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We present a theoretical analysis of a new one-dimensional laser-cooling scheme that was recently demonstrated on
a beam of metastable *He atoms. Both internal and translational degrees of freedom are treated quantum
mechanically. Unlike semiclassical approaches, such a treatment can be applied to situations in which the atomic
coherence length is of the same order of or larger than the laser wavelength, which is the case for atoms cooled below
the one-photon recoil energy. We introduce families of states that are closed with respect to absorption and
stimulated emission, and we establish the generalized optical Bloch equations that are satisfied by the correspond-
ing matrix elements. The existence of velocity-selective trapping states that are linear combinations of states with
different internal and translational quantum numbers is demonstrated, and the mechanism of accumulation of
atoms in these trapping states by fluorescence cycles is analyzed. From a numerical solution of the generalized
optical Bloch equations, we study in detail how the final atomic-momentum distribution depends on the various
physical parameters: interaction time, width of the initial distribution, laser detuning, laser power, and imbalance
between the two counterpropagating waves. We show that the final temperature decreases when the interaction
time increases, so that there is no fundamental limit to the lowest temperature that can be achieved by such a

method. Finally, possible extensions of this method to two-dimensional cooling are presented.

1. INTRODUCTION

Laser cooling uses momentum exchange between photons
and atoms to reduce the kinetic energy of atoms. Since each
elementary momentum transfer is equal to the photon mo-
mentum hk, the one-photon recoil energy Eg = h2k%/2M (M
is the atomic mass) represents an important landmark in the
energy scale. Recent developments in laser cooling have
permitted researchers to reach the regime where the equilib-
rium atomic kinetic energy becomes of the order of a few Eg
(Refs. 1-3) or even smaller than Ep.* In this new regime,
where the elementary momentum transfer can no longer be
considered a small quantity, the analogy between atomic
motion in laser light and Brownian motion breaks down, and
the Fokker-Planck description of laser cooling is no longer
valid. A new theoretical treatment is thus required.

The purpose of this paper is to present a quantitative
analysis of laser cooling below the one-photon recoil energy
by velocity-selective coherent population trapping. A one-
dimensional laser cooling of this type was recently demon-
strated on a beam of metastable *‘He atoms.? Here we
present equations of motion that permit a quantitative in-
terpretation of such a cooling scheme, and we discuss their
physical content as well as their solutions. The theoretical
approach followed here can be also useful for the analysis of
other situations in which temperatures of the order of the
one-photon recoil energy are approached. For example,
similar equations can be found in the analysis of laser-cool-
ing schemes below the Doppler limit based on gradients of
laser polarization® or in the investigation of the lowest tem- .
perature that can be reached by cooling with ultranarrow
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atomic transitions for which AI' < Eg, where I' is the natural
width of the line.®

To describe atomic motion in laser light, one usually starts
from equations of motion that describe the coupled evolu-
tion of the internal and external (translational) atomic de-
grees of freedom as a result of resonant exchanges of energy
and momentum between photons and atoms. Because of
the discrete character of the photon momentum Ak, these
equations are finite-difference equations. They are usually
transformed into coupled partial differential equations
through an expansion of the density-matrix elements in
powers of hk/Ap, where Ap is the width of the atomic-mo-
mentum distribution. For sufficiently slow atoms, one also
makes an expansion in powers of kAp/MT (the ratio between
the Doppler shift and the natural width). Finally, after an
adiabatic elimination of the fast internal variables, one gets,
for the atomic Wigner function, a Fokker—Planck equation
that allows one to consider atomic motion in laser light as a
Brownian motion and that provides theoretical expressions
for the friction coefficient v and the diffusion coefficient D
and consequently for the equilibrium temperature T (kgT ~
D/M~).T

The previous theoretical scheme is valid only if the expan-
sion parameter hk/Ap is very small, i.e., if the atomic coher-
ence length A/Ap is small compared with the laser wave-
length A = 2x/k. When the energy kgT = p%/2M becomes of
the order of or smaller than the recoil energy Er = h%k?/2M,
we reach a new regime where the coherence length A/Ap
becomes longer than the laser wavelength A. It is then no
longer possible to consider the atomic wave packet to be well
localized in the laser wave and to describe its motion by a
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Fokker—Planck equation. We must return to the full quan-
tum coupled equations of motion. This is precisely what we
do in this paper.

The paper is organized as follows. In Section 2 we give the
level scheme and the laser configuration that are used in the
new laser-cooling method, whose principle is briefly ex-
plained. We show in Section 3 that, for two counterpropa-
gating o+ and o_ circularly polarized laser waves, the ab-
sence of redistribution of photons between the two waves
allows us to introduce a finite number of states, labeled by
external and internal quantum numbers, and that are cou-
pled by absorption and stimulated-emission processes.
These closed families of states are the basic ingredient of this
paper. In Section 3 we give the equations of motion of the
density-matrix elements within such a family as a result of
absorption and stimulated emission, and in this way we
interpret the principle of velocity-dependent coherent pop-
ulation trapping. Spontaneous emission plays an important
role in redistributing atoms among the different families.
The corresponding equations are established and discussed
in Section 4. 1t is then possible to write in Section 5 the full
equations of motion as well as of the initial state and the
detection signal. Numerical solutions of these equations are
presented in Section 6, and the influence of the various
physical parameters is discussed in detail. Finally, a possi-
ble extension of this new cooling scheme is considered in
Section 7.

2. SIMPLE PRESENTATION OF THE NEW
LASER-COOLING SCHEME

The new scheme uses a three-level A configuration in which
two degenerate ground sublevels g, are coupled to an excited
level eq by two counterpropagating o and o_ polarized laser
beams with the same frequency wy, [Fig. 1(a)]. Inthe experi-
ment described in Ref. 4, g are the two Zeeman sublevels m
= 41 of the 23 S, state of *‘He, whereas e is the m = 0 Zeeman
sublevel of 22 P; [the Clebsch-Gordan coefficient between
23 S; (m = 0) and 22 P; (m = 0) vanishes, permitting us to
ignore the 2% S; (m = 0) state in what follows].

First consider an atom at rest. For such an atom the two
apparent laser frequencies are equal, and resonant processes
involving one interaction with each beam can take place
between g+ and g_. We can then show that there is a coher-
ent superposition of g4 and g_ that is not coupled to ey by the
laser excitation. Such a situation occurs when the two am-
plitudes for absorbing a ¢4 or a o— photon interfere destruc-
tively. For example, if the two excitation amplitudes g+ —
ep and g— — e; are equal, the nonabsorbing coherent super-
position of g4 and g_ is just (lg+) — lg-))/y2. An atom put in
such a superposition of states remains trapped there indefi-
nitely since it can no longer absorb light. Such a mechanism
of coherent population trapping owing to destructive inter-
ference between two excitation amplitudes is actually quite
general and can give rise to narrow resonances. It was dis-
covered in 1976,% and several theoretical treatments based
on optical Bloch equations® or on the dressed-atom ap-
proach!®!! have been given.

Coming back to the scheme of Fig. 1(a), we suppose now
that the atom is moving along Oz. The Raman resonance
condition is no longer fulfilled as a consequence of opposite
Doppler shifts on the two counterpropagating laser beams.
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Fig. 1. Three-level A configuration. (a) Two degenerate ground
sublevels g are coupled to an excited level e by two counterpropa-
gating o4 and o- circularly polarized laser beams with the same
frequency wy; the corresponding coupling matrix elements are K, /2
and K_/2 in frequency units. (b) Closed family of states coupled by
interaction with the two lasers. Each state is characterized by its
internal quantum number and its linear momentum along Oz.

It follows that the two excitation amplitudes g+ — egand g-
— ey can no longer interfere destructively. This simple
argument explains how the phenomenon of coherent popu-
lation trapping can be velocity selective for appropriate laser
configurations.'? The new cooling scheme discussed in this
paper consists of accumulating atoms in the zero-velocity
nonabsorbing state where they remain trapped. To popu-
late this state, we take advantage of the momentum redistri-
bution due to spontaneous emission, which allows certain
atoms to be pumped optically from the absorbing velocity
classes into the nonabsorbing state. Since the recoil of the
last spontaneous-emission photon is part of the cooling
mechanism, the one-photon recoil energy is not a limit, and
the final temperature is limited only by the coherent interac-
tion time.!? Note also that, unlike other cooling schemes,
our mechanism, based on a Raman resonance condition,
does not depend on the sign of the laser detuning.

However, the previous analysis is too crude. Since the
two laser waves propagate in opposite directions, the phases
of the two electric fields, and consequently the phases of the
two excitation amplitudes g- — ey and g4 — e, vary as
exp(ikz) and exp(—ikz), respectively. It follows that, for an
atom at z, the nonabsorbing superposition of states must be
written as

% [exp(ikz)lg, ) — exp(—ik2)lg_)] 2.1)

and depends on z. On the other hand, when the atoms get
very cold (Ap « hk), their coherence length becomes large
compared with A, and it is no longer possible to restrict the
discussion to atoms localized at a given z. This shows that
the nonabsorbing state must actually be described by an
extended spinor or vector wave function of the type of ex-
pression (2.1), which exhibits strong correlations between
internal and external degrees of freedom. A more rigorous
analysis thus requires the introduction of a basis of states
involving both internal and translational quantum numbers
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and that we expand the atomic state vector (or density ma-
trix) on such a basis. That is what we do in Section 3.

3. CLOSED FAMILIES OF STATES COUPLED
BY ABSORPTION AND STIMULATED
EMISSION

A. Physical Idea and Notation
Let us introduce the state |eg, p), which represents an atom
in the excited state ey with a linear momentum p along Oz

. = D, where p, is the atomic momentum). Because of
angular-momentum conservation, the interaction with the
o4 circularly polarized wave (stimulated emission or absorp-
tion) can couple together only egand g—. On the other hand,
because of linear-momentum conservation, such an interac-
tion with a wave propagating toward +0z involves the ex-
change of a photon of momentum +#k and thus can couple
only leg, p) and lg_, p — hk). Similarly, the interaction of
the atom with the o_ circularly polarized wave propagating
toward —0z can couple only leg, p) and lg4, p + hk) [Fig.
1(b)].

We are thus led to introduce a family of three states
coupled by absorption or stimulated emission:

F(p) = {leg, ), lg_, p — hk), lgs, p + hk)}. (3.1)

As long as spontaneous emission is not taken into account,
this is a closed family of coupled states.

When considering the evolution of the density-matrix ele-
ments due to absorption and stimulated emission, strong
selection rules appear. For instance, (e, p’loleq, p”) is cou-
pled only to (g., p’ + hklkeley, p”) and (e, p’lolgs, p” + hk).
A further simplification happens because all the interesting
quantities that we need to calculate (see Section 5 below) are
terms such as (eq, plaleo, p), (g+, plolgs, p), (g-, p lolg-, p),
and (g_, p — hklolg,, p + hk). These terms are coupled only
to terms internal in the family. For example, (e, ploleo, p)
is coupled only to (g4, p + hkloley, p) and (e, plolgs, p £
hk). In summary, the evolution equations relevant to the
problem under discussion will involve only density-matrix
elements defined inside a family #(p). For such elements,
we use the simplified notation,

Uee(p) = (80, p|a|80, P (3.2a)
0.4(P) = (84, p * hklolg,, p + hk), (3.2b)
JE;I:(p) = (eo, plo—lgis P i hk>’ {3.20)

04(p) = [0,4(P)]*. (3.2d)

We show below that, although spontaneous emission couples
different families, it involves only coupling with terms of the
type defined in Egs. (3.2). For instance, ¢..(p) can decay
only to terms such as o4+(p’) and o——(p’). The elements
defined in Egs. (3.2) are thus the only ones that we have to
consider.

Remarks

(i) The notion of closed families of states is central in the
analysis presented in this paper. It must be emphasized
that closed families exist only for specific level schemes and
laser wave configurations.!* In the standard situation when
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a two-level atom interacts with two counterpropagating lin-
early polarized waves, le, p) is coupled to lg, p — Ak) and |g, p
+ hk), which are themselves coupled to le, p), le, p — 2hk),
and le, p + 2hk), etc. Insuch a situation, each family has an
infinite number of coupled states. Families of this type
have been already considered (see, for example, Ref. 15).
(ii) The quantity p appearing in Eq. (3.1) or Egs. (3.2) is
just a label used to index a family. We will see below that it
can be interpreted as the total linear momentum (modulo
hk) of the atoms + laser field system, which is an invariant
quantity of the family. ‘

B. Evolution Equations

We now write the equations describing the evolution of the
atom interacting with the laser field, taken as a classical
field. Here we do not yet take spontaneous emission into
account, and we consider only absorption and stimulated-
emission processes. The corresponding Hamiltonian is the
sum of two parts:

H=H,+V, (3.3)

where H4 is the Hamiltonian of the free atom and V is the
laser-atom coupling. H 4 is the sum of the kinetic and inter-
nal energies:

2

H,= 213} + hwgle,) (el (3.4)
In order to simplify the equations, we consider here the case
when the two ground states |g4) and |g_) have the same
internal energy, taken equal to zero. The formalism devel- -
oped in this paper could easily be generalized to the case
when the energies E,;, and E,_ are different, and the physics
would be the same provided that the two laser frequencies
differ by (E,, — E,_)/h.

The coupling Hamiltonian is

V=-D-E(,t), (3.5)

where D is the electric-dipole-moment operator and E(z, t)
is the classical electric field:

E(z, t) = Yle, E, expli(kz — wt) + c.c}
+ Yole_E_expli(—kz — wt) + c.cl}, (3.6)

(where c.c is the complex conjugate). The first term corre-

" sponds to a a4 circularly polarized wave propagating toward

z > 0, while the second one corresponds to a o— circularly
polarized wave propagating toward z < 0 [ex = F(e, + ie,)/
V2]

The coupling of the atom with each of these waves is
characterized by the Rabi frequencies K; and K_:

d.E,

K. =
* A

» dy = (egle, - Dlg.). (3.7a)

Note the selection rules

(eole, - Dlg,) = (egle_-Dlg_) =0, (3.7b)
which can be interpreted in terms of conservation of angular
momentum. With the rotating wave approximation, V can
be written as
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hK, : hK_
V= I:__?-_ ]€0>(g—| exp(ikz) + |€'(}) <g+|

x exp(—-ikz)] exp(—iw;t) + H.e. (3.8)

(where H.c. is the Hermitian conjugate).
Note that in Eq. (3.8) z is an operator acting on the exter-
nal degrees of freedom of the atom. Using the relation

exp(tikz) = Z lp)(p = hkl,

we finally get

V= Z[ 1€U,P)<g y B hkl"‘__leu,P)(ghP"'hkl]

X exp(—iw;t) + H.e. (3.9)

It clearly appears from Eq. (3.9) that le, p) is coupled only to
lg_, p — hk) and |g4, p + hk). Aswas already emphasized in
Subsection 3.A, the atom-laser interaction can induce tran-
sitions only inside the closed family #(p). The evolution of
such a family is thus described by a closed set of equations
among the nine density matrix elements characterizing the
family at time ¢ [Eq. (3.2)].

In order to eliminate time-dependent coefficients, it is
useful to make the usual transformation

Go1(p) = 0,4 expliogt),
o4—(p) = a,._(p),
5:{p)=0;p) (I=+—e). (3.10)

The evolution equations are then

[g~ (p)' =—iK* _(p) + c.c.
dt e |Ham 2 %P N
d5@] =" .+
dt 044 _Hm - t 9 0’e+ C.C,
ds {p)_ =i + (p)-f-i—Ltt'I (p) + c.c
dt ** _|Ham 2 - * '
ey willaen v Yo @
dt et _Ham L M R et
K_ K.
-1 ? [O‘++(_p) TP —i— U-+(P),

[% ae_(p}]nam = i(BL il % + wg)&,_,_(p)

K. K_
- l’ o [‘}'——(p) aee{p ] B 7 a—+¥(P),

d_ — K.* + o N
[E 0'_+(P):|H8m e Ger(p) +1i 5 Oe- (p)
+ 2ik ;—; i_.+(p), (3.11)

and three complex-conjugated equations.
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These equations generalize the usual optical Bloch equa-
tions by including external quantum numbers.’® We have
called wg = hk?/2M the recoil frequency shift and 6, = w;, —
wpis the laser detuning. Note that kp/M is the Doppler shift
associated with the velocity p/M.

C. Velocity-Selective Coherent Population Trapping
The evolution equations [Egs. 3.11)] allow us to understand
how coherent population trapping is velocity selective in the
configuration considered here. Let us consider the follow-
ing two orthogonal linear combinations of |g4, p + hk) ‘and
lg-, p — hk):

= - - — Bk
|\"’NC(P}> (|K+|g+ |K_|2)lf2 Fg P )
K+
(KL + K2 g4, p + hk), (3.12a)
s
Welp)) = ng—’p — hk)
K__*
lg,, p + hk). (3.12b)

S [ s SR
{|K+12 + |K_|2)1.-"2

The reason for introducing l¥nc(p)) is that, according to Eq.
(3.9), the transition matrix element between [¢nc(p)) and
leg, p) vanishes:

(e, PlVI’J’N(;(P}) =0.

Consequently, an atom in the noncoupled state [Ync(p))
cannot absorb a laser photon, and it cannot be excited to
leg, p). A similar calculation gives

(3.13a)

(eq, PIVIY.(p)) = % (K> + |K_|*»'? exp(—iw;t) (3.13b)

and shows that [¢c(p)) is coupled to the excited state.

We now suppose that an atom has been prepared at a
certain time in [¢nc(p)), and we study its subsequent evolu-
tion. Equations (3.11) and (3.12) lead to the following equa-
tion of motion for (Ync(p)lolync(p)):

L (nctpllolyncip)) = —ip 2 _MOE
’J"NCP U\&NC M|K+|z+|K |2

X (Ync@ole(p)) + cc. (3.14)

Suppose first that p = 0. The right-hand side of Eq. (3.14)
then vanishes. This means that an atom prepared in
[¢nc(0)) cannot leave this state either by free evolution (ef-
fect of the free Hamiltonian H4) or by absorption of a laser
photon (effect of the laser-atom coupling V). Although we
have not yet taken spontaneous emission into account, it is
clear also that the atom cannot leave [¢nc(0)) by spontane-
ous emission since this state is, according to Eq. (3.12a), a
linear combination of two ground states lg; ) and |g-), which
are both radiatively stable. To conclude, the state |[¥nc(0))
is a perfect trap since an atom prepared in this state remains
there indefinitely.

On the other hand, if p = 0, Eq. (3.14) shows that thereisa
coupling proportional to kp/M (coming from the free Hamil-
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tonian H,) between |[¢nc(p)) and [c(p)). This means that
an atom initially in hfnc(p)) can be transferred by Hj to
[c(p)) and from there to leg, p) by V [see Eq. (3.13b)]. The
state [yc(p)) cannot therefore be considered a perfect trap
when p # 0, since excitation by the laser can take place after
an intermediate transition to [¢c(p)). Interpreting p/M as
the atomic velocity in the excited state of the family F(p), we
thus see that coherent population trapping in lnc(p)) is
velocity selective, since it happens only for p = 0.

The motional coupling between |¢nc(p)) and l¥c(p)) ap-
pearing in Eq. (3.14) can also be interpreted by noticing that
when p # 0 the kinetic energies of |g_, p — hk) and lg4, p +
hk) differ by 2hkp/M. It appears clearly from Egs. (3.12)
that, in this case (p = 0), [¥nc(p)) and lYc(p)) are not
stationary with respect to H4; consequently H4 induces an
oscillation between these two states. It is easy to show that
the Rabi frequency of this oscillation is just 2kp/M, which is
also the beat note between the two Doppler-shifted laser
frequencies. The visibility of this oscillation is maximum
(equal to 1) when the intensities are equal (K| = |[K_]).

Remarks

(i) The various couplings between [yc(p)}, lWnc(p)), and
leg, p} due to Hy and V are represented in Fig. 2. |yc(p)}
and lync(p)) are coupled by the motional term kp/M;
l¥c(p)) and leg, p) are coupled by the atom-laser interaction
K/\2 (here we take K; = K_ = K). Although we have not yet
introduced spontaneous emission, we know that |eg, p) has a
natural width I". It follows that for a resonant excitation (6,
= 0), and in the weak-intensity limit (K <« T'), the Rabi
coupling K/y2 between |¢c(p)) and the broad state leo, p)
gives to the state [¢c(p)) a finite width

I = 2K%T. (3.15)

The same argument shows that the motional coupling kp/M
between [¢nc(p)) and the state |yc(p)) with a width I gives
to [¥nc(p)) a finite width ', which, in the limit kp/M « I7,
is equal to

_ 2(kp/M)T

r %0

(3.16)

I'” is the probability per unit time of an atom’s leaving the
state [Ync(p)). The smaller p, the longer the time an atom

€0.P
r!
K
V2
k /M "
M P _ b
b, (p) by P)

Fig. 2. Couplings and level widths for the three states ley, p),
[¢c(p)), and [¥nc(p)) of the family F(p). lyc(p)) is coupled to ley,
p) by the laser (coupling matrix element K/\2). l¥nc(p)) is coupled
to |gc(p)) by the motion (coupling matrix element kp/M). As a
result of these couplings, [Yc(p)) and lnc(p)) acquire finite widths
T’ and I', respectively (departure rates). T is the natural width of

leo, p).
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can be trapped in [¢nc(p)). Consider an interaction time 0.
Only atoms with p such that I'”0 < 1, i.e., such that

kp\: = K*
(M) <o (3.17)
can remain trapped in the noncoupled state during ©.

(ii) One can give a classical picture of velocity-selective
coherent population trapping for the situation considered
here. The electric field [Eq. (3.6)] is linearly polarized at
every point, with the direction of polarization changing with
z as a helix of pitch . On the other hand, for a state
[¥nc(p)) the transition electric-dipole moment between the
state [ync(p)) and the excited state leg, p) also makes a helix
with the same pitch A, orthogonal everywhere to the electric
field, so that the coupling is zero. For a state |¥c(p)) the
transition-dipole moment makes a similar helix shifted by A/
4, and it is parallel everywhere to the electric field, so that
the coupling is maximum. Suppose now that an atom is in
the state l¥nc(p)) at a given time; the transition-dipole-
moment helix will move along Oz with a velocity p/M, so that
the probability of the atom’s being in lYc(p)) (ie., to be
excited to leg, p)) will be modulated at the frequency 2kp/M.
If p = 0, the transition electric-dipole-moment helix does
not move. It remains orthogonal to the electric-field helix
indefinitely, and the atom cannot be excited to leg, p): it is
thus trapped in [¥nc(0)).

4. SPONTANEOUS EMISSION

A. Redistribution among Families

In Section 3 we showed that an atom prepared in [¢nc(0)}
cannot leave this state by any process. We now have to
explain how atoms can be prepared in such a state. In this
respect, spontaneous emission plays a basic role since it
allows atoms to jump from one family to another one. In
particular, atoms can be optically pumped from a family F(p
# 0) into the family F(p = 0) where they may get trapped in
the [¥nc(0)) state.

Consider an atom in the excited state |eg, p) of the family
F(p). It can emit by spontaneous emission a fluorescence
photon in any direction. Suppose that the fluorescence
photon has a linear momentum u along Oz (u can take any
value between —hk and +hk). Because of the law of mo-
mentum conservation, the atomic momentum changes by
—u, so that, in such a process, the atom makes a transition
from leo, p) to lg+, p — u) [Fig. 3(a)] or to lg—, p — u) [Fig.
3(b)] or to a linear superposition of these two states. Note
that the two states lgs, p — u) do not in general belong to the
same family as |eg, p): lgs, p — 1) belongs to F(p — u — hk)
and lg_, p — u) to F(p — u + hk) (see Fig. 3). Spontaneous
emission can thus redistribute atoms from the family #(p) to
any family #(p’), with

p — 2hk < p’ < p + 2hk. (4.1)

This diffusion in the family space provides the mechanism
for accumulating atoms in the family F(p = 0).

B. Corresponding Terms in the Master Equation

The first effect of spontaneous emission is the usual damp-
ing of populations and coherences involving the excited
state!”
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€p,p-V -hk €o.P
Flp-u-hk)”
/

’ (@
g,,p-lj~2hk g_p-hk g.p-u  g,pshk
egp eqp-ushk
s \g:(p-u-phk) ®)

g-p-hk  g-p-u g, prhk g, p-u+2hk

Fig. 3. Redistribution among families by spontaneous emission.
Spontaneous emission of a photon with linear momentum u along
Oz (wavy lines) can bring an atom from the family F(p) (solid lines)
to the family F(p — u — hik) [dashed lines in (a)] or to the family F(p
— u + hk) [dashed lines in (b)]. Each state is represented by a point
with an abscissa equal to its atomic momentum along Oz and by its
internal quantum number e, (upper horizontal line) or g, (lower
horizontal line). The label of a family is the atomic momentum of
its excited state.

[% 7P| = ~Tou(0), (4.2a)
[% 7P| =~ g a..(0); (4.2b)
[% 0 ®)| =~ g ) (4.2¢)

The corresponding feeding terms in the ground state must
take into account the redistribution among families intro-
duced above. Consider, for example, [do+(p)/dt)s,, which
gives the rate at which lgy, p + #k) can be populated by
spontaneous emission. Such a state is populated from leg, p
+ hk + u) [see Fig. 3(a)] with a rate T'+H(u), where H(u) is
the normalized probability

+hk
j duH(u) =1

—hk

that the emitted photon has a momentum u along Oz and T,
is the deexcitation rate from the excited state e to the state
&+; the oscillator strength of the transition ey — g, having
been taken into account:

T, = I/2.

Summing over u, one gets!?

d I [+hk ) o

[E a'++(p):| "5 J duH(u)o,.(p + Ak +u).  (4.3a)
sp —hk )

A similar argument [see Fig. 3(b)] gives

d i, T +hk
[E a__(p):Lp =y ]_hk duH)o,.(p + u—hk). (4.3b)

The kernel H(u) depends on the radiation pattern for the
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leo) — lg+) transitions.’® For instance, in the |/ =1, m = 0)
— |J =1, m = +1) transition considered in Ref. 4,

31 u?
H =——(1+ .
© Shk( f;Qk?)

(4.3¢)

The possibility of feeding the coherences of the ground
state o4 _(p) must also be considered. Infact, we are dealing
here with Zeeman ground sublevels, and it is well known that
such coherences can be fed only by corresponding coher-
ences in the excited state. But here there is only one popu-
lated excited state, so we have no feeding term for these
ground Zeeman coherences. More precisely, spontaneous
emission of a photon fik in a well-defined direction (and with
a well-defined polarization) from the excited state |eg, p) will
give rise to a well-defined coherence between |g+, p — hk)
and |g—, p — hk). But, if we average over the azimuthal
angle ¢ of k, keeping the angle f between Oz and k constant,
and if we trace over the components of the atomic momen-
tum perpendicular to Oz (which are not observed), we find
that the coherence between lgy, p — u) and lg—, p — u)
(where p = p, and u = hk cos ) vanishes. This is a conse-
quence of the invariance of spontaneous emission in a rota-
tion around Oz.

We must also discuss the question of external coherences,
1.e., terms such as

(8-, p'lolg_, p”).

We can show that because of translational invariance for
spontaneous emission in free space, such a term could be fed
only by a corresponding coherence in the excited state, i.e.,
by a term

(e, p’ — ulole, p” — u).

In the problem considered here, we start from an initial
distribution of atoms in the ground states |g_, p’) and lg.,
p”), without any coherence between such terms. The cou-
pling [Eq. (3.9)] cannot create external coherences in the
excited state from such an initial state, and we can thus
conclude that spontaneous emission will not feed external
coherences in the ground state.

We have thus justified the statement of Subsection 3.A
according to which the only density-matrix elements rele-
vant to our problem are the elements defined in Egs. (3.2),
i.e., density-matrix elements defined inside a family F(p).
We can also conclude that Egs. (4.2) and (4.3) describe
correctly the effect of spontaneous emission for the problem
discussed in this paper.

C. Mechanism for Accumulating Atoms in the Trapping
State

As is shown by Eqgs. (4.3a) and (4.3b), spontaneous emission
provides the mechanism for accumulating atoms in the trap-
ping state: indeed, an atom in the excited state leg, p} with 0
< p < 2hk can decay by spontaneous emission into |gy, +hk),
which increases o4+(p = 0) [see Fig. 3(a)]. Similarly, |g_,
—hk) [corresponding to o—_(p = 0)] may be populated from
any excited state leg, p) with —2ak < p <0.

Note, however, that although each of these ground states
belongs to the F(p = 0) family, an atom in g4, +kE) orinlg_,
—hk) is not yet in the trapping state lYnc(0)). This requires
a further step, namely, filtering in the state space. Take, for
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instance, an atom in |g_, —hk). It canbe considered as being
in a linear superposition of [¢xc(0)) and [¢c(0)):

-, ~hk) = == [Wc(0) + W) @4
v

[see Egs. (3.12) in which K, = K * and p = 0]. While
lnc(0)) is perfectly stable, [¢c(0)) is not, since it may get
excited through interaction with the lasers at a rate I” [Eq.
3.15]. After a time long compared with I, the atom will
either be in [¢nc(0)), where it will remain trapped, or it will
be involved in some new fluorescence cycles. This filtering
process thus leaves 50% of the atoms in the trapping state
[¥nc(0)), while the other 50% resume a sequence of fluores-
cence cycles. The physical mechanism involved in this fil-
tering is the Raman interaction that builds up the coherence
between lg_, —hk) and lg4, +hk) that is characteristic of
l¥nc(0)).

The reason why |¥cn(0)) cannot be directly populated
from |eo, p) by spontaneous emission is related to the conser-
vation of linear momentum. Just after the spontaneous
emission of a photon with momentum u, along Oz, an atom
starting from ey, p) has its momentum changed from p to p
— u. On the other hand, l¢nc(0)) is not an eigenstate of the
atomic momentum P3,. It follows that the spontaneous
emission of a photon with momentum u along Oz cannot
connect leg, p) to both states g, +hk) and lg_, —hk).

One may wonder how to deal with linear-momentum con-
servation during the second step, i.e., during the filtering
process. In fact, the laser fields have been considered here
as external classical fields, and there is no isolated system in
which one can look for momentum conservation. We could
indeed generalize our treatment by quantizing the laser
fields. Insuch atreatment, one finds that the three states of
a given family have the same total linear momentum (sum of
the atomic and laser field linear momentum) equal to the
label p of the family, modulo Ak. The filtering process,
leading from |g_, —hk) with the laser field in a certain quan-
tum state to [nc(0)) with the laser field in a different state,
conserves the total linear momentum.

5. EVOLUTION OF THE ATOMIC
MOMENTUM DISTRIBUTION

A. Initial State

For the initial atomic state, we take a statistical mixture of
the two ground states g+ and g_ with the same momentum
distribution along Oz:

‘P-q-o i = ?_O(P;t)- (5.1)

The initial density matrix elements are thus equal to zero,
except for o4+ and o__:
o44(p) = iz>+0(P + hk),
o__(p) =P_"(p — hk),
ee(P) = 0,
o,_(p) =0,.(p) =0,_(p) =0. (5.2)

The assumption that there are no coherences and that the
momentum distributions are the same in the two ground-
state sublevels is quite natural for atoms in an atomic beam
emerging from a nozzle. However, in the real experiment?
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there is also an initial population in the m = 0 ground
sublevel that will be optically pumped into g+ and g_; in
some circumstances (laser detuning different from 0) the
resulting distributions may be dissymmetric, and condition
(5.1) may not be fulfilled in some experiments. However, we
keep such a condition in the subsequent calculation since it
allows us to extract simply the most important features of
the new cooling process.

B. Master Equation: Generalized Optical Bloch .
Equations

Adding the terms found in Section 3 and Subsection 4.B, we
get the equations governing the evolution of the density-
matrix elements:

do do do
_CE a (E)Ham t (a—t)sp, {5‘3}

where the first term [Egs. (3.11)] is the Hamiltonian evolu-
tion corresponding to free evolution and atom-laser cou-
pling. The second term [Eqs. (4.2) and (4.3)] corresponds to
spontaneous emission.

In spite of the fact that internal and external degrees of
freedom are treated completely quantum mechanically, this
set of equation is remarkably simple, and it is well adapted
for a numerical step-by-step time integration. Note in par-
ticular that the finite momentum exchange hk (recoil) is
accounted for in all atom—field interactions, although it does
not appear explicitly in the atom-laser interaction because
of the concise notations [Eqs.(3.2)].

C. Final Atomic Distribution

We are interested in the atomic linear-momentum distribu-
tion along Oz at the end of the interaction with the lasers,
whatever the internal state of the atoms may be. This
distribution is!?

P(pZ) = 0, (p% — hR) + o__(p%, + hk) + 0,.(pZ). (5.4)

We can predict the shape of this distribution by using the
results of Sections 3 and 4. Velocity-selective coherent pop-
ulation trapping consists in accumulating atoms around the
trapping state:

Wnc(0)) = é lle_, —hk) — lg,, +hk)] (5.5)

[see Eq. (3.12a) with Ky = K_and p = 0].

First consider atoms trapped in [¢nc(0)). This state is
not an eigenstate of the linear-momentum operator, and a
linear-momentum measurement will yield either pZ, = +hk
or p%, = —hk with equal probability (case |[K| = IK_'h. The
corresponding atomic-momentum distribution ?(pZ) is a
double Dirac peak at +hk [solid vertical lines of Fig. 4(a)].
For such atoms, the distribution of the population of the
noncoupled states (Ync(p)lolYnc(p)) is a single Dirac peak
at p = 0 [solid vertical line of Fig. 4(b).

Now consider atoms in [¢nc(p)) with p close to 0. Their
atomic-momentum distribution ?(p%,) is a shifted double
Dirac peak at pZ, = p + hk [dashed vertical lines of Fig. 4(a)].
The corresponding distribution of [{nc(p)) exhibits a single
Dirac peak with the same shift [dashed vertical line of Fig.
4(b)].

We can then predict the atomic-momentum distribution
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Fig. 4. Expected shape (a) of the atomic-momentum distribution
P(p) and (b) of the population in the noncoupled state
(¢nc(p)lolync(p)). The vertical solid lines indicate the positions of
the Dirac functions representing the contribution of the atoms in
l¢nc(0)). The dashed vertical lines indicate the positions of the
Dirac functions representing the contribution of atoms in [¢nc(p)).
For atoms accumulated in noncoupled states |¥nc(p)) with p in a
narrow range dp around p = 0 (b), the expected atomic-momentum
distribution consists of twin peaks centered at +hk, with the same
shape and the same width ép (a).

after an interaction time . As a consequence of inequality
(3.17), atoms are accumulated in states [¢nc(p)) with p in a
narrow band around p = 0 with a width ép of the order of

0p >~ ——- (5.6)

The corresponding atomic-momentum distribution ?(p,)
will thus exhibit two peaks of width ép around pZ, = +hk
[Fig.4(a)]. Finally,these two peaks will emerge over a broad
background corresponding to atoms in the states [¢c(p)).

6. NUMERICAL ANALYSIS AND DISCUSSION
OF THE RESULTS

We have obtained numerical solutions of the generalized
optical Bloch equations with internal and external degrees
of freedom [Eq. (5.3)], making use of the convenient p family
basis introduced above. We have used the parameters cor-
responding to the experiment* on the transition 2 3S,-2 3P,
at A = 1.083 um of *He atoms (I'/27 = 1.6 MHz).

A. Numerical Procedure
The time evolution of the density-matrix elements is ob-
tained by incrementation starting from the initial condition
of Eq. (5.1). The time increment is typically 0.05 T'~1, small
enough to have no artificial instabilities introduced by the
incrementation.

The p variable is discretized in intervals ¢ = Ak/30, be-
tween —pmax and +pmax (typically pmax = 30 Ak). These
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values have been chosen in order to fulfill the following
requirements: First, ¢ must be small compared with the
narrowest structure appearing in the p dependence of the
solution of Eq. (5.3). Second, pua; must be large enough
that the interesting part of the solution (near p = 0) is not
affected by the truncation of the p range. We have chosen
Pmax = 30hk so that, for the largest value of f considered here
(8 = 1000I'"1), the effect of momentum diffusion from p
values larger than pu., to p = 0 is negligible.

B. Time Evolution of the Momentum Distribution

Figure 5 represents the final atomic-momentum distribu-
tion P(pZ,) for four different interaction times (61" = 50, 150,
400, 1000). We have taken a zero detuning (6, = wy — wy =
0), a Rabi frequency K = |[K,| = |K_| = 0.3T', and a Gaussian
initial distribution with a standard half-width at exp(—1/2):
Apo = 3hk. For 0 large enough, P(pZ,) exhibits two resolved
peaks emerging at £hk above the initial distribution. This
is the signature of the new cooling scheme. It is remarkable
that, for # = 150 T'"1, the cooling effect already appears.
When the interaction time increases, the two peaks become
narrower and higher.

Figure 6 shows on a larger momentum interval the shape
of the right wing of P (p%,) (the curve is symmetrical) at the
initial and final times. Besides the cooling effect, one sees
that a fraction of atoms has diffused toward higher momen-
tum values, which is in agreement with the physical picture
of a diffusion in momentum space produced by spontaneous
emission.

In order to visualize the accumulation of atoms in [¢nc(p))
with p close to 0, we have also calculated the populations
(¥nc(p)lolync(p)) and (Yc(p)lolyc(p)). Figure 7 shows the

z
(‘P(pat)_ 8-50r" (@ 8:150r"" ®)

B0 2

Fig. 5. Time evolution of the atomic-momentum distribution
P(pi). The dashed curves with half-width Apy = 3hk show the
initial distribution. As the interaction time # increases, the height
of the double peak at £hk (characterizing the new cooling process)
increases, and its width decreases. Conditions for these figures:
laser detuning &;, = 0; Rabi frequencies of the atom laser coupling
K.l =|K_| =03T.
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.Fig.6. Half of Fig. 5(d) with a different scale showing the diffusion
of a fraction of the atoms toward large values of the momentum.
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Fig.7. Atomic population in the noncoﬁpled states [Ync(p)) in the
same situation as for Fig. 5(d). The peak height is twice as large,
and the width is the same as in one peak of Fig. 5(d). At this scale,
the population in [¢c(p)}) would not be visible.

resulting distribution of (¥nc(p)lol¥nc(p)) for the same pa-
rameters as in Fig. 5(d) [at this scale, (¥c(p)lalyc(p)) is so
small that it would not be visible]. The sharp peak near p =
0 appearing in the [¥nc(p)) population is clearly related to
the double peak with the same width in the atomic-mo-
mentum distribution. The big difference between
(¥nc(p)lol¥nc(p)) and (Yc(p)lolpc(p)) near p = 0 shows
that the coherence between [¢nc(p)) and lyc(p)) is very
small. In such a situation, the atomic distribution in the
peaks can be considered a statistical mixture of l¢nc(p)) and
[¢c(p)). We have checked that, outside the peak of Fig. 7, of
the populations ) and lyc(p)¥nc(p)) are almost equal.

C. Peak Width, Temperature

In order to characterize the cooling process, we define a
temperature in terms of the width of a momentum distribu-
tion. According to the discussions above, the cooled atoms
are in states |¥nc(p) ) with a distribution of p values shown in
Fig. 7. We use the width of this distribution, which is also
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the width of each of the two peaks of Fig. 5(d), to define a
temperature. Since we do not address the question of a
Gaussian shape for this distribution, we will not give a pre-
cise value for the temperature. We can nevertheless note
that the peak half-width may become much smaller than the
one-photon recoil, corresponding to a temperature below the
recoil energy.

We have plotted the half-width Ap [taken arbitrarily at
exp(—1/2) after subtraction of the broad background] as a
function of the interaction time # [Fig. 8(a)] and of the Rabi
frequency K [Fig. 8(b)]. The results obtained are in good
agreement with a simple model based on relation (5.6),
which predicts a width varying as K6~1/2,

Remark

To characterize the temperature, one could also calculate
the mean kinetic energy of the momentum distribution. We
do not think that such a quantity would be appropriate for
defining a temperature since, even if all atoms were in the
pure state |¢nc(0)), their kinetic energy would be nonzero
and equal to the recoil energy Ep, although this situation
obviously corresponds to a zero temperature.

D. Unbalanced Laser Beams

Figure 9 shows the atomic-momentum distribution for un-
equal Rabi frequencies (Ky = 1.5K_). The peak height
difference is easily interpreted: when K, = K_, the coeffi-
cients of the expansion of the trapping state [ync(0)) on gy,
+hk) and lg—, —hk) [Eq. (3.12a))] have different moduli.

Ap (@
fk} >
0//
025F &
; P
A T R
0 004 008 1/\[B
Ap )
Rk /0/0
03 G/o/o
02 o
¥ 4
-
1 1 1 | 1
0 04 08 K/T

Fig. 8. Half-width of the peaks (initial half-width Ap, = 3hk, laser
detuning &, = 0): (a) Ap for various interaction times f for a Rabi
frequency K = 0.3I'; (b) Ap as a function of the Rabi frequency K =
K, = K_ for an interaction time # = 1000I'"1. These results show
that Ap in proportional to #~1/2 and to K (dashed lines) and thus
confirm relation (5.6) for # large enough that the two peaks are well
separated.
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-fk 0 +hk
Fig. 9. Atomic-momentum distribution for unbalanced laser

beams. Same conditions as for Fig. 5(d) except for the Rabi fre-
quencies: K4 = 0.3T; K_ = 0.2T.

@(p:t)

9 6L="r (c)

Fig. 10. Atomic-momentum distribution for various detunings.
Same conditions as for Fig. 5(d) except for the detunings é; £T
(a), corresponding to é;, = 0, is the same as Fig. 5(d)]. Cooling is
efficient for any sign of the detuning.

One predicts that for atoms trapped in |¥nc(0)) the proba-
bility for a momentum +#k is |K,/K_|? times greater than
the probability for —Ak. This is in good agreement with the
ratio of the two peaks of Fig. 9, which is found equal to 2.25
(theoretical value, 9/4).

E. Dependence on Laser Detuning

Figure 10 shows the atomic distribution at a given interac-
tion time # = 1000I'~! for three different laser detunings (é;,
=0, 6;, = £TI') and for the same laser intensities (K, = K_ =
K). Note first that the new cooling mechanism is efficient
for the three values of the detuning and particularly that it
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does not depend strongly on the sign of ;. This has to be
contrasted with other schemes such as Doppler cooling,
stimulated molasses, and polarization gradient cooling,
which have a dispersionlike behavior.

The variation with &7, of the height and width of the peaks
can be interpreted by an extension of the perturbative calcu-
lation of Remark (i), Subsection 3.C, to a nonzero detuning.
In this case, the width I” of [¢c(p)) is changed [from Eq.
(3.15)] to

I = (K%/2) ——. 6.1)
6.2+ =5
In addition, [¢c(p)) undergoes a light shift20
& = (K*/2) 57"“2 (6.2)
6.2+ 7

With these modifications taken into account, the motional
coupling kp/M between lync(p)) and lyc(p)) now gives to
l¥nc(p)) a width T':

Fr

I'” = (kp/M)* S (6.3)
I‘U
o
4
Inserting Egs. (6.1) and (6.2) into Eq. (6.3), we find that
T
I'” = (kp/M)? , 6.4
(kp/M) K2 (6.4)

which coincides with Eq. (3.16), showing that I'” does not
depend on the detuning é;. This explains why the peak
width, which is determined by I'” [Remark (i) of Subsection
3.C], keeps the same value for the three curves of Fig. 10. On
the other hand, Eq. (6.1) shows that I'V decreases when the
detuning increases: the absorption rate for atoms in [yc(p))
is then weaker, yielding a lower optical pumping rate into
[¢nc(0)). This explains the smaller peak heights in Figs.
10(b) and 10(c).

Note finally that there are small differences between the
curves corresponding to é; = +T and 6, = —T'. These differ-
ences have not yet been interpreted.

F. Efficiency of the Cooling Process

The cooling process is characterized not only by its ability to
yield atoms in a narrow p range but also by the accumulation
of atoms in this range, leading to a final density (in p space)
larger than the initial one. The density at the center of the
cooled distribution (near p = 0) is measured by the peak
height.

We first considered the case of narrow initial distributions
centered on p = 0. Figure 11(a) shows the evolution of the
peak height as a function of the interaction time for an initial
width of the momentum distribution Apy = hk. We have
checked that, for the same total number of atoms, the evolu-
tion is almost independent of the width of the initial distri-
bution, provided that this width is smaller than 2hk. An
immediate interpretation is that each fluorescence cycle
produces a redistribution in p space over an interval 2hk.
After a few fluorescence cycles, there is no memory of struc-
tures narrower than 2hk. In agreement with the interpreta-
tion of this new cooling scheme, the peak height increases
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Fig. 11. Accumulation of atoms in the peaks as a function of time.
The height of the peak (a) is a measure of the maximum atomic
density in the p space. (b) Shows the fraction of atoms in the peaks.
Conditions are the same as for Fig. 5 except for the initial distribu-
tion (Apy = hk).

with time. The decrease of the slope can be related to a
depletion of the background of untrapped atoms that consti-
tute a reservoir for the accumulation process. It is also
interesting to study the evolution of the total number of
atoms in the peaks, since this results from opposite varia-
tions of height (which increases) and of the width (which
decreases). Figure 11(b) shows that a large fractions of the
atoms can be trapped in the peaks of cooled atoms.

We also investigated the case of broad initial distribution
(Apy > 3hk). For small interaction times 8, the evolution of
the peak height versus # is linear and depends only on the
initial atomic density at p = 0. But a decrease of the slope
appears at an interaction time that is longer when the initial
distribution is broader. As a consequence, the peak height
(normalized by the initial density at p = 0) is larger for
broader initial distribution when £ is long enough. For ex-
ample, for Apy = 10 Ak and 6 = 1000 ! the normalized peak
height is 1.7 times larger than the one of Fig. 5(d) (corre-
sponding to Apy = 3hk, § = 1000I'"!). This behavior can be
interpreted by considering the diffusion of atoms in momen-
tum space, from the edges of the initial distribution to p = 0,
where they can be trapped. Note finally that for Ap, large
enough (and for §; = 0) the Doppler detuning can decrease
the diffusion rate at the edges of the momentum distribu-
tion, which introduces a natural cutoff that is independent
of Apo.

This discussion clearly raises the question of the asymp-
totic behavior at long interaction times. One can hardly rely
on a numerical calculations to answer this question. Note
that a double Dirac peak (corresponding to l¥nc(0))) is a
steady-state solution of Eq. (5.3), but we do not know wheth-
er such a solution can be reached by starting from realistic
initial conditions. This question is still unresolved.
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In order to increase the fraction of cooled atoms, we have
considered schemes in which atoms with large p would be
reflected toward p = 0 by interaction with another laser
beam. With such walls in p space, it is clear that the accu-
mulation process into [¢nc(0)) will continue indefinitely.

7. GENERALIZATION TO TWO DIMENSIONS

So far we have dealt only with one-dimensional cooling.
Now we explain how velocity-selective coherent population
trapping can be extended to two dimensions. We consider
the same atomic transition J; = 1 <> J, = 1 as the one used in
the experimental demonstration of one-dimensional cool-
ing.* Figure 12(a) represents the various Zeeman sublevels
in the ground state and in the excited state and the Clebsch—
Gordan coefficients of the various transitions g,, <= e’ (m,
m’ = —1, 0, +1). The laser configuration consists of three
laser beams [Fig. 12(b)] with the same frequency and the
same amplitude. As above, there are two counterpropagat-
ing beams along Oz, one o4 polarized with a wave vector ké,
one o_ polarized with a wave vector —ké, (k is the wave
number; &, is a unit vector along Oz). In addition, there is a
third laser beam along Ox (wave vector ké,), linearly polar-
ized along Oz (r polarization). Each of these beams excites
only one type of transition: g, <> e, for the o4 beam, gn
<> g, for the ¢— beam, and g, <> e,, for the = beam.
Consider the state

Wnc(@) = % (g_p, p — hke,) + lgo, p + hk2,)
]

+ 1g+15 p + hkéz))} {7'1}

which is a linear superposition of three states differing not

€ €o E+1
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Fig. 12. Configuration for two-dimensional velocity-selective co-
herent population trapping. (a) The J =1+« J =1 atomic transi-
tion with the corresponding Clebsch—Gordan coefficients. (b) The
three laser wave vectors and polarizations for which the state de-
fined in Eq. (7.1) is trapping and velocity selective along Ox and Oz.
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Fig. 13. Closed family of states coupled by interaction with the
lasers of Fig. 12(b). Each state is characterized by its internal and
external quantum numbers.

only in their internal quantum numbers but also in their
momenta. We are going to show that such a state cannot be
coupled to any excited state in the same way as the [¢nc(p))
states introduced in Subsection 3.C. For that purpose we
first determine to what excited states each component of Eq.
(7.1) is coupled (Fig. 13). Because of the conservation of
angular and linear momentum, an atom in lg_;, p — hke,) is
coupled only to le_;, p — hké. + hké,) by absorption of a (=,
ké,) photon and to ley, p) by absorption of a (¢4, k&.) photon.
In the same way, |go, p + hké,) is coupled only to le_;, p —
hke, + hke,) (respectively, les, p + hké, + hké.)) by ab-
sorption of a (o—, —ké,) [respectively, (¢4, ké.)] photon, and
lg+1, p + hke.) is coupled only to leyi, p + hkée. + hké,)
(respectively, |eg, p)) by absorption of a (, k&,) [respective-
ly, (s—, — ké.)] photon. AsinSection 3, we thus find a family
of six states (instead of three) {lg_1, p — hké.), lgo, p + hke.),
lg+1, 0+ hke.),le_1, p — hke, + hké,), leo, p), le+1, p + hke, +
hké.)} that remains closed with respect to absorption and
stimulated-emission processes. The important point is that
all transition amplitudes starting from Eq. (7.1) and ending
in any of the three excited states of the family interfere
destructively. This is because each of the three excited
states of Fig. 13 is coupled only to two ground states (because
of the zero value of the Clebsch—-Gordan coefficient for e, <+
£Zo) by two transitions having opposite Clebsch—-Gordan coef-
ficients [Fig. 12(a)]. Since the state [Eq. (7.1)] is completely
symmetric, the six excitation amplitudes from such a state
interfere destructively two by two.

Consequently, an atom in Eq. (7.1) cannot leave this state
by interaction with the lasers. Since it contains only ground
states, it cannot decay by spontaneous emission. It remains
to see under what condition it is stationary with respect to
the free evolution Hamiltonian H4. We must write that the
kinetic energies of the three components of Eqg. (7.1) are the
same (as above, we suppose that there is no static magnetic
field), which gives

(p — hke,)? = (p + hke,)? = (p + hke,)>. (7.2)
We conclude that |ync(p)) is a perfect trap only if
p-&,=p-2,=0. (7.3)

This shows that optical pumping into the states [Eq. (7.1)]
satisfying Eq. (7.3) could provide a two-dimensional cooling
for the components of p perpendicular to &,.
Experimentally, one could send an atomic beam along Oy
in the laser configuration of Fig. 12(b). Accumulation of
atoms by optical pumping into the trapping states Eq. (7.1)
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satisfying Eq. (7.3) could be revealed by measuring P}, and
P;, after the interaction zone. From Egs. (7.1) and (7.3) we
then predict that the surface giving the atomic-momentum
distribution in the (py, p.) plane should exhibit three narrow
peaks, at

Pa=0 pa = at = thk
z: . zr . PS: ) (7.4)
pi, = +hk Py = —hk Pa =

Remark :
Note that in such an experiment there must be no force
acting along the velocity-selective directions Ox and Oz. In
order to avoid the effect of gravity, we should thus align the
atomic beam vertically.

In this section we have demonstrated that there is a per-
fect trapping state that is velocity selective in two dimen-
sions. However, in order to evaluate the efficiency of the
cooling process, one should also solve the generalized optical
Bloch equations corresponding to this situation. This
would allow one to evaluate how long it would take for
momentum diffusion in two dimensions to accumulate many
atoms into the trapping state.

It is tempting to try a further generalization to three
dimensions. We have found no scheme that allows accumu-
lation of many atoms into a noncoupled state that is velocity
selective in three dimensions. We have found such states
for more-complicated level schemes. Unfortunately, in the
situations that we have investigated, there is always another
trapping state that is velocity selective in a smaller number
of dimensions (two or one). The atoms are then rapidly
trapped into this less-selective noncoupled state, where they
are no longer available for the three-dimensional trapping.

8. CONCLUSION

We have presented a full quantum theoretical treatment of a
new one-dimensional laser-cooling scheme permitting trans-
verse temperatures below the one-photon recoil energy to be
reached by velocity-selective coherent population trapping.
Unlike semiclassical approaches, this treatment can be ap-
plied to situations in which the atomic coherence length is
comparable with or larger than the laser wavelength. It is
based on the use of families that contain a finite number of
states defined by translational and internal quantum num-
bers and that remain closed with respect to absorption and
stimulated emission. Redistributions among these families
occur through spontaneous emission. We have established
generalized optical Bloch equations for the density-matrix
elements corresponding to these families, and we have pre-
sented numerical solutions of these equations.

This theoretical study has allowed us to exhibit the essen-
tial features of the new cooling process and to support the
underlying physical ideas. The main differences from other
cooling methods are the following:

(i) The cooling exists for both signs of the detuning and
for zero detuning;

(ii) The width of the final momentum distribution,
which characterizes the temperature, decreases as 67172,
where # is the interaction time. There is no fundamental
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limit to the lowest temperature achievable by this method;
in particular, the one-photon recoil is not a limit;

(iii) The basic cooling mechanism relies not on a friction
force but on a diffusion process in momentum space, which
pumps atoms into nonabsorbing states corresponding to a
small region of the momentum space;

(iv) Since the cooled atoms no longer interact with the
laser field they suffer no perturbation either on the external
degrees of freedom (no diffusion) or on the internal degrees
of freedom (no light shifts).

We presented in Section 7 a possible extension of this new
cooling scheme to two dimensions. The method of families
used in this paper could easily be applied to such a situation.
It would also be interesting to add a supplementary interac-
tion for reflecting toward p = 0 atoms that have diffused at
large p values; such walls should improve the cooling effi-
ciency at long interaction times.

The fundamental property on which the new cooling pro-
cess is based is the quantum coherence between lg_, p — hk}
and lg4, p + hk). A remarkable feature associated with this
coherence is the total coherence between states of different
linear momentum p — Ak and p + Ak. Since p is distributed
in a narrow interval around 0, such coherence gives rise to
two coherent wave packets propagating along different di-
rections. Another interesting feature is the complete corre-
lation between the internal state and the direction of propa-
gation, as in a Stern—Gerlach experiment. The calculations
presented in this paper permit a quantitative treatment of
all these coherence effects by use of the nondiagonal terms
o4+-(p) of the density matrix. These results could be useful
in the analysis of atomic interferences based on this scheme.
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