
Reprinted from Journa l  of t he  Optical Society of America B, Vol. 2, page 1707, November 1985 
Copyright O 1985 by the  Optical Society of America and reprinted by permission of the  copyright owner. 

Dressed-atom approach to atomic motion in laser light: 
the dipole force revisited 

J. Dalibard and C. Cohen-Tannoudji 

Collège de France and Laboratoire de Spectroscopie Hertzienne de 1'Ecole Norn~ale Supérieure [Laboratoire 
Associé au Centre National de la Recherche Scientifique [LA 1811, 24 rue Lhoniond. F 75231 Paris Cedex 05, 

France 

Received March 28. 1985; accepted ]une 6, 1985 

We show that the dressed-atom approach provides a quantitative understanding of the main features of radiative 
dipole forces (mean value, fluctuations, velocity dependence) in the high-intensity limit where perturbative treat- 
ments are no longer valid. In an inhomogeneous laser beam, the energies of the dressed states Vary in space, and this 
gives rise to dressed-state-dependent forces. Spontaneous transitions between dressed states lead to a multivalued 
instantaneous force fluctuating around a mean value. The velocity dependence of the mean force is related to the 
modification, induced by the atomic motion, of the population balance between the different dressed states. The 
corresponding modification of the atomic energy is associated with a change of the fluorescence spectrum emitted by 
the atom. The particular case of atomic motion in astanding wave is investigated, and two regimes are identified in 
which the mean dipole force averaged over a wavelength exhibits a simple velocity dependence. The large values of 
this force achievable with reasonable laser powers are pointed out with view to  slowing down atoms with dipole 
forces. 

INTRODUCTION 
Absorption and emission of photons by an atom irradiated 
by a resonant or quasi-resonant laser beam give rise to a 
variation of the atomic momentum that can be analyzed, for 
time scales longer than the radiative lifetime, in terms of 
radiative forces fluctuating around a mean 

For an atom a t  rest or slowly moving, the mean radiative 
force is usually split into two parts1z2: The first part is 
related to the phase gradient of the laser wave (and to the 
quadrature part of the atomic dipole) and is called radiation 
pressure. The second one, related to  the intensity gradient 
of the laser (and to the in-phase atomic dipole), is called 
dipole force. 

The radiation-pressure force is now well understood, and 
its various features, such as velocity dependence and mo- 
mentum diffusion, have been analyzed in detail in terms of 
cycles involving absorption of laser photons and spontane- 
ous emission of fluorescence photons.l,2,4-6 

The dipole force, on the other hand, is due to redistribu- 
tion of photons among the various plane waves forming the 
light wave, using absorption-stimulated emission cy- 
c l e ~ . ~ ~ ~ . ~ ~ ~  Unfortunately, this interpretation does not give a 
physical account for some characteristics of the dipole force, 
especially a t  high intensity. Consider, for example, the 
problem of atomic motion in a standing wave formed by two 
counterpropagating plane waves. At low intensity, one 
finds that the dipole force averaged over a wavelength is just 
the sum of the radiation pressures of the two running 
w a v e ~ . ~ . ~  In particular, the force is a damping one for nega- 
tive detuning (laser frequency lower than atomic frequency), 
and this is easily understood when one considers that, owing 
to the Doppler effect, a moving atom "sees" the counterpro- 
pagating running wave more than the other one; it therefore 

experiences a force opposed to its velocity (usual radiative 
cooling). At high intensity, however, this conclusion is re- 
versedlJaH: One finds that the force heats the atoms for a 
negative detuning and cools them for a positive one. Such a 
surprising result has not yet been interpreted physically. 

The purpose of this paper is to present precisely for the 
high-intensity domain a new theoretical treatment of the 
dipole force that will allow us to give a physical interpreta- 
tion for such unexpected features. This treatment is based 
on the dressed-atom approach that has been already applied 
with success to the physical interpretation of resonance fluo- 
rescence in the saturation regime.14-l6 

The fact that the dressed-atom approach is well adapted 
to the high-intensity limit can be easily understood. When 
the Rabi frequency wi characterizing the strength of the 
laser atom coupling is large compared with the spontaneous 
damping rate r, it is a good approximation to consider first 
the energy levels of the combined system: atom and laser 
photons interacting together (dressed states). Then, in a 
second step, we can take into account the effect of spontane- 
ous emission (coupling with al1 other empty modes of the 
radiation field), which can be described as a radiative-relax- 
ation mechanism inducing, for example, population trans- 
fers between the dressed states with well-defined rates. 

The case of an atom moving in an inhomogeneous laser 
beam raises new interesting questions. The Rabi frequency 
w l  then varies in space, since it is proportional to the posi- 
tion-dependent laser amplitude. I t  follows that the energy 
of the dressed states is now a function of r, so that it is 
possible to  define for each dressed state a force equal to 
minus the gradient of the energy of this state. As in the 
Stern-Gerlach effect, we can introduce a force that depends 
on the interna1 state of the dressed atom. 1s the dipole force 
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connected with such dressed-state-dependent forces? 1s i t  
possible with such an approach to build a clear physical 
picture of dipole forces and to derive quantitative expres- 
sions for their main features: mean values, fluctuations, 
velocity dependence? This is the problem that we want to 
address in this paper. 

The paper is organized as follows: In Section 1, we pre- 
sent Our notations. The dressed-atom approach is intro- 
duced in Section 2. Section 3 is devoted to the calculation of 
the mean dipole force and of its velocity dependence. We 
then calculate in Section 4 the momentum diffusion coeffi- 
cient induced by the fluctuations of the dipole force. Final- 
ly, in Section 5, we investigate the particular case of atoms 
moving in a standing wave, and we compare Our results with 
previous ones. 

1. NOTATIONS AND ASSUMPTIONS 

The total Hamiltonian is the sum of three parts: 

where HA is the atomic Hamiltonian, HR the Hamiltonian of 
the radiation field, and Vthe atom-field coupling. HA is the 
sum of the kinetic and the internal energies of the atom 
considered here as a two-level system: 

PZ HA = - + hoob+b. 
2m 

(1.2) 

oo is the atomic resonance frequency and b and b+ the lower- 
ing and raising operators: 

(Ig) is the atomic ground level and le) the excited one). The 
electromagnetic field is quantized on a complete set of ortho- 
normal field distributions Cx(r), one among which corre- 
sponds to the laser field CL(r). The Hamiltonian HR of the 
free radiation field is then 

where aX and aA+ are, respectively, the destruction and the 
creation operators of a photon in the mode X. The atom- 
field coupling V can be written in the electric-dipole and 

i rotating-wave approximations as 

where d is the atomic electric-dipole moment and E+(R) and 
E-(R) the positive and the negative frequency components 
of the electric field taken for the atomic position operator R: 

E-(R) = 1 6,*(R)aXt. (1.6) 
X 

We shall use here a semiclassical approximation in the 
treatment of the atomic motion, by replacing the atomic 
position operator R by its average value ( R )  = r in expres- 
sions suth as cL(R), .  This is valid as soon as the extension 
Ar o f  the atomic wave packet is small compared with the 
laser wavelength A, scale of variation of Cf,: 

On the other hand, we shall also require the atomic velocity 
to be known with a good accuracy, such that  the Doppler- 
effect dispersion kAu is small compared with the natural 
linewidth r of the excited level: 

Note that, because of Heisenberg inequality: 

inequalities (1.7) and (1.8) are compatible only if 

We shall suppose that inequality (1.10) is satisfied through- 
out this paper. Note that it is then possible to show12 that 
the forces and the diffusion coefficients calculated semiclas- 
sically, as is done here, are identical to the ones appearing in 
a fully quantum treatment of the atomic 

2. DRESSED-ATOM APPROACH 

The semiclassical approximation leads to expressions for the 
forces and the diffusion coefficients that are average values 
of products involving internal atomic operators and field 
operators taken at  the center of the atomic wave packet r 
(see Section 3). The usual method for calculating these 
average values is to start from optical Bloch equations 
(OBE's) for an atom a t  point r and to  extract from their 
steady-state solution the required quantities. This method 
is in theory simple, but it does not lead to any physical 
picture concerning the dipole force and its velocity depen- 
dence. 

The dressed-atom approach used in this paper treats the 
atom-field coupling in a different way .lP16 We first diago- 
nalize the Hamiltonian of the coupled system (atom + laser 
photons) and obtain in this way the so-called dressed states. 
We then take into account the coupling of the dressed atom 
with the empty modes of the electromagnetic field that is 
responsible for spontaneous emission of fluorescence pho- 
tons. Note that, as when one uses OBE's, this treatment is 
done at  a given point r ,  Le., we omit in this section the kinetic 
energy term P2/2m in HA [Eq. (1.2)]. 

A. Position-Dependent Dressed States 
Let us start with the dressed-atom Hamiltonian a t  point r ,  
HDA(i) ,  which is the sum of the atomic internal energy, the 
laser mode energy, and the atom-laser mode coupling: 

where we have introduced the detuning 6 between the laser 
and the atomic frequencies: 

If the atom-laser mode coupling is not taken into account (d 
= O), the eigenstates of the dressed Hamiltonian are 
bunched in manifolds 6, (Fig. la ) ,  n integer, separated by 
the energy hoL, each manifold consisting of the two states Ig, 
n f 1) and le, n )  (atom in the internal state g or e in the 
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Fig. 1. Dressed-atom energy diagram. a, States of the combined atom-laser mode system without coupling, bunched in well-separated two- 
dimensional manifolds. b, Dressed states in a given point i. The laser-atom coupling produces a r-dependent splitting Q(r) between the two 
dressed states of a given manifold. c, Variation across the laser beam of the dressed-atom energy levels. The energy splitting and the wave 
functions both depend on r. Out of the laser beam, the energy levels connect with the uncoupled states of a. 

presence of n + 1 or n laser photons). The atom-laser 
coupling connects only the two states of a given manifold 
(transition from g to  e with the absorption of one laser 
photon), and it can be characterized by the phase cp(r) and 
the Rabi frequency wl(r) (real) defined by 

Note that wl(r) actually depends on the number n of pho- 
tons in the manifold, but we shall neglect this dependence by 
supposing that the laser beam is initially excited in a coher- 
ent state with a Poisson distribution for n, the width An of 
which is very small compared with the average number of 
photons. 

At this approximation, we then find a periodic energy 
diagram for HDA when we take the atom-laser coupling into 
account (Fig. lb). The new eigenenergies for the manifold 
G n  are 

with 

and the corresponding eigenvectors (dressed states) can be 
written as 

where the angle 0(r) is defined by 

cos 20(r) = -6/R(r), sin 2O(r) = wl(r)/Q(r). (2.7) 

The important point is that, in an inhomogeneous laser 
beam, these energies and eigenstates will Vary with the posi- 
tion r. In Fig. lc, we have represented the variation of the 
energy levels across a Gaussian laser beam: Out of the 
beam, the dressed levels coincide with the bare ones, and 
their splitting in a manifold is just h6. Inside the beam, each 
dressed level is a linear superposition of lg, n + 1)  and le,.n), 
and the splitting between the two dressed states of a given 
manifold is now hQ(r), larger than h6. 

B. Effect of Spontaneous Emission 
We now take into account the coupling of the dressed atom 
with the empty modes, responsible for spontaneous emission 
of fluorescence photons. The emission frequencies corre- 
spond to transitions allowed between dressed levels, i.e., to 
transitions between states connected by a nonzero matrix 
element of the atomic dipole. In the ancoupled basis, the 
only transition allowed is from le, n )  to  Ig, n). In the cou- 
pled basis, we find transitions from the two dressed states of 
6, [both contaminated by le, n ) ,  see Eqs. (2.6)] to the two 
dressed states of Gn-1 (both contaminated by Ig, n)) ,  and the 
dipole matrix element dij(r) between 1 j ,  n; r )  and1 i, n - 1; r )  
is given by [cf Eqs. (2.611 
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Fig. 2. Spontaneous radiative transitions between two adjacent 
manifolds, giving rise to the three components of the fluorescence 
spectrum with frequencies w~ + Q ,  w ~ ,  wr, - Q. rji is the transition 
rate from a level i to a level j. 

I2,n ;r) 

di,(r) = ( i ,  n - 1; r (d(b  + b+)Jj, n; r ) ,  

dl ,  = -d2, = d cos 8 sin 8ei'@, 

d12 = -dei'@ sin2 8, del = dei'@ cos2 B. (2.8) 

Three different frequencies correspond to these four tran- 
sitions allowed (Fig. 2): w~ + Q(r) for Il, n; r )  to(2,  n - 1; r ) ,  
w ~ -  Q(r)for12,n;r)  toI1 ,n-  l ; r ) , andwLfor I l , n ; r )  t o l l ,  
n - 1; r) and 12, n; r) to (2, n - 1; r). We interpret simply in 
this way the triplet structure of the fluorescence spectrum.17 

q-n cr) 
62 

w,+ n m 
r21 

11~n-1 jF) 

I t  is now possible to  write a master equationlb16 for the 
density matrix p of the dressed atom a t  a given point r. This 
equation describes both the interna1 free evolution of the 

12,n -!;) 
1 r n - 1  

"L 

dressed atom (atom-laser coupling) and the relaxation that 
is due to the atom-vacuum coupling, which causes, through 
the transitions 6, + &,-l + . . . , a cascade of the dressed 
atom down its energy diagram. Actually, in this paper, we 
shall need not this complete master equation but only the 
evolution of the four reduced populations and coherences 
IIi(r) and pi,(r) defined by 

Furthermore, we shall restrict ourselves in the following to 
the limit of well-resolved lines: 

which means either intense fields (Iwl(r)( >> r )  or large 
detunings (1 61 >> r ) .  In such a case, a secular approximation 
can be made that greatly simplifies the relaxation part of the 

master equation. For a fixed point r ,  one then finds for the 
evolution of IIl and IIz that 

where the rates of transfer ri, from j to  i are proportional to 
the squares of the dipole matrix elements di,'s: 

( r )  = sin4 8 ,  r z l ( r )  = r cos4 8(r). (2.12) 

Since each transition 1 + 2 or 2 + 1 corresponds to the 
emission of a photon COL + Q or w~ - Q ,  rZ1II1 and I'i21i2 
represent, respectively, the number of photons emitted per 
unit time in the sidebands w~ + Q and WL - 0. For a fixed 
point r ,  the evolution of pl2 and pz1 is given by 

with 

The steady-state solution of Eqs. (2.11) and (2.13) is 

I t  is reached with a rate Fmh(r) for the coherences pi, and 
with a rate 

for the populations IIi, since Eqs. (2.11) can be rewritten, 
using Eqs. (2.15) and IIl + II2 = 1, as 

fii(,) = -I',,,(r)[II,(r) - r ~ ~ ~ ~ ( r ) ] .  (2.17) 

Note, finally, that in steady state we have, according to Eqs. 
(2.11), r211ilst = r12i12st, so that equal numbers of photons 
are emitted in the two sidebands w~ f Q. Furthermore, one 
can show that the two sidebands have the same width, given 
by Eq. (2.14). I t  follows that, in steady state, the fluores- 
cence spectrum is symmetric.lT 

C. Effect of Atomic Motion 
If the point r varies with time (case of a moving atom), it is 
still'possible to obtain the evolution of the ni's and pi,'s. 
The master equation must be modified to  take into account 
the time dependence of li, n; r ( t ) )  and (j, n; r ( t ) )  in Eqs. 
(2.9). Using 

fii(r) = 1 ( i ,  n; deli, n; r) + (i, i; rlpli, n; r )  

+ (i, n; rlpI i, n; r )  (2.18) 
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= v .vli, n; r )  (2.19) 

and coming back to the definitions (2.6) of li, n; r ) ,  one 
obtains, for example, 

fi1 = -rpOpcn1 - nlSt) + + v0(p12 + pz1) 

+ iv - Vp sin 8 cos 0(p2,  - p12), (2.20a) 

pl, = -[ i(Q+ v . v p  cos28) + r,oh]p12 

+ [v - V8 + iv - Vp sin 8 cos 8 ] ( n 2  - Hl). (2.20b) 

The variation d n i  = fiidt of IIi during the time dt  now 
appears from Eq. (2.20a) as the sum of two terms: 

(dIii)Rad corresponds to  the modification of IIi that is due to  
radiative relaxation through spontaneous emission: 

(dni)Rad = -rpop(ni - nist). (2.22) 

Such a term already appeared for an atom a t  rest [cf. Eq. 
2 1 7 ]  ( d n i ) ~ ~ ,  on the other hand, represents the contri- 
butipn of the two terms proportional to the atomic velocity: 

(dn1)NA = vdt [V8(p12 + pZ1) + i sin 8 cos 8Vp(pZl - pl2)l 

This modification of the dressed populations, induced by 
the atomic motion, is due to  the spatial variation of the 
dressed levels: We shall cal1 this term nonadiabatic (NA) 
kinetic coupling since it describes the possibility for a mov- 
ing atom initially on a level Ji, n; r(0))  to  reach, in the 
absence of spontaneous emission, the other level 1 j, n; r ( t )  ) (j 
# i), instead of following adiabatically ( i ,  n; r ( t ) ) .  Let us 
take, for example, the case of an atom that goes from the 
antinode to  the node of a standing wave and that thus expe- 
riences a rapid change of the dressed levels, and let us give an 
order of magnitude of the velocity u for which this NA cou- 
pling becomes important. The probability pi - j for a NA 
transition from Ii, n; r )  to  Ij, n; r )  is overestimated by (see 
Ref. 18) 

wij(t) is the Bohr frequency between levels i and j a t  time t 
equal to f Q[r(t)]. On the other hand, using expression (2.6) 
for the dressed levels, we obtain (p constant) 

and Eqs. (2.7) give for V0 

In a standing wave, w l  varies as wl(r) = G1 cos k r  so that 

6G1 sin k - r 
IV81 = - 1 5 6 151 (2.27) 

2 62 + GI2 cos2 k -  r 2 6 I 
and 

2 1 6Ll sin krI2 
. (2.28) 

The effect of this NA coupling, which is maximal at  the 
nodes of the standing wave, is negligible compared with the 
transfer by spontaneous emission (smaller than rXI2u) when 

ku << ku,, = (211r64/;12)1/3 (2.29) 

Note that for a resonant wave (6 = O), V8 is zero [see Eq. 
(2.26)] so that the adiabatic approximation holds for any 
velocity. 

3. MEAN DIPOLE FORCE fdip 

d P  i F = - = - [H, Pl = -V H = -VRV. (3.1) 
dt  h R 

A. Expression of fdip in Terms of Dressed States 
As usual in semiclassical theory, we start, according to the 
Heisenberg point of view, from the equation of motion of the 
atomic momentum P. The force operator F is defined as the 

In the semiclassical treatment followed here, we replace in 
VRH the position operator R by its average value r. Fur- 

.thermore, we are interested in the average f of F over both 
field and interna1 atomic states: 

f ( r )  = ( F ( ( R ) ) ) .  (3.2) 

% 

Qq' 
5 

In such an average, the contribution of empty modes in Eq. 
(3.1) vanishes, and the average force is related only to the 
gradient of the atom-laser mode coupling: 

time derivative of P: 

f ( r )  = ( b+aLV[d - CL(r)] + baL+V[d - CL*(r)] ). (3.3) 

Using Eq. (2.3), this can be written as 

hwl . hVwl 
f(r) = - ~Vp(p,,e-'~ - pgeeLq) - - 

2 2 ( ~ , ~ e - ~ ~  + pgeeiq), 

(3.4) 

where we have put 

P,, = 1 (g ,  n + llple, n). (3.5) 
n 

Expression (3.4) for f ( r )  is well known. Its two parts are, 
respectively, the radiation-pressure term proportional to  the 
gradient of the phase p(r )  and the dipole force proportional 
to  the gradient of the Rabi frequency wl(r). As indicated in 
the Introduction, we are interested here in the dipole force, 
so we shall focus on this second term in al1 the following, and 
we shall omit al1 terms proportional to  Vp. Using expres- 
sions (2.6) for the dressed levels, the mean dipole force fdip 
can be written in the dressed-atom basis as 

hVQ f =- 
dip 2 (n2 - Hl) - hfiV8(p12 + pzl). (3.6) 

B. Energy Balance in a Small Displacement 
In order to  get some physical insight into expression (3.6) of 
fdip, we now calculate the work d W that has to  be provided 
for moving the dressed atom by a quantity dr: 
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dW = -fdip. d r  

- 
m 1 The first term of this expression can be written simply as 
Y 

where ai represents the change of energy of the dressed 
level Ii, n; r )  in the manifold 6,: . rl 

[El and E2 are the deviations of El, and Ez, from (El, + 
E2,)/2, which is independent of r-see Eqs. (2.4).] Using 
Eq. (2.23), we can reexpress the second term of Eq. (3.7) in 
terms of the NA change of ni in the displacement d r  = vdt: 

Finally, d W can be written as 

d W = 2 [ n i a i  + Ei(dIIi),,]. (3.11) 
i-1,2 

A first comment that can be made about Eq. (3.11) is that 
" 

only NA changes of populations (dII i ) ,~  appear in dW. It  
follows that, if u is low enough, NA effects can be neglected 
[(see expression 2.29)], and we can keep only the first term of 
Eq. (3.11): 

Since (d I l i )~ ,  is not equal to (diii), it is clear also from Eq. 
(3.11) that dW is not equal to  the change of Li Eini ,  which 
can be interpreted as the mean potential energy of the atom 
in the field. In other words, if we put 

In order to  understand the physical meaning of the differ- 
ence between d W  and d u A ,  we now add and substract Zi 
Ei(dni),,d to the right-hand side of Eq. (3.11). Using Eqs. 
(2.21) and (3.13), we first obtain 

Then, we use Eqs. (2.11) and (3.9) to transform the last term 
of Eq. (3.151, and, finally, we obtain 

d w  = d u A  + ( r ' , , n , ~ ~  - r , ,n?hn)dt.  (3.16) 

We claim now that the last term of Eq. (3.16) isthe energy 
change dUF of the electromagnetic field (laser + fluores- 

cence photons) during the time dt  of the displacement dr: 

Such a result can be understood by considering that, during 
the time dt, d n  laser photons (energy hwL) disappear, and dn 
fluorescence photons are emitted. Photons emitted on 
transitions li, n; r )  - li, n - 1; r) can be omitted in the 
energy balance since they have the same energy hwL as laser 
photons. By contrast, photons emitted on transitions Il, n; r) 
-12,n- 1 ; r )  or12,n;r)  -11,n- l ; r )  h a ~ e a n e n e r g y h w ~  
+ hQ or hwL - hQ, and the emission of such photons changes 
the energy of the field by a quantity hQ or -hQ. [Actually, 
because of the Doppler effect, the mean frequencies of the 
three components of the fluorescence spectrum are slightly 
shifted from the values w ~ ,  w~ + Q, w~ - Q. We neglect these 
shifts for the moment, and we shall discuss their physical 
consequences later on. See remark (2) at  the end of this 
subsection.] Since there are, respectively, I'zlnldt and 
r lzn2dt  transitions during dt ,  we understand why the ener- 
gy change d u F  of the field is given by Eq. (3.17). Note that 
d u F  different from zero implies that rz ln ld t  + r12nzdt, Le., 
that the numbers of photons dn+ and dn- emitted in the two 
sidebands w~ + Q and w~ - Q are not the same. In other 
words, the energy change d u F  of the field is associated with 
an asymmetry between the two sidebands of the fluores- 
cence spectrum emitted by the atom during the displace- 
ment dr. 

Finally, we can write 

which shows that the work done against the dipole force for 
moving the atom from r to r + d r  is transformed into a 
variation of atomic and field energies. Note that Eq. (3.18) 
is valid for any velocity (since NA effects are included in 
du,). 

Remarks 
(1) The energy dUFtaken by the field is different from zero 
even in the quasi-static limit, i.e., when the velocity v be- 
tween r and r + d r  is extremely low. This is because the 
steady-state populations IIist(r) depend on r. If, for exam- 
ple, IIlst(r + d r )  < IIlst(r) and, consequently, Iizst(r + dr)  > 
IIzst(r), there are necessarily more transitions from 1 to 2 
than from 2 to 1 during the displacement dr.  This means 
that, in the quasi-static limit, the difference dn+ - dn- 
between the number of photons emitted in the two side- 
bands depends only on d r  and not on the velocity. On the 
other hand, when u decreases, the time d t  required for going 
from r to r + d r  increases, and the number i,rphotons dn+ 
and dn- increases. This shows that the relative asymmetry 
of the fluorescence spectrum (dn+ - dn-)/(dn+ + dn-) tends 
to zero when u tends to zero, whereas the absolute asymme- 
try dn+ - dn- remains constant and proportionai to  duF. 

(2) We come back now to the mean Doppler shift of the 
fluorescence spectrum mentioned above. Consider the sim- 
ple case of an atom moving with velocity v in a plane wave 
with wave vector k. In the rest frame of the atom, the laser 
photons have a frequency w~ - k . v, and the fluorescence 
spectrum is centered on w~ - k - v. Coming back to the 
laboratory frame and averaging over the direction of the 
spontaneously emitted photons, one finds that the fluores- 
cence spectrum is still centered, on the average, on w~ - k . v. 
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If n fluorescence cycles occur per unit time, the energy bal- 
ance d u F  of the field calculated above in Eq. (3.17) must be 
corrected in the laboratory frame by an amount -ndthk. v 
equal to -nhk - dr.  Such a correction corresponds to the 
work done against the radiation-pressure force nhk. This 
shows that taking into account the Doppler shift in the 
energy balance is equivalent to including the radiation-pres- 
sure force in this energy balance. Since this paper is devot- 
ed to dipole forces, we shall ignore these corrections in what 
follows. 

C. Mean Dipole Force for a n  Atom at Rest in r 
If the atom is a t  rest in r ,  we can ignore NA effects and 
replace in Eq. (3.12) the populations ni by their steady-state 
values nist, which gives 

The physical meaning of this expression is clear. The mean 
dipole force fdip is the average of the forces -VEl and -VE2 
"seen," respectively, on levels Il,  n; r )  and 12, n; r )  and 
weighted by the probabilities of occupation nist and Hzst of 
thesetwo types of states. 

Using Eqs. (3.9) and expressions (2.5) and (2.15) of R and 
nist, we can write Eq. (3.19) as 

fdi;t = - h6 - m l 2  a = -V[$ log (1 + $)], 
w12 + 262 

where we have put 
! 

Vu1 n a = - = - ~ ~ .  (3.21) 
a1 w12 

Expression (3.20) of fdipst coincides exactly with the value 
derived from OBE's in the limit (2.10) of well-separated 
line~.l22,~ 

We would like, finally, to show how the dressed-atom 
approach gives a simple understanding of the connection 
between the sign of the dipole force and the sign of the 
detuning 6 = w~ - wo between the laser and atomic frequen- 
cies. If the detuning 6 is positive (Fig. 3a), the levels 1 are 

Fig. 3. Interpretation of the sign of the mean dipole force, which is 
the average of the two dressed-state-dependent forces weighted by 
the steady-state populations of these states represented by the filled 
circles. a, When 8 = w~ - wo > 0, the state I l ,  n; r ) ,  which connects 
to (g, n + 1) out of the laser bearn, is less contaminated by 1 % ;  n) than 
12, n; ri and therefore more populated. The mean dipole force then 
expels the atom out df the laser bearn. b, When 6 = wr. - wo < 0, the 
state 12, n; r) is more populated than I l ,  n; r), and the mean dipole 
force attracts the atom toward the high-intensity region. 
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those that coincide with Ig, n + 1) outside the laser beam. It  

intensity regions. If the detuning is negative (Fig. 3b), the 
conclusions are reversed: Levels 2 are more populated, and 
the atom is attracted toward high-intensity regions. Final- 
ly, if w~ = wg, both states 1 and 2 contain the same admixture 
of e and g, they are equally populated (nlst  = Hzst), and the 
mean dipole force vanishes. 

D. Mean Dipole Force for a Slowly Moving Atom 
We consider now a slowly moving atom for which NA effects 
are negligible, so that we can use Eq. (3.12) and write 

follows that they are less'contaminated by 1 e ,  n )  than levels 2 
and that fewer spontaneous transitions start from 1 than 
from 2. This shows that levels 1 are more populated than 
levels 2 (Hlst > rizst). The force resulting from levels 1 is 
therefore dominant, and the atom is expelled from high- 

Furthermore, we limit ourselves in this subsection to ex- 
tremely small velocities such that 

$ 

7 
Eu 
3 
0' 

Condition (3.23) means that the Doppler effect is very small 
compared with the natural width or, equivalently, that the 
atom travels over a small distance (compared with the laser 
wavelength A) during the radiative-relaxation time. I t  fol- 
lows that the populations n i ( r )  for the moving atom are very 
close to the steady-state values nist(r), the difference be- 
tween n i ( r )  and Iiist(r) being of the order of kulr. We 
therefore expect that Eq. (3.22) differs from the steady-state 
value (3.20) by a term linear in kulr ,  which we now want to 
evaluate. Before doing this calculation, let us emphasize 
that the NA terms neglected in Eq. (3.22) would also give rise 
to velocity-dependent dipole forces if they were taken into 
account, but we shall see a t  the end of this section that their 
contribution to fdip - fdipst is much smaller than that of a; - 
aist. 

In order to obtain the first-order correction (in kulr)  to ni 
- nist, we go back to Eq. (2.17) [since is negligible], 
and we replace Iii(r) by v - Vni(r )  in the left-hand-side 
member of this equation: 

Since the left-hand-side member of Eq. (3.24) already con- 
tains u, we can replace in this term n i ( r )  by nist(r). Equa- 
tion (3.24) then gives 

where 

Expression (3.25), which can be also written as 

has a clear physical meaning. The radiative relaxation be- 
tween the two states l and 2 takes place with a certain time 
constant T ~ ~ ,  Since the atom is moving, and since the 
steady-state population Iiist(r) generally depends on r ,  the 
radiative relaxation cannot instantaneously adjust the pop- 
ulation Iii(r) to the steady-state value IiiSt(r) that would be 
obtained if the atom were staying in r. There is a certain 
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Fig. 4. Interpretation of the sign of the velocity-dependent dipole force (6 > 0) for a slowly moving atom. a, Level 1 1, n; r )  connecta with Ig, n + 
1) out of the laser beam, so that the steady-state population iIlatdecreases as the atom is put in higher-intensity regions: Hlat (r - dr) (hatched 
circle) is larger than niat (r) (filled circle), and consequently, Hzat (r - dr) < iIzat(r). b, For an atom entering with a velocity v in the laser beam, 
because of the time lag T,, of radiative relaxation the instantaneous population in r, iIl (r), is the steady population at point r - v T,,, which is 
larger tban Hlat (r). The mean dipole force then expels the moving atom out of the laser beam more than if it were at rest. The component of 
the force linear in u is therefore a damping term. 

lag, characterized by the time constant rpOp, so that the 
population Iii(r) for an atom passing in r a t  t is the steady- 
state population corresponding to  a previous time t - r,,,, 
i.e., corresponding to the position r - vr,,,. 

Such a simple idea provides a straightforward interpreta- 
tion of the unusual sign of the velocity-dependent dipole 
force, which we have already mentioned in the Introduction. 
The problem is to understand why the dipole force is a 
friction force when the detuning 6 is positive, rather than a 
heating force, as is the case for radiation pressure. Consider 
an atom entering into a laser beam and suppose that 6 = w~ - 
wo is positive. We have represented in Fig. 4a the steady- 
state populations in r ,  Iilst(r), and Ii2st(r) by a circle with a 
diameter proportional to  Iilst(r) and Iizst(r), respectively. 
Since, for 6 > 0, the state Il,  n; r )  is transformed continuous- 
ly into Ig, n + 1)  out of the laser beam, it is more contaminat- 
ed by Ig, n + 1) than 12, n; r ) ,  and it is more populated: 
Iilst(r) > nZst(r). Furthermore, the contamination of Il,  n; 
r )  by le, n )  increases when the Rabi frequency wl(r) in- 
creases. I t  follows that Iilst(r) decreases when r is shifted 
toward the laser beam: Iil"(r - d r )  > Iilst(r). Consider 
now an atom moving with the velocity v (Fig. 4b). Accord- 
ing to  Eq. (3.27), the population iIl(r) in r is not Iilst(r) but 
iIlst(r - d r )  with d r  = vrpop It  follows that 

(The filled circles in Fig. 4b have the same diameters as the 
hatched circles of Fig. 4a.) The same argument gives 

Finally, the moving atom is expelled from the high-intensity 
region with the force 

which is larger than the steady-state force that it would 
experience if it were at  rest in r: The extra velocity-depen- 
dent force is therefore a damping force. With a negative 
detuning, the conclusions would be reversed: The velocity- 
dependent dipole force would then be a heating force. 

We can also derive an explicit expression for the velocity- 
dependent force by inserting expression (3.25) into Eq. 
(3.22) and by using expressions (2.15) and (2.16) of nist and 
rpOp = rpop-l. We obtain in this way 

where fdiPt is the dipole force (3.20) for an atom a t  rest in r 
and where a is given in Eq. (3.21). Such an expression 
coincides exactly [in the limit (2.10)] with the one derived by 
Gordon and Ashkin.' In Section 5, we shall come back to  
Eq. (3.31) for the particular case of a standing wave, and we 
shall calculate the average of fdip(r, V) over a wavelength. 
We shall see that the contribution of fdipst(r) to this average 
is zero so that one is left only with the contribution of the 
second part, proportional to  the velocity, which is a damping 
or a heating force, depending on whether the detuning 6 is 
positive or negative. 

Rernark 
In this section we have neglected NA effects coming from 
(dIii)NA. If they were taken into account, they would give 
rise also to velocity-dependent forces, since (dni)NA is pro- 
portional to u [see Eq. (2.23)]. To estimate the order of 
magnitude of these NA forces, we come back to  Eq. (3.6), and 

hVQ we try to overestimate the last term of this equation that has 
fdip = - - [n l ( r )  - n,(r)l, 

2 (3.30) been neglected here. From Eq. (2.20b). we obtain 
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Jpl,J, I p z l l  6 Max - X -, - X - , (3.32) r n r 'na} 
since IV01 and IVv\ are, respectively, smaller than or equal to  
kwllb and k [see Eq. (2.27)]. This has to be compared with 
the u-dependent contribution of the first term of Eq. (3.6), 
which is of the order of ku/r since it comes from the differ- 
ence between IIi and nist. This shows that NA forces are 
R/r  or R6/wlr smaller than the velocity-dependent forces 
studied in this section, which come from the lag of radiative 
relaxation for a moving atom. I t  is therefore correct to 
neglect them in the limit (2.10) of well-resolved lines and for 
6 not too small compared with wl. (Note, finally, that, if r 
were not small compared with R, it would be also necessary 
to include nonsecular couplings between diagonal and off- 
diagonal elements of the density matrix in the master equa- 
tion describing radiative relaxation). 

4. ATOMIC-MOMENTUM DIFFUSION DUE TO 
THE FLUCTUATIONS OF DIPOLE FORCES 

Because of the random character of spontaneous emission, 
the forces acting upon an atom in a laser beam fluctuate 
around their mean value, and these fluctuations produce a 
diffusion of the atomic momentum P, characterized by a 
diffusion coefficient D. The calculation of D exhibits sever- 
al contributions, most of which are now well understood.6 
For example, there is a contribution that is proportional to 
the square of the phase gradient and that is associated with 
the fluctuations in the number of fluorescence cycles occur- 
ing in a given time interval (fluctuations of radiation pres- 
sure). There is also another term describing the fluctua- 
tions of the recoil momentum transferred by the fluores- 
cence photons that are emitted in random directions. In 
this section we shall focus on the fluctuations of dipole forces 
that give rise to a contribution Ddip proportional to the 
square of the intensity gradient. Gordon and Ashkin have 
already pointed out that the dressed-atom approach pro- 
vides a simple physical picture for the fluctuations of dipole 
forces.' We shall show here that such an  approach can lead 
also to a quantitative evaluation of Ddip for an atom a t  rest. 

A. Fluctuations of Dipole Forces 
The picture of the dressed atom cascading down its energy 
diagram leads to  a simple interpretation of the mean value 
and fluctuations of dipole forces for an atom initially at  rest 
in r. If the dressed atom is in a dressed state of type 1, it 
undergoes a force -VE1 equal to minus the gradient of the 
energy of this state (Fig. 5). Then, by spontaneous emission 
of a photon h(wL + R), which occurs a t  a random time, it 
jumps into a state of type 2, where the force -VE2 = +VE1 
has a value opposite the previous one. A subsequent emis- 
sion of a photon h(wL - R) puts it back in a state of type 1 and 
again changes the sign of the force. And so o n .  . . . I t  thus 
appears that the instantaneous force experienced by the 
atom switches back and forth between two opposite values 
after random time intervals 71, 12, . . . . If and ;2 are the 
mean values of these successive time intervals spent by the 
dressed atom in levels of type 1 and 2, it is clear that the 
mean dipole force is the average value of -VEr and -VE2, 
respectively, weighted by ;l/(;i + ;2) and ;z/(;I + ;z), which 
are actually just the steady-state probabilities of occupation 
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f Instantantous 

Fig. 5. The instanianeous dipole force switches back and forth 
between the two dressed-state-dependent forces -VEi and -VE2. 
The intervals of time 71 and 7 2  spent in each dressed siate between 
two successive jumps are random variables. 

HlSt and n2st of levels 1 and 2. We obtain in this way the 
result already derived in Subsection 3.B for the mean dipole 
force. But the present discussion also provides a good in- 
sight into the random nature of the two-valued instanta- 
neous dipole force. 

B. Evaluation of the Momentum Diffusion Coefficient 
The fluctuations of dipole forces are responsible for a diffu- 
sion of atomic momentum described by a diffusion coeffi- 
cient Ddip, which is given (in the semiclassical treatment 
followed here for an atom a t  rest) by 

where F is the two-valued instantaneous dipole force with 
mean value fdip. 

The expression of the correlation function (F( t )  . F(t  + 
T ) )  results from the physical picture given above: 

I t  is equal to the product of the two instantaneous forces 
-VEi and -VEj weighted by the probability to  be in a state 
of type i a t  time t and in a state of type j a t  time t + T and 
summed over i and j. In the steady-state regime, P(i, t ;  j, t + 
T) depends only on T and can be written as 

P(i, t ;  j, t + T) = PiP(j, ~ l i ,  O), (4.3) 

where Pi is the steady-state probability to  be in i, which is 
just nist: 

p. = n .st 
1 1 7  (4.4) 

and PO', ~ / i ,  O) is the conditional probability to  be in j a t  T, 
knowing that the atom is in i a t  t = O. Solving Eq. (2.17) 
with the initial condition ni(0) = 1 gives 
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P(i, ~ / i ,  0) = nist + Il,St exp(-rPop~),  (4.5a) 

1 31 PG, ~ l i ,  O) = 1 - P(i, ~ / i ,  O).  

5. ATOMIC MOTION IN A STANDING WAVE 
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This last section is devoted to the application of the dressed- 
atom approach to the particular case of atomic motion in a 
standing wave. We are interested here in the average f of 
the dipole force over a wavelength and in the variations off 
with the atomic velocity. We first relate f to the rate of 
variation of the field energy (Subsection 5.A); we then re- 
strict ourselves to theadiabatic limit [velocities smaller than 
u,,; see inequality (2.29)], and we investigate in detail the two 
velocity ranges ku << r (Subsection 5.B) and ku Z r (Subsec- 
tion 5.C). Finally (Subsection 5.D), we compare Our results 
with the ones obtained with a continued-fraction expansion 
of the dipole force. 

Finally, inserting Eqs. (4.3)-(4.5) into Eqs. (4.2) and (4.1) 
and using the expressions given above for El, n t t ,  rpop, one 
obtains 

Ddip = - " ( - y (vUl)'. 
2 r  ml2 + 2?i2 

(4.6) 

C. Discussion 
Expression (4.6) for Ddip coincides exactly with the one de- 
rived from OBE'sl in the limit (2.10) of well-resolved lines. 
Actually, Gordon and Ashkin have used a dressed-atom pic- 

A. Dipole Force Averaged on a Wavelength 
We consider in the following a one-dimensional standing 
wave: 

ture, similar to the one presented here in Subsection 4.A, for 
evaluating the order of magnitude of Ddip a t  resonance. Our 
result (4.6), which is valid for any detuning 6, shows that the 
dressed-atom picture is useful not only for an understanding 
of the physical mechanisms but also for a quantitative calcu- 
lation of Ddip. 

The most important feature of Eq. (4.6) is that Ddip in- 
creases as ( V W ~ ) ~  and does not saturate when the light inten- 
sity increases. Such a behavior is quite different from the 
one exhibited by the diffusion coefficient of radiation pres- 
sure that saturates to values of the order of (hk)'r. The 
large value of Ddip is due to  the fact that, between two 
spontaneous emission processes, the atomic momentum in- 
creases as VE, and is therefore not limited when w l  increases. 
This introduces severe limitations for the realization of radi- 
ative traps using standing waves: The diffusion coefficient 
increases more rapidly with wl (as w12) than the depth of the 
potential well, which varies only as log(1 + w12/2?i2) [see Eq. 
(3.20)]. 

w1(z) = G1 COS kz, (5.1) 

and we restrict ourselves to a motion along the z direction. 
With view to using this standing wave for slowing down (or 
acceleràting) atoms, it is interesting to consider the kinetic 
energy A W lost or gained by the atom over a wavelength and 
equal to the work of the dipole force along a wavelengthlg: 

Z+A 

A W = 6 fdipdz = hf. (5.2) 

f i s  the average of the dipole force over a wavelength. Be- 
cause of the spatial periodicity of the system, AW depends 
only on the atomic velocity u and not on z. Now, using Eq. 
(3.18), f can be related to  the change of the atomic potential 
energy UA and of the field energy UF over one wavelength: 

Since ni and E; are periodic functions of z, the atomic poten- 
tial energy UA(z) given in Eq. (3.13) is also periodic in z, and 
the contribution of the first term of Eq. (5.3) vanishes: 

Equation (5.3) then reduces to 

The integral of d u F  over one wavelength, contrary to d u A ,  is 
not necessarily zero. The atomic motion can indeed induce 
an asymmetry of the fluorescence triplet, so that the energy 
radiated in the two sidebands of this triplet, a t  w~ + Q and w~ 
- Q ,  can be larger or smaller than the energy of the photons 
w~ absorbed in the laser wave. This gain (or loss) of energy 
by the electromagnetic field is then of course compensated 
by a loss (or gain) of kinetic energy of the atom, by the action 
of the dipole force upon this atom. 

To  go further in the calculation of 7, we now need to 
evaluate fdip [Eq. (5.211 or dUF [Eq. (5.5)] as functions of the 
position and the velocity of the atom. From Eq. (3.6) for fdip 
or Eq. (3.17) for ~ U F ,  we see that this amounts to determin- 
ing the populations ni and the coherences pi, a t  a given point 
and for a given velocity. A general determination of the ni's 
and the pifs (Le., for any velocity) would require that the set 
of equations (2.20) be solved. Actually, we shall restrict 
ourselves to  velocities such as ku small compared with ku,, so 
that only the Ili's are needed and NA terms can be neglected 
in Eqs. (2.20). The equation of evolution for the Ili's is then 
Eq. (2.17), which we are now going to  solve for the following 
two velocity ranges: very low velocities ku << r (which have 
already been explored in Subsection 3.D) and intermediate 
velocities r 5 ku << ku,,. 

B. Case of Very Low Atomic Velocities 
For very low velocities such that ku is small compared with 
r, the principle of the resolution of the equation of evolution 
of ni [Eq. (2.17)] has already been given in Subsection 3.D: 
One can expand the solution of Eq. (2.17) in powers of kul r  , 
the zeroth-order solution being simply the steady-state val- 
ue Hist. The simplest way to obtain f is then to start from 
the expression of fdip(z, U) [Eq. (3.31)] obtained in Subsec- 
tion 3.D and to average it over a wavelength: 
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fdiPst(z) is an odd function of z so that its contribution to Eq. 
(5.6) vanishes. One is then left only with the second term of 
Eq. (5.6) that  can be written as 

provided that the dipole force is sufficiently small so that the 
velocity u can be considered as constant over a wavelength. 
Depending on the sign of the characteristic time ~ , f  is either 
a damping or an accelerating force. The explicit calculation 
of T from Eq. (5.6) gives 

with 

Several remarks can be made about Eq. (5.8). First, we 
note, as in Subsection 3.D, that the force damps the motion 
(7 positive) for a positive detuning 6 and accelerates it (T 

negative) for a negative detuning. Second, Eq. (5.8) permits 
a comparison of T with TO [given in Eqs. (5.9)], which is the 
characteristic time of radiation-pressure cooling. We see 
that T can be much shorter than 70, which indicates that the 
dipole force in a strong standing wave can be much more 
efficient for radiative cooling than radiation pressure.20 Let 
us mention, finally, that Eq. (5.8) is equal, in the limit of 
well-separated lines, to the result found by Minogin and 
Serimaal0 by a continued-fraction expansion of the dipole 
force, calculated from OBE's. 

C. Case of Intermediate Velocities 
We now turn to the case of intermediate velocities r < ku << 
ku,,, for which NA terms can still be neglected in the evolu- 
tion of the ni's: 

but for which an expansion of ni in powers of kul r  is no 
longer possible. We then have to start with the general 
solution of Eq. (5.10): 

We now take advantage of the periodicity of ni(z)  and write 
Eqs. (5.11) with zo = z - A. This gives 

r n?t dz' POP 1 

U 
e(zf, z) 

ni(z) = (5.12) 
1 - e(z - A, z) 

This last expression is valid for any velocity satisfying the 
adiabatic approximation. I t  would now be possible to insert 
this value into the dipole force (3.22) and to obtain in this 
way a general result for the dipole force a t  the adiabatic 
approximation. A similar result has already been obtained 
by Fiordilino and Mittlemana by a method using a Fourier 
expansion of the OBE solution in the standing wave. We 
shall not perform this general calculation here, since we are 

rather interested in f, and, furthermore, we shall restrict 
ourselves to the high-velocity side: ku >> r. For such veloc- 
ities, the function e(zl, z2) is close to 1 if zl - 2 2  is smaller 
than or of the order of A, so that we can write 

Assuming that the velocity u does not change much on a 
wavelength, this gives the approximate value for IIi: 

POP 

where A stands for the average of a quantity A(z)  over a 
wavelength. We have neglected the second term of expres- 
sion (5.13) in the numerator of Eq. (5.12) since this numera- 
tor is already in l/u. Using Eqs. (2.15) and (2.16) for ni and 
rpop, expression (5.14) can be written as 

- - 
T. T. 

These two last expressions have a straightforward interpre- 
tatiqn: When ku is large compared with r ,  the atom has a 
small probability of emitting a fluorescence photon when it 
moves over a single wavelength. I t  is therefore not sensitive 
to the local rij's, but rather it averages them over a wave- 
length X; the populations then become nearly independent 

'of z, and they are determined by the balance of transfers 
between the dressed levels with these averaged rates Fi,. 

The final step of the calculation of f is now to insert the 
Hi's into expression (3.17) of ~ U F  and integrate the result 
over one wavelength to getf by using Eq. (5.5). We find that 

so that, by putting dt  = dzlu, 

For this second velocity range ( r  << ku), it appears that the 
variation of f with the velocity is completely different from 
what has been found for the first range ku << r :  Instead of 
being proportional to the velocity (5.7), f is now inversely 
proportional to u, thus indicating that the power dissipated 
by 7 and transferred to the field is independent of the veloci- 
ty. 

Before giving the explicit results for Fij and fif i,, let us 
transform Eq. (5.17) in order to get some physical insight for 
f: 

The two quantities h(wL + Q)rzl/F21 and h(wL + Q)r12/F12 
are, respectively, the average energies of photons emitted in 
the transitions (1, n )  + 12, n - 1 )  and 12, n') + Il, n' - l ) ,  
whereas -2hwL is the energy lost by the laser field when 
these two transitions occur. The numerator of Eq. (5.8) is 
then the total variation of the field energy in a cycle 1 + 2 + 

1 (or 2 + 1 + 2). On the other hand, the denominator is just 
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I Fig. 6. Interpretation of the slowing down for 6 > O of an atom 
moving in a standing wave with intermediate velocities. The emis- 
sion of the upper sideband of the fluorescence spectrum (transitions 
1 -. 2) occurs preferentially a t  the antinodes of the standing wave 
where the contaminations of Il, n + 1; r)  by le, n + 1)  and 12, n, r)  by 
Ig, n + 1) are the largest. By contrast, for the lower sideband, the 
transitions 2 + 1 occur preferentially a t  the nodes where 12, n; r)  
and Il, n - 1; r)  coincide, respectively, with le, n )  and Jg, n) .  
Consequently, between two transitions 1 -. 2 or 2 -. 1, the moving 
atom "sees" on the average more "uphill" parts that "downhill" 
ones in the dressed-atom energy diagram and is therefore slowed 
down. 

the duration of such a cycle so that the right-hand side of Eq. 
(5.18) is the variation of the field energy per unit time, as 
expected. The main interest of Eq. (5.18) is to  indicate 
clearly the dependence of the sign off  with the detuning 6. 
Take, for example, 6 > O (Fig. 6). Photons emitted on the 
lines 1, n + 2, n - l(wL + Q) will be preferentially emitted a t  
the antinodes of the standing wave, since it is a t  these points 
that the level Il, n; r) (essentially Ig, n + 1) for 6 > 0) 
contains the largest admixture of le, n )  and is therefore the 
most unstable. We then obtain 

By contrast, photons emitted on the line 2, n -. 1, n - 1 will 
be preferentially emitted a t  the nodes of the standing wave 
since, at  these points, 12, n; r )  is equal to le, n )  and is 
therefore the most unstable. This gives 

Putting approximations (5.19) and (5.20) into expression 
(5.18), we obtain 

-+- 
riz rz1 

which shows that f will be a damping force for 6 positive. 
Another way of expressing this result is to Say that the 
moving atom "sees" more "uphill" parts than "downhill" 
ones, since transitions preferentially occur for 6 > O from the 
"top" of a given dressed energy level to the "bottom" of the 
other one (see Fig. 6). For 6 < 0, the conclusion is of course 
reversed so that, finally, it appears that the respective signs 
off and 6 are the same here as for very slow atoms (Subsec- 
tion 5.B). 

An explicit calculation of rij and mij is possible from 
expressions (2.5) and (2.12) of Q and rij,  where wl is replaced 
by Eq. (5.1). One obtains 

where K and E are the elliptic integrals of the first and the 
second kind22: 

where s is given by Eq. (5.9) and where c is the sign of 6 ( ~  = 

611 61 ). 

Rernark 
I t  is interesting to come back to  the problem of the asymme- 
try of the fluorescence spectrum emitted by the moving 
atom. In Subsection 2.B we have seen that, in a small 
displacement d r  = v dt, a change d u F  of the field energy 
reflects that different numbers of photons dn+ and dn- are 
emitted in the two sidebands WL f Q(r). On the other hand, 
because of the periodic variation of the populations IIi(z) for 
an atom moving in a standing wave, -the averages over a 
distance A of the numbers of photons emitted in the two 
sidebands N+ and N- are necessarily equal. This equality 
N+ = N- does not imply, however, that the field energy does 
not change when the atom travels over A but only that the 
total weights of the two sidebands of the fluorescence spec- 
trum emitted during this interval are equal. Actually the 
field energy does Vary, because the average energies of the 
N+ and N- photons emited in the upper and lower sidebands 
are larger (smaller) than WL + fi and WL - fi if 6 is positive 
(negative) (see Fig. 6). In other words, even if the two 
sidebands have the same weights, their centers of gravity are 
not symmetric with respect to  u ~ .  
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D. Connection with Previous Works 
In the low-intensity limit (Li < I'), atomic motion in a stand- 
ing wave can be analyzed in perturbative terms. At the 
lowest order (in ;12/I'2), the mean dipole force averaged over 
X appears as the difference between the radiation pressures 
of the two counterpropagating waves, "seen" with different 
Doppler shifts by the moving a t ~ m . ~  At higher orders, reso- 
nant multiphoton processes appear that involve absorption 
of photons from one wave and stimulated emission of pho- 
tons in the opposite wave ("Doppleron" re~onances).~ 

At higher intensities (L1 >> I'), such a perturbative ap- 
proach is no longer valid. Most previous works use then an 
exact solution of OBE's in terms of continued fractions or 
Fourier-series expan~ion.10~~~~~1 These methods provide an 
exact solution, but, unfortunately, they do not give any 
physical picture for the new features that appear in this 
intensity range. 

The dressed-atom approach followed in this paper is pre- 
cisely well adapted to the limit Ll >> I'. It has the advantage 
of providing not only simple physical pictures but a190 trac- 
table analytical expressions in different velocity ranges. In 
order to demonstrate the accuracy of expressions (5.7) and 
(5.17)-(5.22) given above, we compare now their predictions 
with those'of an exact calculation. 

For example, the solid curve of Fig. 7 represents the result 
obtained by the continued-fraction method for the varia- 
tions with kulr of the mean dipole f when & = lOOOI'  and 6 = 
200I', whereas the two dashed lines represent the dressed- 
atom predictions (5.7) and (5.17)-(5.22): 

I' « ku « ku,, = 20r, 7 = -40 (F) (s) . (5.24b) 

Fig. 7. Mean dipole force f (in units of hkr12) ver-s velocity (in 
units of rlk) for an atom moving in a standing wave ( w ,  = 1000r, d = 
200I'). The soiid curve is an exact numerical solution obtained by 
the method of continued fractions. The two dashed lines represent 
the analytical predictions of the dressed-atom approach for very low 
velocities (kv << r )  (see also the insert) and for intermediate veloci- 
ties (r << ku << kv,,). The structures appearing in the exact solution 
in the high-velocity domain are a signature of the breakdown of the 
adiabatic approximation ("Doppleron" resonances). 

We see that the agreement between the two theories is very 
good for these two velocity ranges. Note that it is possible to 
connect the two results for the dressed atom [expressions 
(5.24a) and (5.24b)I by calculating f from the general expres- 
sion (5.12) for the populations. Actually, we have done such 
a numerical calculation, and the predictions of the two theo- 
ries (dressed atom and continued fractions) then coincide 
perfectly, provided that the adiabatic approximation holds. 
When the velocity becomes too large, resonances appear on 
the solid curve of Fig. 7 (continued-fractions result), which 
are a signature of the breakdown of the adiabatic approxi- 
mation. These are related to the so-called "Doppleron re- 
son an ce^."^ 

The force has been expressed in Fig. 7 in units of hkI'/2, 
which is the saturation radiation pressure. We see that the 
averaged dipole force can exceed this radiation pressure by 2 
orders of magnitude for realistic Rabi frequencies (& = 
lOOOI'  is achieved for sodium atoms with 1-W laser power 
focused on 100 pm). This indicates the very rich potentiali- 
ties of this system, for example, for slowing down an atomic 
beam by sweeping a standing wave over the Doppler profile. 
The idea would be to change the relative frequencies of the 
two counterpropagating waves so that the nodes and the 
antinodes of the standing wave would move with a velocity 
usw. The velocity appearing in the expressions (5.24) of the 
dipole force would now be the relative velocity u - usw 
between the moving atom and the standing wave. An ap- 
propriate sweeping of usw would then permit the decelerat- 
ing force to be kept close to the optimal value of Fig. 7. 
Kazantsev has also suggestedZ3 that a swept standing wave 
be used to accelerate beams of neutral atoms. 

6. CONCLUSION 

In conclusion, we have derived the following results in this 
paper. 

The dipole force experienced by an atom in a gradient of 
light intensity is closely related to the spatial variation of the 
energy levels of the combined system: atom + laser photons 
(dressed states) and to the redistribution of populations 
between these levels induced by the atomic motion (NA 
effects) or by spontaneous emission of fluorescence photons 
(radiative relaxation). We have shown that the work done 
by the dipole force during a small atomic displacement d r  
corresponds to the sum of the changes of the atomic poten- 
tial energy and of the field energy, the latter change being 
related to an asymmetry of the fluorescence spectrum emit- 
ted by the atom during the displacement. 

As in the Stern-Gerlach effect, two different forces with 
opposite signs are associated with the two types of position- 
dependent dressed states. An atom initially at  rest in r 
undergoes spontaneous transitions between these two types 
of states. The corresponding picture of a two-valued in- 
stantaneous force fluctuating around a mean value leads to 
the correct values for the mean dipole force and for the 
atomic-momentum diffusion coefficient associated with in- 
tensity gradients. 

For a very slowly moving atom (ku << I'), we have inter- 
preted the velocity-dependent dipole force as being due to 
the finite time constant of radiative relaxation, which intro- 
duces a time lag in the variation of the dressed-state popula- 
tions of the moving atom. We have explained in this way 
why the velocity-dependent dipole force damps the atomic 
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motion when the laser is detuned above the atomic frequen- 
cy and why, in a high-intensity standing wave, the sign of the 
force is opposite the one obtained by adding the radiation 
pressures of the two counterpropagating waves. 

We have also considered the case of an atom moving in a 
high-intensity standing wave with intermediate velocities (r 
<< k u  << ku,,). We have shown in this case that the dipole 
force averaged over X is inversely proportional to u ,  and we 
have interpreted this result as being due to the fact that one 
sideband of the fluorescence specrum is emitted preferen- 
tially in the antinodes of the standing wave, whereas the 
other one is emitted in the nodes. Potentialities of such a 
dipole force for efficient slowing down of atoms have been 
pointed out. 

I t  thus appears that the dressed atom provides useful 
physical insights in the dipole force in the high-intensity 
domain (wi >> r) where perturbative approaches are no 
longer valid. We have also shown that such an approach 
leads to tractable mathematical expressions that are in good 
quantitative agreement with the prediction of other exact 
solutions (analytical or numerical) when they exist. 
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