 1 for all i, (3.5)

proved in Appendix A, which results from the fact that the
system has certainly left %(N,, N2) after an infinite time.

B. Characterization of a Jump
From Fig. 2 one can also find the probabilities vrkj, if a
quantum jump starts from the state Ik) of a manifold, that
this quantum jump brings the system into the state I i) of
a neighboring manifold:

7rlj = ej, r2j = ej, Vej = 151irl + 8 2j]F2- (3.6)

These probabilities are obviously normalized:

7Tj = 1 forallk. (3.7)

Knowing Wik(T) and rkj, one can decide randomly the
time at which the system will leave %(N,, N2) and the state
1k) from which the corresponding jump will occur, as well
as the state I j) in which the system will arrive after such
a jump, and so on. The stochastic properties of the ran-
dom sequence of Fig. 2 are thus completely determined by
the knowledge of the delay functions Wik(T), i.e., by solu-
tion (3.3) of the Schrodinger equation corresponding to
Eq. (3.2), and by the probabilities 7vkj. To complete our
pictures, we must also give the expression of the state vec-
tor of the system between the jump of entry in Ii) at time t
and the jump of exit from j). If the jump of exit has not
yet occurred at time t + , the state vector certainly
belongs to (N,, N2) and is given by the normalized
expression

ECik(T)1k)

I14P(t + )) =
(E Cik(T) I

( k 

(3.8)

C. Monte Carlo Simulations
In Section 4 we define from Wij(T) and 7 rIkj a certain num-
ber of probabilities for characterizing the mean statistical
properties of the random sequence of Fig. 3. Analytical
expressions are also derived for these probabilities in
some limiting cases in Section 5. Beforehand we think it
would be useful to give an example of Monte Carlo simula-
tions of the time evolution of the system, because they
provide nice pictorial views of the physical processes. For
such simulations one can use the delay functions Wij(T)
and the probabilities ?ikj introduced in this paper, which
allow one to perform fast numerical calculations. One
could also follow the Monte Carlo wave-function approach
of Refs. 7 and 8, which requires more computing time but
which, on the other hand, is simpler to program. In fact

we have used a combination of both methods to generate
the stochastic sequence reproduced in Fig. 4. In Fig. 4(a)
we plot the number of probe photons as a function of time,
each modification in the number of probe photons corre-
sponding to the process indicated above by a small icon.
More precisely, the arrows represent stimulated Raman
processes, while T and I represent, respectively, absorp-
tion and stimulated emission processes of one photon.
We notice from this figure that the total number of probe
photons is increasing so that the total amplification is
positive. A second observation is that this amplification
is due mainly to stimulated Raman processes. In fact the
stimulated emission of one photon is, for the parameters
we have chosen here, a rare event. Since Fig. 4(a) is a
little bit misleading because the photon number never has
a well-defined value, except at the time of a quantum
jump, it is better to plot the photon number as in Fig. 4(b),
where, with an enlarged time scale, this value is shown
only at the time of a quantum jump. Figure 4(c) shows a
further magnification of the temporal sequence of the
physical processes changing N1. In the lower part of
Fig. 4(c) we have also indicated the coherent evolution pe-
riods by means of oblique lines joining the entrance and
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Fig. 4. Stochastic evolution of the number of probe photons ob-
tained by the Monte Carlo simulation explained in the text. The
parameters are IF = 0.25r, F2 = 0.75F, R, = R2 = (2.5 x 10 ),

(2.5 x 10-2 )r, £2 = 0.15F, 81 = 82 = 0. Changes in probe
photon number are tagged by the processes that produce them; T
indicates stimulated Raman gain; stimulated Raman absorp-
tion; I one-photon gain; T one-photon loss. (a) Probe photon
number versus normalized time Ft. The dashed line represents
the mean rate of variation of N, computed from Eq. (4.16) below.
(b) Enlarged part of the time evolution, with the number of probe
photons being represented only at the time of the quantum jumps,
where it has a well-defined value. One sees that between two
successive changes of N, there are several quantum jumps during
which N, does not change. (c) Further time enlargement allows
one to distinguish the coherent evolution periods, which are rep-
resented by oblique lines joining their state in and their state out
1g1), Ig2), or e).
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the exit states; these atomic states are represented in the
plot at three levels indicated by Ig,), 1g2), and le). From
these lines we can notice that a stimulated Raman gain is
complete at the end of a period (2,1) and a stimulated
Raman loss at the end of a period (1, 2). There are also
many transitions taking place between levels g 2 and e
without affecting the probe photon number. Finally, it
clearly appears that for most of the time the system is in
the period (1, 1). We show in Subsection 5.D that in such a
period the weight of the state g, is predominant in the
wave function, so that one concludes that the lowest level
is on the average the most populated, notwithstanding the
positive gain of the system. This very peculiar behavior
will be discussed in detail in the next sections.

Hermitian Hamiltonian such as in Eq. (3.2), which sat-
isfies (Heff)* = (Heff)t, the following relation applies:
cij(r) = cji(T). Thus in Eq. (4.3) the time integrals for the
two conditional probabilities are equal, and we get

(4.5a)

The conditional probability of a given period is propor-
tional to the dissipative departure rate from the final
state of that period. Using Eqs. (4.2) and (4.5a), one can
also derive the exact equation

9P(i,j) QP(i) Gj

9(j,i) 9(j) Gi (4.5b)

4. GENERAL STATISTICAL PROPERTIES OF
THE SEQUENCE OF QUANTUM JUMPS

A. Probabilities of the Periods (i, j)
Our purpose in the present section is to define some useful
quantities relative to the sequence of quantum jumps and
to show how, in the particular case we are dealing with,
they are amenable to an analytical evaluation. A fun-
damental quantity here is the probability QP(i, j) of a period
(i, j), i.e., the probability that a random choice among all
periods of the stochastic sequence gives as a result the pe-
riod (i, j). Note that such a random choice is made inde-
pendently of the duration of the period, each period being
characterized only by the state of entry Ii) and the state of
exit j). Since each period corresponds to a well-defined
change in the photon numbers, the probabilities 9P(i, j) are
directly connected to the absorption and the amplification
processes. Making use of Eqs. (2.5), we can for example
explicitly write the mean change of the number of probe
photons per period:

(AN,) = 0P(2, 1) + 9(e, 1) - P(1, 2) - 9P(l, e), (4.1)

where the roles of the amplification periods (2,1) and (e, 1)
and of the absorption period (1, 2) and (1, e) clearly appear.
It has been also pointed out in Section 2 that during the
other periods the number of probe photons does not
change.

The probabilities 9P(i, j) are linked to the probabilities
QP(i), that a randomly chosen period starts in the state i),
by the relation

9P(ij) = Q?(i)iP j/i), (4.2)

where 9?( j/i) is the conditional probability that, given that
the period has started in Ii), it ends in the state I j). Ac-
cording to Eq. (3.4) we can write

QP( j/i) = J Wj(T)dT = Gj dTlcij(T)l2, (4.3)

with

The probability of a given period is thus proportional to
the probability of starting in the initial state and to the
dissipative departure rate from the final state.

We see from Eq. (4.2) that, once the coefficients cij are
derived from Eq. (3.3), it is necessary to calculate the
probabilities 9P(i) if we want to determine 9(i, j). In the
hypothesis of a stationary process, QP(i) is time indepen-
dent and is related to the conditional probability Q(in:
j/in: i) to start a period in the state I j), given that the
previous period has started in the state li), by the equation

9Nj) = 2 9(i)Q(in: i/in i).

These conditional probabilities can be written as

Q(in: j/in: i) = G(ki)wkj,
k

where the normalization condition (3.7) entails that

> Q(in: j/in: i) = 1 for all i .
j.

(4.6)

(4.7)

(4.8)

This allows us to show that the homogeneous system (4.6)
has a nonzero solution, which can be normalized in such a
way that

E @9(i) = 1. (4.9)

To sum up, solving the Schr6dinger equation associated
with Eq. (3.2) gives cij [see Eq. (3.3)] and then 9P( j/i), from
Eqs. (4.3) and (3.1). One then calculates 9P(i), using
Eqs. (4.6), (4.7), (3.6), and (4.9), which gives according to
Eq. (4.2) the probabilities QPi, j).

B. Average Statistical Quantities
Several average statistical quantities can now be calcu-
lated from the probabilities introduced above. Interesting
quantities are, for instance, the average duration, T(i, j),
of a period (i, j) and the average time, T between two con-
secutive quantum jumps, given, respectively, by

(4.4)E 9(j/i) = 1 for all i,

making use of Eq. (3.5).
Equation (4.3) allows us to derive an interesting relation

between the conditional probabilities QP(j/i) and '9(i/j).
In Appendix B it is shown that for an effective non-

f TWij ()dT G7 lCij(1)l2dr
T(i, j) = P(ji

T = ET(i,j)'P(i,j),
ij

(4.10)

(4.11)
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while the probability that, at a given randomly chosen
time, the atom is found in the period (i, j) is given by

fl(i,j) = 2(i, j)T(i, j)
T

(4.12)

In a collection of atoms this quantity defines the fraction
of them in the period (i,j).

We also derive here an expression for the populations of
the atomic levels, with it understood that a similar proce-
dure can be followed for other physical observables as well.
Before starting this derivation, we write Eq. (3.8) (with
t = 0) in a more physically meaningful way, i.e.,

E (Cir() I k)

,iL)) = /2)]"/ (4.13)

where we have introduced the probability Ni(T) that no
quantum jump has occurred in the time interval [0,r] for a
coherent evolution period starting at time r = 0 in i):

Ni(T) = > Cik(T)1 = 1 - E Wik(T dT
k O0 k

(4.14)

In deriving expression (4.14) for Ni(T), use has been made
of relation (A6) below. The average population of the state
jk) is calculated by integration of its instantaneous value
I(k I fi (r))I2 over the time T., = nT, corresponding to a very
large number (n -* ) of coherent evolution periods. The
number dni(r) of periods starting in i) and lasting
a time between T and T + dT is dni(T) = n(i)2jWij(T)dT.
The contribution to the average population of level k) com-
ing from a coherent evolution period that started in i)
is f I(k I (T'))I 2 dT'. We then obtain for the average
population

Ilk = E (I) Wij(T) I(k I i(' ))I d dT

= 9 T Cisk(T)l dT (4.15)T o"

after having performed an integration by parts and hav-
ing used relation (4.14) for Ni(t).

One final quantity to be calculated is the average rate of
increase of the number of probe photons, N1. First, it is
clear from Fig. 4(a) that the increase (or decrease) of N
takes place only through random quantum jumps. Thus,
for the time evolution of a single atom, such as that pic-
tured in Fig. 4(a), dN1/dt cannot be defined. We may de-
fine only a coarse-grained rate of variation, averaged over
a very large number of coherent evolution periods, n, last-
ing a time T = nT. Because of the random occurrence of
the quantum jumps, such a coarse-grained rate of varia-
tion of N1 may be approximated as the ratio between the
variation in the probe photon number and the time. The
average change in the photon number N1 during each co-
herent evolution period is given by Eq. (4.1), so that the
coarse-grained rate of variation of N1 is equal to

/dN\ n(AN1) _ (AN,)
\dt/ T T

9 (2, 1) + (e, 1) - P(1, 2) - P(1, e) (4.16

T(i,j)9P(ij)ij

In Fig. 4 the value of (dN1 /dt) given by this expression is
represented by the slope of the dashed line passing through
the photon-number values.

5. APPLICATION TO AMPLIFICATION
WITHOUT INVERSION

The determination of the delay functions introduced in
Section 3 and the use of these functions in the equations
for the probabilities and conditional probabilities derived
in Section 4 allow one to calculate the average variation in
the photon number, AN1 , the average time between quan-
tum jumps, and through Eq. (4.16) the amplification coef-
ficient corresponding to the scheme of Fig. 1. In this
section such a determination will be performed analyti-
cally in the limiting case of a weak probe field and a not-
too-strong pump field.

A. Assumptions
The following relations are assumed
analytical calculations:

l1,fl 2 << f,

R1 , R2 << T2' = f22/r,

fl << n2, RI, R2, F2'.

to be valid for the

(5.1a)

(5.1b)

(5.1c)

Combination of inequalities (5.1a) and (5.1b) leads to

R1 , R 2 << 2 << f. (5.1d)

These assumptions correspond to well-defined condi-
tions to be realized in experimental configurations.
Inequality (5.1a) for the Rabi frequencies expresses a
weak-excitation condition, meaning that the two transi-
tions are not saturated. Inequality (5.1b) expresses that
the absorption rate 172' of coL2 photons from the g2 level is
larger than the absorption rate R1 and R2 of incoherent
radiation from levels g and g2 , respectively. Finally, ac-
cording to inequality (5.1c), the field at frequency L is
considered a weak probe field, as is usually done near the
threshold for lasing. From these assumptions it follows
that the populations of the three levels are not modified by
the application of the CtOLl field. In contrast, owing to in-
equality (5.1b), the populations of levels g2 and e are modi-
fied appreciably by the application of the L2 field. Note
that while the population level g is not affected by the
probe field COL1, owing to the depletion of level g 2 by the
pump field CUL2, the population of level g can become
larger than the population of level g2 , so that we can
realize a condition of no inversion between two levels con-
nected by a Raman transition. In summary, the thresh-
old conditions for the amplification of the CWL1 field are
investigated with the assumption that we apply a field )L2

strong enough to modify the population of g 2 and at the
same time weak enough not to saturate the transition
! <->e.

Two more assumptions will be used in this section.
The first one,

62 = , (5.2)

is not essential, but allows one to write simpler analytical
expressions. The second one,

0 jli <<r, (5.3)
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expresses that the frequency L1 can be modified for
scanning the Raman resonance, with the frequency CoL2 re-
maining in resonance with the transition g 2 e. No hy-
pothesis is introduced concerning the relative magnitudes
of the pumping rate F2' and the frequency detuning 51.

B. Calculation of the Relevant Probabilities
The Schrodinger equation associated with the effective
Hamiltonian (3.2) leads to the following differential equa-
tions for the amplitudes cij(T) introduced in Eq. (3.3) and
describing the coherent evolution within the manifold
Z (N, N2) for a system starting from the state Ii) at time
T = 0:

Ii(T)) = cie(T)le, N,, N2) + ci(T)gl,N, + 1,N 2)

+ ci2(T)9g2 ,N,N 2 + 1), (5.4)

die(T) = - 2 cie(T- l(T) 2 i 2Ci2, (5.5a)

dii(T) = Cie(T) - + i)cii(T), (5.5b)2 \2 /

6i2H = -i 2 cie(T) - 2ci2H), (5.5c)
2 2

Cik(T = 0) = Bik* (5.5d)
In these equations, use has been made of the resonant con-
dition 82 = 0 for the pump field at frequency 0

L2. Since
by assumption the rate r defines the fastest time con-
stant, we are allowed to perform, at times t > 1/F an adia-
batic elimination of the variable cie in terms of the slow
variables ca, and ci2. In the resulting equations, owing to
inequalities (5.1), al12/F can be neglected with respect to
R1, and R2 can be neglected with respect to 12', so that the
following equations are obtained (for times t > 1/F):

die(T) = -iflcil(T) - i-l2Ci2(r), (5.6a)

(R, ~~fllf12di, - -i+ i8 l )cil(T) - 2 ci2(T), (5.6b)

Ci2 (T) = - il( T) - F2Ci2(T) (5.6c)

On the other hand, the initial conditions of Eqs. (5.5) are
modified in a negligible way under the assumptions speci-
fied above. Solving Eqs. (5.6), with the proper initial con-
ditions, and substituting the corresponding results into
the relation (4.3) allow one to derive the conditional proba-
bilities 9P( j/i). In what follows, the conditional probabili-
ties for the four processes contributing in Eq. (4.1) to the
variation of the probe photon number will be explicitly
derived.

1. g -> g, Stimulated Raman Gain
According to Eq. (2.5a) the stimulated Raman gain takes
place during the periods (2,1), whose probability 9(2, 1)
depends, according to Eq. (4.2), on the conditional proba-
bility QP(1/2). For one to calculate

9P(1/2) = Rf dIc 2i(r)1 2,
So

(5.7)

Eqs. (5.6) have to be solved with i = 2. Using inequalities

(5.1) and neglecting terms containing 1/F2' with respect to
those containing 1/R, we obtain the following expression:

2 = Q2 1+ f1
91 (1/2) = 1 1 + (28/F 2 ')2 (5.8)

9 (1/2) has a maximum value fl12/Al2
2 at 8l = 0 and tends

to zero when the detuning 8 increases from zero to values
larger than the linewidth of the Raman transition be-
tween levels g2 and gl, ( 2' + Rl)/2 (r21)/2.

2. g 1 -> g2 Stimulated Raman Loss
The stimulated Raman loss takes place during the periods
(1, 2), with conditional probability 9(2/1), to be calculated
through

9(2/1) = R 2f dTIc2(T)12. (5.9)

The symmetry between the amplitudes c12(r) and c21(-)
(see Appendix B) allows one to simplify this derivation.
Making use of Eqs. (4.5a) and (3.1), we obtain

QP(1/2) =R, f1 2 1 + (28,/F 2 ')2 (5.10)

The frequency dependence of this probability is equal to
that discussed for the conditional probability of the Ra-
man gain process.

3. e g, Stimulated-Emission Gain
Following Eq. (2.5c), we have to study the periods (e, 1) and
calculate

QP(1/e) = Rf dlcel(T)2.
0

(5.11)

The calculation of ce,(T) or cle(T) will be presented in the
following paragraph. We just note here that, owing to
Eqs. (4.5a) and (3.1), the following relation applies:

(5.12)9P(1/e) = (R,/f)9P(e/1),

so that it results from inequality (5.1d) that

9P(1/e) << P(e/1).

We can thus neglect stimulated-emission gain e -* g, in
comparison with absorption loss g, -> e.

4. g - e Absorption Loss
Following Eq. (2.5d), we have to study the periods (1, e) and
calculate

QP(e/1) = rfdT|Cle(T)I2.
0

(5.14)

Equations (5.5), with i = 1, determine cl,(,). At times
t > 1/F, where an adiabatic elimination of the variable cie
is performed, Eqs. (5.6b) and (5.6c) for cil and c12 are
solved, and the solution is substituted into Eq. (5.6a). The
final result for cle, with the usual approximations, is

C Q() l1 1 r2 ex -ug21
cle(i) = + i /2) {2exP 2T

- ial exp[ ( R + i81)} (5.15)

(5.13)
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In Eq. (5.15) two separate terms contribute to cle and to
(el), one of them being zero at resonance (, = 0). The

general expression for Q?(e/1) results:

9(e l, 2 (F2'/2)2 1 48,2 _ 48,2 1
QP(e/1) = {2 (F2 '/22)2 + 812 R1F 2' (F2 '/2) 2

+ 8121

(5.16a)

with the limiting cases at resonance (8, = 0),

9(e/l) =
0 22

and far from resonance (18,1 >> r2'),

9 (eF) = il2= a 2

r'R1 f2 R,

(5.16b)

From relations (5.18) it follows that

Q(in: e/in: i) i,. (5.19)

Applying Eq. (4.6) to the state I j) = le) and using
relation (5.19), we derive

QP(e) = Q(1). (5.20)

Finally, from Eq. (5.17) and relation (5.20), and from the
normalization condition given by Eq. (4.9), we get

2P(1) 9P(2) 9(e) 1
;r = = = 2F, -i 2 F, 2le+d f2

which leads to

(5.16c)
(l) = I+

(5.21)

JP(2) = 2F + '

Because of inequality (5.1b), the conditional probability for
absorption QP(e/1) takes its minimum value at resonance.

5. Probabilities QP(i) and 9(i, j)
The next step before deriving the probabilities 9 (i, j) is to
calculate the probabilities 9P(i) that a randomly chosen pe-
riod starts in the state i). Since all the probabilities
QP( j/i) just determined and contributing to the modifica-
tion of the probe photon number AN, are proportional to
fl,

2 , it is sufficient here to calculate 9(i) to order 0 in l.
It is clear from Fig. 2 that the system enters into levels

g, and g2 only through quantum jumps from e), either in
spontaneous-emission processes or in emission processes
stimulated by the incoherent radiation. The relative
probabilities of entering into Il) and g2) are propor-
tional, respectively, to f,/f and F2 /F. Thus the ratio be-
tween the probabilities Q9(1) and QP(2) of starting a period
in states 11) and 12) is given exactly by

9P(1) F,

2P(2) = 2-
(5.17)

An alternative method for determining the probabilities
9P(i) is to make use of Eqs. (4.6) and (4.9), the conditional
probabilities Q(in: j/in: i) being derived from Eq. (4.7).
This derivation will be performed here within the assump-
tions specified above. In this limit we notice from Fig. 2
that, if a period starts in g,), the following period always
starts from le). This implies that

Q(in: j/in: 1) = 8
ej. (5.18a)

If instead a period starts in le), at the lowest order in r2'/F,
the probabilities of quantum jumps to levels g, and g 2 are
larger than the probability for a coherent evolution toward
12) within the manifold W(N, N2) followed by a jump from
this level. Thus we may write

9P(e) - Fr+ (5.22)

At this point Eqs. (5.8), (5.10), (5.12), (5.16), and (5.22)
represent the elements required for calculation of the
probabilities of the periods contributing to a variation in
the probe photon number. For the stimulated Raman
processes we get

9(2 1) 9(29 il,) 2 1 12
gP(2,1) = 9(2)2P(1/2) = l22 1 + (28,/F 2 ')2 2f, + f,'

(5.23)

iR2 l 1 F,
R, l 2 1 + (28,/ 2') 2 + 2

(5.24)

while for the one-photon processes at resonance ( = 0)
we have

R,ifl, 2 F
QP(e, 1) = 9P(e)9(1/e) = 2l Q1 + 2 (5.25a)

il, 2 2f, +
2(1,e) = 9P(1)QP(e/1) = 2 (5.26a)

and far from resonance (1,11 >> r2')

2P(e, 1) = 9(e)9?(1/e) = 1l 2, + r2 (5.25b)

il, 2 F,
9(1,e) = P(1P(e/1) =rFR, 2F, +r F2 (5.26b)

Comparison of Eqs. (5.23) and (5.24) shows that

(5.27)
(1,2) (2,1)

FR2 F2R,

Q(in: j/in: e) ~ + r82j. (5.18b)

Finally, for a period starting in 192), in the limit 12'» B>2,
the most probable process is a coherent evolution toward
the state le) of the same manifold Y(N1, N2) followed by a
quantum jump toward gl or g 2 . Thus we may write

F, 
Q(in: j/in: 2) ;.- j + 8 2j- (5.18c)

In fact, such a relation could have been derived directly
from the exact equations (4.2), (4.5b), and (5.17), which
shows that Eq. (5.27) remains valid even if the assump-
tions made in Subsection 5.A were not valid. We return
to the physical meaning of Eq. (5.27) in Subsection 6.A.

C. Condition for Amplification
By substitution of the probabilities for the four coherent
evolution periods modifying the probe photon number into
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Eq. (4.16), or more simply into Eq. (4.1), the conditions re-
quired for realizing amplification may be determined.
We examine the condition (AN,) > 0 for the case = 0,
where, according to Eq. (5.23), the probability 9(2,1) of
the Raman gain process is maximum, whereas, according
to Eqs. (5.26), the probability of the one-photon loss pro-
cess is minimum. Making use of Eqs. (5.23)-(5.27) with
8, = 0, we obtain

(A N,) = 22 + F2 (12 B,
217 + , f2 , - -

x f2R, + f RRT - fR2 - F1R). (5.28)

The second term in parentheses on the right-hand side of
this equation, i.e., the one-photon process gain 9(e, 1), can
be neglected because it is much smaller than the other
terms. Thus the amplification condition (AN,) > 0 may
be written as

F2 R2I:-> 1 +-
'l R,

(5.29)

We may also consider separately the condition for having
the Raman gain larger than the Raman losses, Q(2, 1) >
gP(1,>2):

F2 B R2 - (5.30)
F, B,

Comparison, in inequalities (5.30) and (5.29), of the two
terms appearing on the right-hand side identifies the con-
tributions to the losses that are due to the one-photon and
the Raman processes.

D. Calculation of Average Populations
The occurrence of amplification without inversion also
entails an average population in level g, larger than the
sum of populations in levels g2 and e. Because we are
interested in the conditions for reaching amplification
without inversion in threshold conditions, we need the
populations Hk of levels |k) in the absence of the field L1,

i.e., to order 0 in (l. To perform a complete analysis, we
calculate the populations for both 12 = 0 and (12 $ 0-
Equations (4.15) represent the exact approach to the de-
termination of the populations. To order 0 in (1 and 12

we have Cik(T)1
2

= Sik exp(-GiT), and from Eqs. (4.15) we
deduce

~~P(1) ~ 9N2) (e
ITB, Il2 TB2 Ie T (5.31)

Making use of Eq. (5.21) and of the normalization condi-
tion for the populations,

Owing to the hypothesis >> R1, R 2, the population Ile
remains negligible in comparison with Il and H2.

For 12 different from zero and satisfying inequalities
(5.1), with (l, still equal to zero, the result of the first of
Eqs. (5.31), for I, remains the same. For the other popu-
lations we note that the eigensolutions of Eqs. (5.5) are
some states 2) and le) containing mainly states 12) and le),
with decay rates respectively equal to 2' and F. If a pe-
riod starts in state 12), then state 2) is mainly occupied,
and the integral appearing in Eq. (4.15) for 112 gives 1/172'.
On the other hand, if a period starts in state le), then state
le) is mainly occupied, and the integral appearing in
Eq. (4.15) for He gives 1/F. Thus we deduce

HIl== H X 2 " H e )T
TR, ~TF2' T

(5.34)

Making use of Eq. (5.21) and of the normalization condi-
tion (5.32), we obtain for the populations at the lowest or-
der in 12

II, 12 Ie
(fPf/B) = (r2/r2') (f /f)

1

= CIROB, + (f/1F2') + (fl/f) 
(5.35)

For this case the population in le) is also negligible. Fur-
thermore, if F and 2 are comparable, the condition
R, << 2' [see inequality 5.1(b)] entails that II, be larger
than I 2, so that the population of state g, is the largest
one, in agreement with the results of the Monte Carlo
simulations of Fig. 4(c).

Note that when these results for the populations are
combined with Eqs. (5.34) and (5.22) the following expres-
sion for the average time between two consecutive quan-
tum jumps, T is obtained:

QT'(1) QP(2) 9P(e) F, (1 1'\
T _= _ -+ - I +11~1R, 2 ~2' HeF211+ F2 \B, 17

+ F2 1
2f 1 + f 2F12

(5.36)

E. Condition for Noninversion
Using the expressions derived in the previous subsection
for the populations of the different states, we may now
determine the conditions to be satisfied in order to realize
noninversion between states g, and g2, i.e., Il > 112.
Making use of Eqs. (5.35), for the case in which 1, = 0
and (12 =# 0 and at the lowest order in this parameter, we
obtain for the noninversion condition

F2 >F2
B, F,

(5.37)

2Ik = 1,
k

we obtain

H, 112 Ile

(f /) = (2 /R2 ) -/F)

1

= (f,/Bi) + (f2/B) + lf

(5.32) For the case 12 = 0 and l, = 0, the noninversion condi-
tion results from Eq. (5.33):

R2 172

B, F,
(5.38)

One must compare these conditions for noninversion
(5.33) with that for amplification, inequality (5.29), for one to see

whether they are compatible. It is obvious from inspec-
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tion of inequalities (5.29) and (5.37) that these conditions,
valid for 12 # 0, are compatible and may be combined
into the double inequality

2 > 2 > 1 + R2- (5.39)
B, IF, B,

On the other hand, inequalities (5.29) and (5.38) are not
compatible, i.e., for (12 = 0 a population inversion is real-
ized between states g 2 and gi. It may be noticed that in
the treatment of lasers based on stimulated Raman gain
the populations are usually calculated for 1 = 12 = 0-
In contrast, in the scheme discussed here, the noninver-
sion condition is valid only when the field at frequency WL2
is applied. The reason for this difference is that in the
usual stimulated Raman gain fields at both frequencies
W)Li and WUL2 are far from resonance, so that the popula-
tions, calculated for (1, = 0, are equal for 12 = 0 or 12 #
0. In contrast, in the scheme of Ref. 12 that is considered
here the application of a resonant field at frequency C

0
L2

introduces radiative loss mechanisms that modify both
the gain condition and the population distribution.

It has been pointed out'7 that introducing a direct decay
rate between states g 2 and g,, even a small one between
those two states with the same parity, leads to a condition
of amplification without inversion that is valid for both
(12 = 0 or 12 # 0, as can be verified by application of the
present quantum-jump approach."' Also, for this configu-
ration the radiative losses introduced by the resonant field
at frequency IWL2 drastically modify the gain conditions.

E Agreement with the Optical Bloch Equations
We have confirmed that complete agreement exists
among the expressions we have derived, through the quan-
tum jump approach, for the gain condition, the noninver-
sion condition, the gain per unit time, and the results
obtained from the solution of optical Bloch equations for
the density matrix of the three-level system. We have
performed this comparison by solving the optical Bloch
equations numerically for different sets of atom and laser
parameters and by testing the equality between the gain
per unit time derived from such a numerical solution with
that obtained with Eq. (4.16). Furthermore, it has been
verified that the conditions for gain and noninversion
derived above coincide with those derived in Ref. 12 by a
solution of the density-matrix equations within the as-
sumptions specified in Subsection 5.A.

6. PHYSICAL DISCUSSION

In this section we discuss the physical content of the re-
sults derived in the previous section, and we show how the
quantum-jump approach provides interesting physical in-
sights into the physical mechanisms at the origin of ampli-
fication without population inversion.

A. Amplification Mechanism: Raman Gain versus
Raman Loss
The analysis of Subsection 2.E shows that there are two
physical processes permitting the probe field to be ampli-
fied: two-photon stimulated Raman processes g 2 - 1

and one-photon stimulated-emission processes e g.

We have seen in Section 5 that the one-photon processes
e -- gl make a negligible contribution if the assumptions
of Subsection 5.A are fulfilled. This shows that stimu-
lated Raman processes g 2 -> gl play a key role in determi-
nation of the amplification of the three-level system.

The balance between stimulated Raman gain and stimu-
lated Raman loss is determined by the ratio between
2P(2, 1) and QP(1, 2), which can be calculated from the exact
equation (5.27). One obtains

9(2, 1) R 2 fl (rate out of 2) x (rate in 1)
QP(1, 2) R1 2 (rate out of 1) (rate in 2)

(6.1)

It thus appears that the dissymmetry between the two
stimulated inverse Raman processes g2 -> gl and g, - 2

can come only from the dissymmetry between the rates of
the quantum jumps through which the system enters and
leaves these two states. The dissymmetry is completely
independent of the amplitudes of the two laser fields, i.e.,
for (1 and (2. This problem of the dissymmetry between
the transition probabilities of two inverse processes has
been discussed largely in the context of amplification
without inversion." In fact, if the incoherent fields re-
sponsible for the rates R and R 2 are thermal fields with
temperature E), and 02, we have

R = (6.2)
exp(hWei/kBE) - 1

with i = 1, 2, so that condition R1 2 > R2Fl implies that
01 > 02, which is just the inversion condition for the inco-
herent fields introduced in Ref. 12.

B. QUENCHING OF ABSORPTION

To have the probe field amplified, it is not sufficient to
have stimulated Raman gain larger than stimulated
Raman loss. The one-photon absorption loss g, -l e, de-
scribed by 9(1, e), must be weak enough that (AN,), given
by Eq. (4.1), remains positive.

In this respect it is important to note the small value of
9(1,e), which implies a quenching of the absorption pro-
cess, and to understand the physical origin of this quench-
ing. Consider for example the value of QP(e/1), which,
according to Eq. (5.16b), is equal to (l12/(122 at resonance
(8, = 0). A nafve argument would give, at resonance, an
absorption rate from gl to e equal to 171' = (l12/, equiva-
lent to the rate 72' = (122/F given in relation (5.1b). Mul-
tiplying this rate F,' by the mean lifetime T, = 1/R, of gl
would then lead to a value of 9P(e/1) equal to

rc@h(./1)n1 = 12 1 (1 2 R12'
R~ll)'I]Jnave - F B,-f1 RiiI, (6.3)

which, according to inequality (5.1d), is much larger than
the true value (l12/A122. If Eq. (6.3) were true, the one-
photon absorption loss would be too large to be overcome
by stimulated Raman gain.

Actually, the naYve argument leading to Eq. (6.3) is not
correct, because it neglects interference effect8 between
the two absorption amplitudes starting from gl and g2 -

The absorption from gl to e cannot be determined inde-
pendently of the presence of the field at frequency WuL2
that induces transitions from g2 to e. Such an interfer-
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ence between two absorption amplitudes, which repre-
sents the basis of the phenomenon of coherent population
trapping, 9 to be discussed in what follows, is essential for
realizing amplification without inversion. More pre-
cisely, let us introduce the following linear combinations
of the two states lg,, N, + 1, N2) and g2, N,, N2 + 1) be-
longing to the manifold % (N,, N2):

INC) = (( 2/f)g1,N1 + 1,N2) - (1,/l)Ig 2, N1, N2 + 1),
(6.4a)

Ic) = (l/W1)9g,,N1 + 1, N2) + (1 2/I)1g2, N, N2 + 1),
(6.4b)

where

a = (12 + 122)12 (25

with the last relation resulting from inequality (5.1c). In
the state JtNc), the two absorption amplitudes from
g,,N, + 1,N2) and g2 ,N1,N2 + 1) toward le,N1,N2 ) in-
terfere destructively. 9 Using Eqs. (2.3), we get

(e, N1, N2 IVAL 11ANC) = 0 . (6.6)

In contrast, these absorption amplitudes interfere con-
structively in the coupled state 14tc), since

(e, N1, N2IVALI14C) = hf(/2 = h(12/2. (6.7)

Inverting Eqs. (6.4), one gets the following relation be-
tween the state Igi, N, + 1, N2) and the states |4PNC) and
loc):

Ig,N1 + 1,N2) = (2/)lI'Nc) + ((1 l)'c). (6.8)

Since 1 << (12 = Q. Eq. (6.8) shows that g,, N, + 1, N2)
nearly coincides with IPNC). Thus it is only because
lg,,Nl + 1,N2) is slightly contaminated by 14tc) (with a
weight (1,2/(122) that a small absorption can take place
from state gj. One understands in this way why the ab-
sorption of one photon COL1 from g, is quenched.

In the previous discussion we have supposed the two de-
tunings 8, and 82 to be equal to zero. In such a case the
two states Igi, N, + 1, N2) and 1g2, N,, N2 + 1) are degen-
erate in the manifold Z (N,, N2). It follows that the two
linear combinations INc) and 1t'c) are, as Igi, N, + 1, N2)
and 1g2, N,, N2 + 1), eigenstates of the unperturbed atom-
laser photon Hamiltonian Ho (i.e., without the interaction
Hamiltonian VAL). Consequently, the state INC) is, at
resonance, a stationary state with respect to Ho. Such a
state thus is not only insensitive to VAL [see Eq. (6.6)] but
also does not evolve under the effect of Ho. If 8, is no
longer equal to zero, the two states Ig,,Nl + 1,N2) and
lg2, N,,N2 + 1), which are still eigenstates of Ho, are no
longer degenerate, so that |4/NC) is no longer stationary
with respect to Ho. There is a nonzero off-diagonal ele-
ment of Ho between |iNc) and |4tc), which is of the order of
h18. As a consequence of this coupling, a system initially
in INc) can be transferred by Ho into lic), from where it
can be excited to e, N,, N 2) by VAL [see relation (6.7)]. Out
of resonance ( =# 0), an atom in the state |PNc) can thus
absorb the probe field COL1. The critical value of al, char-
acterizing the breaking of the quenching of absorption, is
such that the off-diagonal coupling h18 induced by Ho be-
tween |4PNC) and lic) is of the order of the radiative width

/r2' of jIqc). One understands in this way why, when
1811 >> 172, the correct value of 9P(e/1), given by Eq. (5.16c),
coincides with the value deduced from the nalve argument
neglecting interference effects and leading to Eq. (6.3).

These general considerations are confirmed by the re-
sults of numerical calculations of 9P(1, e) and QP(2, 1) versus
8,, represented in Fig. 5. In Fig. 5(a), 82 is supposed to be
equal to zero. Near 8, = 0, in a very narrow interval with
a width of the order of 2', 9P(1,e) is strongly quenched,
whereas 9(2, 1) is enhanced. If 82 is no longer equal to
zero [Fig. 5(b)], the same effect (enhancement of the
Raman gain and quenching of the absorption loss) still ex-
ists, but it now occurs near 8, = 2, i.e., near the reso-
nance condition for the Raman processes.

We conclude this subsection with two remarks:

(i) A diagrammatic approach for understanding the
quenching of absorption in the A configuration of Fig. 1
was recently introduced.20 At the lowest order in l
there are two interfering diagrams, allowing the atom
to reach e from g, (see Fig. 5 of Ref. 20): the first dia-
gram corresponds to the direct one-photon absorption pro-
cess g, - e; the second corresponds to a three-photon
process that consists of a two-photon stimulated Raman
process g - g2 followed by a one-photon absorption pro-
cess g2 -* e. These two ways of reaching e in fact corre-
spond to the two terms on the right-hand sides of Eqs. (5.6a)
and (5.15). If the broad level e is considered a continuum,
the first and second interfering diagrams correspond, re-
spectively, to a direct transition to the continuum and to
an indirect transition through the narrow discrete level g 2
with a width 172'. In this way one can interpret the nar-
row structures appearing for P(1, e) in Fig. 5 as being
characteristic of a Fano profile.

Another example of quenching of absorption by destruc-
tive interference between two physical processes was re-
cently proposed for explaining the physical origin of
amplification without inversion near the central reso-
nance of the Mollow absorption spectrum.2'
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(ii) The quantum interference effects discussed in this
subsection play an equivalent role in the absorption and
stimulated-emission processes between e and gl. In fact
the stimulated-emission process from le,N1,N 2 ) to
Igi, N, + 1, N2) depends on the contamination of ic) in
the linear combination of Eqs. (6.4), exactly as in the ab-
sorption process. Another simple way of getting this re-
sult is to use Eq. (5.12), which shows that 9P(l/e) and G(e/l)
have the same 81 dependence, reflecting the presence of
quantum interference effects. Note also that QP(l,e) and
QP(e, 1) are not connected by an equation similar to
Eq. (6.1), because Q9(1) and Q9(e) are not related by an exact
equation analogous to Eq. (5.17).

C. Dissymmetry between the One-Photon Absorption
Processes from g, and g2
In the previous subsection we have seen that the absorp-
tion of the WL1 field is quenched by the presence of the WOL2

field. There is no similar effect for the absorption of the
WL2 field, which is not quenched by the presence of the COL1
field. Such a dissymmetry arises because we have sup-
posed that 1, << 12, so that the equation equivalent to
Eq. (6.8),

Ig2,Nl,N 2 + 1) = 12/)Ic) - ((1,/)NC), (6.9)

shows that Ig2, N1, N2 + 1) nearly coincides with the cou-
pled state 'Pc). There is therefore a one-photon absorption
rate from g2 that is correctly described by the parameter
12' introduced in inequality (5.1b).

The dissymmetry between QP(l,e) and 9(2,e) is impor-
tant for achieving amplification without inversion. We
have seen in Subsection 6.A that the balance between
stimulated Raman gain and stimulated Raman loss is in-
dependent of the amplitude of the two laser fields, i.e., of
(1, and 12. When 1, and (12 are different from zero,
with (1 << (12, the population of g, is not modified appre-
ciably because of the quenching of absorption from g, dis-
cussed in Subsection 6.B. In contrast, if 172' >> R2, as we
have supposed in inequality (5.1b), the absence of quench-
ing of absorption from g2 results in the fact that the popu-
lation of g2 is considerably reduced from its value for
(12 = 0, so that g2 becomes less populated than gi.

7. CONCLUSION

In this section we summarize the main results, which
have been obtained by applying a quantum-jump approach
to the model of reference.' 2 The respective contributions
of the various physical processes responsible for the ab-
sorption or the amplification of the probe field WL1 have
been identified. Analytical expressions have been ob-
tained for the probabilities of these processes in threshold
conditions for the field L, and in the limit where the field
COL2 is strong enough for modifying the population of level
g2 but also weak enough for not saturating the transition
92 e.

In such conditions amplification is due to the two-photon
stimulated Raman processes g2 -> g1 , which predominate
over the inverse processes g - g2 if there is a proper dis-
symmetry between the rates in and out of g, and g2 [see
Eq. (6.1)]. Quantum interference effects play an essen-
tial role in the limit 1, << 12 by quenching the one-

photon absorption processes g, -> e. Within the same
limit they do not change the one-photon absorption pro-
cesses g2 -> e, which can thus deplete g2, since we have
assumed that the corresponding coherent absorption rate
I72' is larger than the pumping rate R 2 of the incoherent
fields. One can thus understand in this way how the
atom can spend most of its time in g,, which then becomes
more populated than g2, without the introduction of too-
large absorption losses that otherwise would prevent the
amplification of the field LM-

In this problem interference effects do not introduce a
dissymmetry between the one-photon absorption processes
g- e and the reverse stimulated processes e -o gi.
They do not modify QP(e,l)/QP(l,e). In contrast, they do
introduce a dissymmetry between the one-photon absorp-
tion processes g, - e and g2 - e starting, respectively,
from g, and g2. They modify 9P(1, e)/QP(2, e).

The quantum approach presented in this paper could be
extended in several directions. We focused our attention
here on average quantities such as the mean rate of in-
crease of N, represented by the dotted line of Fig. 4(a).
Using Monte Carlo simulations or analytical calculations,
one could investigate fluctuations around mean value and
related physical effects such as laser linewidth and time
correlations. Including, in the Monte Carlo simulations,
the variations of the Rabi frequency 1 that are due to the
increase of N,, one could also explore nonlinearities, for
example in the laser startup. Finally, regimes other than
the one considered here (with both detunings 8, and 82

different from zero, saturation of the transition g 2 e,
and so on) could be analyzed for determination of the opti-
mal conditions for experimental investigations.

APPENDIX A: NORMALIZATION OF THE
DELAY FUNCTIONS

In this appendix we prove Eq. (3.5), which is the normal-
ization condition for the delay functions. By use of
Eq. (3.4), that condition may be written as

IWij()dr = Gl Icij()l 2dr = 1 for all i. (Al)
j o J 0

The coefficients cii obey differential equations derived
from the Schrodinger equation corresponding to the effec-
tive Hamiltonian (3.2). For the off-diagonal elements of
that Hamiltonian, which are the Rabi frequencies associ-
ated with the Hermitian atom-laser interaction operator,
the following notation is introduced:

b* = k = k.Heff (A2)

The equations for the coefficients cij may be written as

do (r) = -2 + ij) cj - i 2 cih with j = 1,2,e,

(A3)

where we have introduced 8
e = 0. The initial conditions

cii(O) depend on the coherent evolution period, but they
satisfy the normalization condition

|Cic(O)2 = 1. (A4)
j
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Using Eq. (A3) and its complex conjugate and summing
over the index j, we obtain

d cij(), = _ Gjlcij(7)12

- i [cii*(T) 2 Cik(r) - Cik*(r) k*Cij(f)

= -E Gjlcij(7)l2. (A5)

Let lea) be the eigenvector of H with eigenvalue Ea:

Hl<oa) = EalO.). (B7)

Since H is not Hermitian, its eigenvalues Ea are not real
and its eigenvectors la) are not orthogonal.

We may use an expansion of la) on the orthonormal
basis i) with coefficients Cai:

'ka) = ECaili). (B8)

We have used Eq. (A2) to replace Q1ki* and exchanged thej
and k indices to find that the second term on the right-
hand side vanishes. Integration of Eq. (A5) on the (0,T)
interval then leads to

> |c (T)12 = > ICj(0)12 - > GJcCrT) dTiJ J 0 

- 1- EGj Cij(T')I2d,, (A6)
i °

where use has been made of Eq. (A4). If we let T tend to X
and if we use the fact that cij(+o) = 0 for allj, because at
T= +- the system has certainly left the manifold
(Ni, N2), we get Eq. (Al).

APPENDIX B: SYMMETRY OF THE cjj
COEFFICIENTS

In this appendix we prove that, if the expansion of l'p(t)) on
an orthonormal basis i) is used,

wtth = E cii(t)nta c (B1)
i

with the initial conditions

cjj(t = 0) = ij (B2)

in order to describe the time evolution under a Hamilto-
nian represented by a matrix H such that

(H)* = (H)t, (B3)

then we have the following symmetry relation:

cij(t) = cji(t). (B4)

Owing to Eq. (3.3), this symmetry relation may also be
written as

From this expansion we may introduce a new vecotr I a)
defined as

I ) = 2 (Cai)*li). (B9)

This vector has several interesting properties. Inserting
expansion (B8) into Eq. (B7) and taking the complex con-
jugate, we get

H*l ¢.) = Ea*l 0.). (B10)

From the adjoint of this relation and from Eq. (B2), we
derive

(4aIH = Ea(Ja. (Bll)

The dual set of vectors lka) and Jka) is called a biorthog-
onal set.22 It is always possible to normalize 'ka) in such
a way that

(0 loa) = 1. (B12)

We now demonstrate that, for nondegenerate eigenvalues
Ea and Ep, we have

(9plo'a) = S P (B13)

Consider (0k91H14ka). Applying Eqs. (B7) and (Bll), we get

(sbplHloa) = Ea( p I ) = Ep(' I 1 a). (B14)

The equality between the last two terms shows that if
E. $ Ep then ( p k) = 0, which proves Eq. (B13).

We show now that the operator lplop) ( 'kp is the identity
operator I. Applying this operator to any eigenvector l4),
we obtain

1(013) )_ I l(A.) _ 10p)Bap = I'a) (B15)

(jlexp(-iHt/l1) li) = (ilexp(-iHt/1)l j). (B5)

In our analysis the effective Hamiltonian Heff, given by
Eq. (3.2), has for off-diagonal elements the Rabi frequen-
cies associated with the Hermitian atom-laser interaction
operator, as in Eq. (A2). The diagonal elements of the
effective Hamiltonian

(B6)

contain an imaginary part describing the departure rate
Gi from state li) that is due to the dissipative processes.
Thus the Hamiltonian Heff satisfies the conditions ex-
pressed by Eq. (B3).

If the lka)'s form a complete set, Eq. (B15) implies that

2 lop) ( 001 = I.

Making use of Eqs. (B7) and (B16), we get

H = Ea1a) (al,
a

exp(- i~tlh) = E exp(- iEat/h) l0.) ( a -

(B16)

(B17)

(B18)

Let us now calculate the amplitude (jlexp(-ift//1)li). Us-

Cohen-Tannoudji et al.
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ing Eqs. (B18), (B8), and (B9), we derive

(iJexp(-iHt//1)Ji) = E exp(-iEat//)(j I ka)( (a I)
a

= exp(-iEat//)cajcai
a

= (ilexp(-iHt/1)I j), (B19)

since i and j play a symmetric role in the second line.
This proves Eqs. (B5) and (B4).
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