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Résumé. 2014 On étudie comment le comportement d’un électron dans des champs statiques élec-
trique ou magnétique est modifié lorsque cet électron interagit également avec une onde électro-
magnétique haute fréquence. Les nouvelles propriétés dynamiques de l’électron sont décrites par
un hamiltonien effectif dont l’expression est établie en utilisant une description quantique du champ
électromagnétique et en tenant compte des corrections relativistes jusqu’à l’ordre 1 /c2. Outre une
correction de masse bien connue, on trouve que les nouvelles propriétés dynamiques de l’électron
peuvent être comprises en termes de facteurs de forme électrique et magnétique qui ont une inter-
prétation physique simple. Ces résultats généraux sont enfin appliqués à 2 cas simples : perturbation
des niveaux de Rydberg d’un atome et modification des fréquences cyclotron et de précession de spin
d’un électron dans un champ magnétique uniforme.

Abstract. 2014 We study how the behaviour of an electron in d.c. electric or magnetic fields changes
when this electron is simultaneously interacting with a high frequency electromagnetic wave. The new
dynamical properties of the electron are described by an effective hamiltonian that we derive using a
quantum description of the electromagnetic field and including relativistic corrections up to order 1/c2.
Besides a well-known mass-shift correction, one finds that the new dynamical properties of the elec-
tron can be described in terms of electric and magnetic form factors which have a simple physical
interpretation. Finally, these general results are applied to 2 simple cases : perturbation of atomic
Rydberg states and modification of the cyclotron and spin precession frequencies of an electron in a
static homogeneous magnetic field.
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1. Introduction. - 1.1 MOTIVATIONS FOR THIS

WORK. - The initial motivation of this work was to
extend some previous calculations dealing with the
effect of a non-resonant irradiation on a neutral
atomic system.

It is well known for example that atomic energy
levels are shifted when atoms are interacting with a
non-resonant light beam. These so called light-shifts
have been mainly studied in cases where the main part
of the effect is due to virtual transitions to a quasi-
resonant state [1, 2, 3, 4, 5] or to a few excited
states [6, 7, 8]. But such an approximation is not

always possible. For example, when atoms in highly
excited states (Rydberg states) interact with an intense
light beam having a frequency much higher than the

spacing and the ionization energy of these states, it is
necessary to consider the effect of virtual transitions
to all atomic states including the continuum. One can
ask if it would not be possible in this case to make a
convenient approximate evaluation of the infinite sum
appearing in the second order term of the perturbation
series, which would not require the knowledge of all
atomic oscillator strengths.

Another example of a problem which motivated
this work is the modification of the g factor of an
atomic state under the influence of non-resonant RF
irradiation (having a frequency ro much higher than
the spin precession frequency roo) [9, 10, 11]. The
important point is that one always finds a reduction of
the 9 factor, never an enhancement. But it is well
known that the g factor of a free electron is increased
above the value 2 predicted by the Dirac equation
when one takes into account the coupling with the
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quantized electromagnetic field vacuum : the g - 2
anomaly [12] is positive. What is the origin of this
difference of sign ? Is it due to the fact that one consi-
ders in the first case a neutral atomic system, in the
second one a charged particle ? Or to the fact that the
system is coupled in the first case to a filled mode of
the electromagnetic field, in the second one, to the

vacuum ? A first step to answer these questions is to
determine precisely how the cyclotron and the spin
precession frequencies are modified by high frequency
irradiation.
We present in this paper a simple approach to these

various problems. We consider an electron weakly
bound in a d.c. electric field (for example, an electron
in a Rydberg state), or orbiting in a d.c. magnetic
field, and we try to understand the perturbation of the
energy levels of such an electron, when irradiated by
a high frequency electromagnetic wave, in terms of
corrections to its dynamical properties (corrections
to its mass, appearance of electric and magnetic form
factors, ...). In other words, we try to understand how
the high frequency vibration of the electron (in the
incident wave) changes the slow motion .of this

electron (in the applied d.c. fields).

1.2 CONNECTIONS WITH PREVIOUS WORKS. - The

possibility of irradiating electrons with intense laser
beams has already stimulated a lot of theoretical works.
Most of these treatments consider essentially free

electrons. Their purpose is to investigate some non-
linear effects appearing in the scattering by the electron
of the high intensity incident radiation : harmonic
production, intensity dependent frequency shift in

Compton scattering, ... or to study some associated
effects on the electron itself : mass-shift of an electron
in a plane wave, deviation by a high intensity standing
wave (Kapitza-Dirac effect), reflection and refraction
of free electrons in spatially inhomogeneous laser
beams, ... (An important list of references may be
found in reference [13] which is a review paper on the
subject.)
We will not consider here such scattering problems.

Our interest lies in the modifications induced by the
light irradiation on the dynamical properties of an
electron which is supposed to be weakly bound in
a d.c. external field (the electron wave function is

confined to a sufficiently small region of space so that
one can neglect any spatial variation of the laser

intensity within this region and all the corresponding
intensity gradient forces). We will show that the

electron moves in the static fields as if it had an effec-
tive mass greater than m by an amount which is

nothing other than the mass shift derived previously
for a free electron interacting with a strong electro-
magnetic wave (1). But we will also derive a lot of
other corrections, which are not related to such a mass

(1) Let us emphasize however that such a mass shift correction
is only valid for a weakly bound electron (see discussion of sec-
tion 3.1 i).

shift, and which may be interpreted in terms of electric
and magnetic form factors induced by the incident
wave and modifying the coupling of the electron to
the static fields. We will discuss in detail these correc-
tions, their physical interpretation and their possible
observation.
Most of the previous theoretical treatments men-

tioned above make use of the exact solutions of the
Dirac equation for an electron in a classical plane
electromagnetic wave (Volkov’s states, see ref. [14]),
or of the Green function associated with such a wave

equation [15J. Some progress has recently been made
in finding exact solutions of the Dirac equation for an
electron in a quantized plane wave [16, 17], or in a
quantized plane wave and in a constant magnetic
field [18]; the motivation of these calculations being
essentially to calculate the radiation absorbed or
emitted by such an electron.

In the present paper, we do not start from Volkov’s
solutions, although it would be possible to study the
perturbation of such solutions by the external static
fields in order to get the modified response of the
electron to these static, fields (such an approach is

suggested in reference [19] but we have not found in
the litterature any further progress in this direction).
We have preferred to work in the non-relativistic
limit and use the Foldy-Wouthuysen hamiltonian
for describing (up to order v’lc’) the coupling of the
electron with the static fields and the incident wave.
We then derive an effective hamiltonian giving the
new perturbed Bohr frequencies associated with the
slow motion of the electron in the static fields. We
have chosen such an approach for three reasons :
(i) It gives the modifications of the dynamical pro-
perties of the electron as correction terms to a non-
relativistic hamiltonian and the physical interpretation
is straightforward. Furthermore, the corrections can
be readily evaluated using non-relativistic (2-compo-
nents) wave functions. (ii) From an experimental
point of view, the higher order terms appear to be
completely negligible. (iii) It may seem questionable
to compute higher order terms from exact solutions of
Dirac equation and not from the Q.E.D. formalism.

Let us finally explain why we have chosen a quantum
description of the incident wave, rather than a classical
one. A quantum treatment of the electromagnetic
field gives simultaneously the effect of the coupling
with the photons of the mode (stimulated effects) and
the effect of the coupling with the empty mode (spon-
taneous effects). In this paper, we will focus on the
stimulated effects. But we will come back later on to

the spontaneous effects in connection with the g - 2
anomaly. Such an approach will give us the possibility
of comparing the 2 types of effects and to get some
physical insight into the g - 2 problem which has
received a lot of attention [20].

1. 3 OUTLINE OF THE PAPER. - In section 2, we

present the effective hamiltonian method and we

discuss the classification and the order of magnitude
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of the various terms of this hamiltonian. These terms
are explicitly given in section 3, and one shows how
they can be classically interpreted. Finally, in section 4,
we apply our results concerning the effect of high
frequency irradiation to 2 cases : the perturbation of
Rydberg states and the modification of the cyclotron
and spin precession frequencies in a static homo-

geneous magnetic field.

2. General method. - 2.1 HAMILTONIAN OF THE

SYSTEM. - Consider an electron of charge e, rest

mass m, which is irradiated by an intense and mono-
chromatic plane wave of pulsation w, wave vector k
(with K = k/I k 1), polarization E (linear or circular),
and submitted to d.c. electric and magnetic fields,
described by the fields Eo, Bo or the potentials Ao, (Po-
As mentioned above, we will treat quantum-

mechanically the interaction with the electromagnetic
fields. For the sake of simplicity, we will describe the
incident electromagnetic wave (i.e.w.) by a state vector
with N photons in the mode (k, e) and 0 in all other
modes, represented by the ket  N &#x3E;. We call a and at
the annihilation and creation operators operating
in this mode.

In order to describe the interaction between the
electron and the different fields, we can of course use
the Pauli hamiltonian. But we thus neglect several
interesting relativistic effects, which may be not

negligible in some cases. To take into account such
effects, we will use the non-relativistic limit of the Dirac
equation, computed up to 2nd order in powers
of vie: all relativistic effects up to l/e2 will then be
described.

It is possible, by the method of Foldy and Wouthuy-
sen, to derive from the Dirac equation the relativistic
corrections to the Pauli hamiltonian. In our special
case, we must slightly modify this technique, because
the fields we deal with are quantized, and the corres-
ponding operators do not commute. The final result is
the same if we ignore a constant term. In the Coulomb
gauge this non-relativistic hamiltonian can be written
as :

In this expression and B, are the total fields

(static + plane wave),

is the electron linear momentum. The radiation field
vector potential Af has the following expression :

(L3 : quantization volume). We will also use the r.m.s.
value E of the radiation electric field E,, which is
related to the number N of photons by the equation :

This equation expresses the equality between the two
expressions (quantum-mechanical and classical) of
the i.e.w. energy within the volume L 3.

In the expression (2.1), the first line gives the free
radiation hamiltonian and the electronic Pauli hamil-
tonian. In the second line the following terms appear
successively : the Darwin term, the spin-orbit term,
the relativistic mass correction.

Let us now separate the contributions of the diffe-
rent fields. HFW is then a sum of three terms :

o The free field hamiltonian Hf :

2022 The electronic hamiltonian Jee, describing the
electron in presence of the static fields only :

2022 The interaction hamiltonian Ri, describing the
interaction between the electron and the i.e.w. splits
into two terms : Je.1, linear in a and at, X,, containing
all higher order terms in a and at, which are respect
vely given, when one takes into account only terms
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2.2 EFFECTIVE HAMILTONIAN METHOD. - We first
consider the energies of the system electron + photons
without any mutual interaction. Let Bex, &#x26;pl ..., be the

eigenvalues of the electronic hamiltonian Jee, cor-

responding to eigenstates a &#x3E;, I P ) ... The hypothesis
of a high frequency, non-resonant field can be specified
in the following way :
For every pair a, fl :

The energy diagram is represented on figure 1. As we
will see later, the relevant states bunch into well

separated multiplicities tN, corresponding to tensorial
product states IN) Q9 1 cx &#x3E;.

FIG. 1. - Energy diagram of the system electron + photons
without interaction (N : number of photons, afly : electron states).
The high frequency condition ensures that the multiplicities...

8N - 1, 8N, EN + l’ ... are well separated.

The hamiltonian HI, describing the interaction
 between the electron and the photon field, can be
divided into two parts :

2022 an off-diagonal part, coupling multiplicities EN
and eN, corresponding to different photon numbers ;

2022 a diagonal part, only operating inside the multi-
plicity eN.
We now suppose that the off-diagonal part of the

coupling is small compared to the splitting between
two multiplicities, i.e. :

It is therefore possible to apply perturbation theory
to obtain the eigenfrequencies and the eigenstates of
the total hamiltonian. Due to the coupling Ri, these
eigenstates do not correspond to a well-defined value
of N; in the evolution of the electronic variables, some
frequencies close to co and its multiples appear,
corresponding to the classical picture of an electron
vibrating in the electric field of the i.e.w. Moreover,
the energy splittings inside a given multiplicity, and
consequently the slow motion of, the electron, are

modified. This modification of the dynamical elec-
tronic properties in the static fields is precisely what
we call dressing of the electron- and can be interpreted
in two different ways : 

9 In quantum language, the virtual absorption and
reemission of incident photons (and the reverse

process) influence the electronic behaviour in an

applied static field.
2022 In classical language, the slow motion of the

electron due to the applied fields is affected by the
high frequency vibration induced by the i.e.w.

As we are mainly interested in this modification of
the electron’s dynamical properties, we only need
the low Bohr frequencies of the system. We will now
show that these frequencies can be obtained by a
purely operator method, called the effective hamil-
tonian method. The idea is to apply a unitary trans-
formation U to the total hamiltonian in such a way
that it eliminates the off-diagonal part of the coupling
to a given order of perturbation. The transformed
hamiltonian Jeeff, called effective hamiltonian, has
thus the same eigenvalues as the total hamiltonian, but
it only acts within a given multiplicity, i.e. operates
only on electronic variables. 
Before giving the explicit form of the effective

hamiltonian, let us make two important remarks :

(i) The energy spectrum of any electron has not,
in fact, an upperbound : rigorously speaking, it is not
correct to consider that the multiplicities eN are well
separated since some states of eN are degenerate with
some states of eN’ (N’ 0 N) ; this simply expresses the
fact that real transitions are possible between electro-
nic states under the influence of the i.e.w. We can

ignore the coupling between these degenerate states
provided that the corresponding matrix elements are
sufficiently small. More precisely, we will suppose
that the time constants associated with the resonant

(or quasi-resonant) couplings are much longer than
the characteristic evolution times in the applied static

fields of the order of 2 n &#x26;p . This condition must
be checked in each particular case.

(ii) The effective hamiltonian method yields the

eigenvalues of the total hamiltonian, but not its

eigenstates. If they are needed, we must perform the
inverse unitary transformation Ut on the eigenstates
Of Jeeff.
We show in appendix A (see also [21]) that the

matrix elements of Xeff, up to 2nd order of perturba-
tion, can be expressed as : 

This expression reduces to the usual perturba-
tion development for the diagonal elements
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 N, a I Jeeff I N, ot &#x3E;. It is different for the off-dia-

gonal elements inside &#x26;N : instead of taking the usual

energy fraction E 2 E , ’ , we take the mean valueN,a. N,y
of the 2 possible fractions.
The energy denominators are more precisely written

as

We can thus take into account the inequality (2.10)
and expand the energy fractions in powers of &#x26;,,, -81hw 
so that the electronic energies do not appear any more
in the denominator.
So far, Jeeff is only defined by its matrix elements.

We now show that we can obtain a pure operator
form of Jeeff, only acting on electronic variables.

2.3 OPERATOR FORM OF THE ELECTRONIC EFFECTIVE
HAMILTONIAN. - Let us disentangle in Jell and in HI2
the electronic and field operators :

V3 contains the terms of (2.9) which are proportional
to e3 and e4, whereas the four first terms of Jq are
proportional to e2. The electronic operators have the
following expressions : 

’

y + - is obtained from V - + be changing E to E* and i to - i.
The Y- - a2 and VI +(at)2 terms, which couple the EN and EN:t2 multiplicities, give rise to 4-photon processes

(2 absorptions, 2 emissions). These terms have the same order of magnitude as 4th order perturbation terms,
and we can therefore neglect them. For the same reason, taking into account the V3 term in HI2 is inconsistent
with a second order perturbation treatment, and we will therefore neglect Y3.

8 - 8 Now, if we develop the energy fractions up to 2nd order in powers of ( hw ) , we obtain the followinghw 
expression of the effective hamiltonian, where all field operators have disappeared :

The effective hamiltonian (2.16) exhibits two kinds
of terms :

(i) N-independent terms, which describe the contri-
bution of the considered (k, c) mode to spontaneous
effects, due to the coupling of the electron with the
vacuum. We will focus on the physical interpretation
of these terms in a subsequent paper.

(ii) Terms proportional to N, which are propor-
tional to the light intensity and describe effects

stimulated by the i.e.w. As mentioned in the introduce-
tion, in the present paper we will only consider these
terms (we ignore all spontaneous effects) (2).

(2) Strictly speaking, all modes contribute to spontaneous effects
and should be considered. The corresponding effects can be account-
ed for by introducing the usual radiative corrections in the electronic
hamiltonian (see for example ref. [22]). Such a procedure renorma-
lizes the unperturbed hamiltonian and also slightly modifies the
stimulated terms of the effective hamiltonian. To simplify, we will
discard these radiative corrections to the stimulated terms.



998

The expression (2.16) of X,,ff contains terms like :
V + 3C,, V - I(Fiw)2 : such terms take into account not
only the effect of a virtual transition via &#x26;N:t 1, but also
the effect of an intermediate evolution inside EN:t:1
due to Jee, i.e. due to the applied static fields : these
terms describe the dressed electron polarization
under the effect of the applied static fields.
The expressions (2.14) and (2.15) of V+ and V-

contain a lot of propagation factors e::-’kr. These
factors are important and we cannot make the dipole
approximation e ik.r = 1, because the development of
these factors gives powers of ikr = icvr/c, proportio-
nal to 1/c, 1/c2,... : we must keep such terms since we
want to make a consistent calculation up to 2nd order
in powers of 1/c. As a matter of fact, this factor can be
exactly accounted for, because it is nothing else than
a translation operator in momentum space.
To summarize, we can say that the final expression

of Jeeff is obtained by making several developments :
(i) Development in powers of lie up to 1/c2 in the

Foldy-Wouthuysen hamiltonian and in the calcula-
tion of the effective hamiltonian.

(ii) Perturbation development up to 2nd order in E
(r.m.s. electric field of the i.e.w.) in the expres-
sion (2.12) of Jeeff.

in powers of X, Ihw. 
A great number of terms therefore appear in Heff :

we then need a precise determination of their order of
magnitude (in terms of the characteristic parameters
of the problem) in order to keep in the hamiltonian
all the terms up to a well defined order of magnitude,
and only these ones.

2.4 CLASSIFICATION OF THE DIFFERENT TERMS.
The problem we deal with depends on a small number
of independent characteristic energies :
- The coupling between the electron and the plane

wave can be specified by the vibrational kinetic

energy 8y of the electron in the classical electric field
of the i.e.w. (see eq. (B. 7) of appendix B) :

- The coupling between the electron and the

applied static fields is characterized by the energy eb ;
the expression of eb depends on the particular problem
we are interested in : it can be for example hwc
(wc : cyclotron frequency) in the case of a static

magnetic field, or a2 mc2/2 n2 in the case of a Cou-
lomb field, etc...
- The free photon field and the free electron are

characterized by the energies hw and mc2.
It is easy to see that the order of magnitude of each

term in V- or V +, and hence in the effective hamilto-
nian can be expressed as a function of these four
characteristic energies. For example, the second term

in NV-+ (eq. (2.15)) has the following order of
magnitude :

In order to be sure of the convergence of the different

developments which appear in the calculation of the
effective hamiltonian, we will suppose that the

following conditions are fulfilled :

(i) High frequency condition :
- well separated multiplicities i.e. :

- negligible real transitions.

(ii) Weak coupling condition :

(iii) Non-relativistic condition for the photon
energy :

which implies, according to (2.19) and (2.20), that all
the energies involved in the problem are also small
compared to mc2.
With the help of these inequalities, we are now able

to classify the different terms in Heff. We need now
some criteria to stop the different developments in the
final expression of Heff. In this paper :
- we compute all terms in 1/c up to 1 /c2,
- we keep linear terms with respect to ev,
- we keep linear terms with respect to Eb (linear

response to the applied fields), but also the major
quadratic terms, of the order of &#x26;/mc2, &#x26;v &#x26;2b/(hco)2.
We will neglect the smallest ones, of the order of
&#x26;2 lh(OMC2.

3. Explicit form of the effective hamiltonian-physical
interpretation of the results. - In this section, we give
the explicit form of the effective hamiltonian, more
precisely of the stimulated terms of this hamiltonian.
As the general method for calculating and classifying
these terms has been explained in detail in the previous
section, we don’t give here the details of the calcula-
tion. We prefer to focus on physical discussions and to
show how each term of this effective hamiltonian can
be classically interpreted as a result of the vibration
of the electron and of its spin in the i.e.w. Some results
concerning the classical motion of an electron in a
plane wave, and which are referred to in the following
discussion, are recalled in appendix B.
We will consider separately the spin independent

and the spin dependent terms ofjceff-
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3.1 SPIN INDEPENDENT PART OF 3C
find for JC’ff the following expression :

Where T’, Ao, Wp, Wd, Wp are defined and discussed
below (see eq. (3. 3), (3.4), (3 . 6), (3. 7), (3. 8), (3 .1 I )).
The first line of (3.1) does not depend on the i.e.w.

It represents the well known spin independent hamil-
tonian of an electron interacting with the static

potentials Ao, To (we have discarded a small term
proportional to B’O). The three last lines of (3.1)
represent corrections due to the vibration of the elec-
tron in the i.e.w. and can be associated with three
different physical processes.

(i) The vibrating electron has an effective mass
greater than m. - The two terms of the second line
of (3.1) represent corrections (to mc2 and x’/2 m)
which are easily interpreted as resulting from a change
of the electron mass :

where ev is the vibrational kinetic energy given
in (2 .17).
The mass shift &#x26;,IC2 = e 2 E2/2 mw2 C2 can be

considered as due to the high frequency vibration of
the electron which is induced by the i.e.w. and which
is superimposed on its slow motion in the static fields.
This physical picture clearly shows that such a mass
shift does not exist for low frequency irradiation

(hm « 6J since, in that case, the i.e.w. appears to the
electron as a quasi-static electric field which polarizes
the electronic orbit and produces a Stark-shift

independent of w.

(ii) The vibrating electron averages the applied static
fields in a small region around its mean position. - The
quantities (p’ 0 and Ao appearing in the third line
of (3.1) satisfy :

The interpretation of the corresponding terms

of (3.1) is quite simple. In the electric field of the i.e.w.,
the electron vibrates around its mean position ro
with a frequency wand an amplitude of the order of
eElmw2. Consequently, it averages the applied static
fields in a small region around ro having linear
dimensions of the order of eElmw2.

More precisely, consider for example the electro-
static energy of the electron which can be written as

ecpo(ro + p) where p is the deviation from the average
position ro. A Taylor expansion of eCPo(ro + p) gives :

Using the expression of p calculated in appendix B
(see eq. (B. 6)), and averaging over one period 2 n/co
of the i.e.w., one finds that the first order correction
vanishes ( p = 0) and that the second order one reduces
to e(p’ 0 where (p’ 0 is given by (3. 3).
A similar calculation shows that the electron sees

an average magnetic field which is

Such a correction in Bo is obtained by replacing
Ao by Ao + Ao, where V x A’ satisfies (3.4), so that
the kinetic energy term becomes

The lowest order correction in Ao is

i.e. the last term of the fourth line of (3.1) (the Aa
term does not appear in HIeff since it is fourth order
in E).

(iii) The vibration of the electronic charge gives rise
to a small orbital magnetic moment which is coupled to
the static fields. - The 2 terms Wp and Wd of the last
line of (3.1) are given by :

Wp is proportional to Bo (paramagnetic term),
Wd to B’ (diamagnetic term). They can be interpreted
in the following way :
The vibrating charge has an orbital magnetic

moment : 

which can be calculated from the expressions of p
and v given in appendix B (eq. (B. 8) and (B. 9)). When
averaging tv over one period 2 7r/co of the i.e.w. one
gets (neglecting terms in Bo) :
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The first term of (3. 10) coincides with (3.7) and
represents the Bo-independent part of A,. Its coupling
with Bo gives just the Wp term of (3.1) : p is parallel
to K (E x E* is proportional to K) and vanishes for
linear polarization (E x E* = 0 when E = E*). This
is obvious since in that case the electron vibrates along
a straight line and p and v are parallel (see appendix B).
For elliptical polarization of the i.e.w., the electron
moves along an ellipse in a plane perpendicular to K
and p gets a non-zero value, proportional to the area
of the ellipse. One can easily show that p is maximum
for a circular polarization of the i.e.w. in which case
the electron moves along a circle.
The second term of (3 .10) represents the corrections

to p associated with the modifications of the electronic
motion induced by Bo. This term is different from zero
even for linear polarization. This is due to the fact
that the magnetic force ev x Bo transforms the
rectilinear motion of the electron into an elliptical one
(see appendix B), giving rise to a magnetic moment
proportional to Bo. The coupling of the last term

/ of (3 .10) to the static magnetic field (integrated from 0
to Bo, which gives rise to a factor 1/2) reproduces
the Wd term of (3.1)..
The last term W’p of (3. 1) may be written as :

W’, which is smaller than W p by a factor of the order
of JEblmc2  v/c, represents kinematic relativistic
corrections to Wp. These corrections can be computed
classically when one takes into account the Doppler
effect, the aberration, and the variation of the electric
field intensity experienced by the electron moving
with the (slow) velocity nolm.

3.2 SPIN DEPENDENT PART OF Heff : HeffII. - we
find for JC" the following expression :

The terms of the first line of (3. 12) do not depend
on &#x26;,. They represent the coupling of the spin magnetic

eh moment 2 m 6 to Bo, the spin orbit interaction and
velocity dependent mass corrections. The .last four
lines represent corrections due to the coupling with
the i.e.w. Before discussing them, let us note that they
can be rewritten simply as :

where 6g;j appears as an anisotropic Lande factor
correction. This tensor is particularly simple for linear
or circular polarization. In both cases, it is given by :

The physical interpretation of the last 4 lines
of (3.12) can be given in terms of 4 different physical
processes :

(i) The spin magnetic moment is reduced as a

consequence of its coupling with the magnetic field B,
of the i. e. w. - The correction associated with the
second line of (3.12) is due to the vibration of the spin

eh 
magnetic moment 2 maw IC is driven by the magne-2 m 
tic field B, of the i.e.w. (this correction is obtained when

replacing V by - eh cr.Br in the third line of (2.16)).2 m 
This explains why the terms contained in the second

line of (3 .12) have the same structure as the ones which
describe the modification of the magnetic moment of a
neutral atom interacting with a non-resonant RF field
(having a frequency m higher than the atomic Larmor
frequency mo). Their physical meaning is the same.
The spin magnetic moment oscillates at frequency co
around a mean direction (see Fig. 2). The length of

FIG. 2. - The oscillation of the spin magnetic moment in the
incident wave leads to a smaller effective moment (dashed arrow).

the magnetic moment does not change during this
oscillation but, as its direction is smeared out over a
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finite angle, its average value over a period 2 nlw is
reduced and this reduces the coupling of the spin with
an applied static field Bo. The effect is of course

anisotropic since it depends on the relative directions
of Bo and Br.
Remark : When the polarization is circular or

elliptical, the magnetic coupling - eh/2m (J. Br, gives
rise to another term in HIIeff which can be written for
right circular polarization as :

This term is well known for neutral atoms and corres-

ponds to the coupling of the spin with the fictitious d.c.
magnetic field associated with the rotating magnetic
field B, [23]. A simple classical derivation of this effect
is given in appendix C.
We have not written (3 .15) in (3.12), since this term

is exactly cancelled by another one which will be
discussed later on (and which does not exist for neutral
atoms).
The three last lines of (3.12) represent spin-depen-

dent interactions which do not exist for a neutral

particle since they are direct consequences of the
vibration of the charged particle in the i.e.w.

(ii) The vibrating electron has a greater mass and,
consequently, a smaller g factor. - The third line
of (3.12) may be interpreted as a correction resulting
from the substitution of

to m in the electron g factor elm appearing in the first
term of Jeff.

(iii) The electron, vibrating in Er, sees a moving
magnetic field which interacts with its spin magnetic
moment. - The moving magnetic field seen by the
electron vibrating in Er may be written as :

As v oscillates at the same frequency as E,, Bmat has
a d.c. component which can be calculated by replacing
in (3.16) v and E, by the expressions (B. 8) and (B. 3)
of appendix B and by averaging over a period 2 n/w
of the i.e.w. One gets in this way :

The spin magnetic moment couples to Bmot giving

rise to an interaction :

We have added a factor 2 because of the Thomas
precession.
The first term of (3.17) gives a Bo-independent inter-

action which only exists for circular or elliptical
polarization and which can be written as

in the case of right circular polarization (for which
if. x e* = K). As mentioned above, we see that this
term exactly cancels (3.15). It can be seen however
that such a cancellation only occurs because we have
taken the electron g factor exactly equal to 2 and also
as a consequence of the reflation  Er I = c I Br I
between I E,  and ) Br I (the term (3.15) comes from
the coupling with B, whereas (3.19) involves Er).
With other configurations of the electromagnetic field
(such as those existing in cavities), one expects that a
net effect should remain when one adds the expressions
corresponding to (3.15) and (3.19).
The second term of (3.17) represents the conse-

quences on Bmot of the modifications of the electronic
vibration induced by the static field Bo. For example,
for linear polarization, the first term of (3 .17) vanishes
(Er and v are parallel for Bo = 0), but the effect of Bo
is to transform the rectilinear motion of the electron
into an elliptical one (see appendix B), and v x E, gets
a non-zero value. When inserted into (3.18), the last
term of (3 .17) gives exactly the fourth line of (3 .12).

(iv) The vibrating electron can rectify the magnetic
field B, of the i.e.w. - The modulation of B,(r, t) due
to the sinusoidal variation of the position r of the
electron can combine with the temporal dependence
of Br(r, t) (e:t irot factors) to give a d.c. term.

In the expansion of Br(r, t) in powers of (K.r), the
lowest order term depending on r is (see equation (B. 2)
of appendix B) :

Let us replace r in (3. 20) by its oscillating component p
computed in appendix B (expression (B. 9)). After

averaging over a period 2 nlw, one gets for the rectified
magnetic field (Br)rect :
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It is clear from (3.20) that such a field only exists
when K.r :0 0, i.e. when the vibration of the electron
has a component along K. This explains why (Br)rect
vanishes when Bo = 0 since in that case the electron
vibrates in a plane perpendicular to K.

(Br)rect couples to the spin magnetic moment, giving
rise to an interaction - 2 eh m " ° lBr)rect which exactlyrise to an Interaction - 2 m CJ. r reet which exactly
coincides with the last line of (3.12).
To summarize the results of this section, we see that

all the terms of the effective hamiltonian have a very
simple physical meaning and can be quantitatively
interpreted in classical terms. Let’s emphasize that the
spin dependent terms have a completely different
structure according to whether the particle which
carries the magnetic moment is charged or not. A lot
of new magnetic couplings appear as a consequence
of the spatial vibration of the charge and cannot be
simply interpreted through a change of the electron
mass. Let us explain why, at this order of the calcula-
tion (8y tblmc2), no spin dependent terms appear which
involve the static electric field Eo. This is due to the
fact that the electric force eEo is static and does not
affect the characteristics of the electron vibration.
This is to be contrasted with the magnetic force
ev x Bo which, through the sinusoidal variation of v,
can combine with eEr to change appreciably the
vibration of the charge, and, consequently, the

magnetic coupling of the spin.

4. Application to two simple problems. - In this

section, we apply the previous general results to two
particular questions :
- how atomic Rydberg states are perturbed by a

high frequency non-resonant light beam ?
- how the electron cyclotron motion and its spin

precession are modified by an intense electromagnetic
wave ?

We have seen that ev is the important parameter of
the problem; let us give an order of magnitude for two
experimental conditions; a focused nitrogen laser

delivering a flux of 1 GW/CM2 or a focused C02 laser
of 1 MW/cm2 gives the same value 0.1 cm-1 (or 3 GHz)
for 8,. We will take these orders of magnitude as
typical in the following.

4.1 PERTURBATION OF ATOMIC RYDBERG STATES. -

It is well known that atomic energy levels are shifted

by irradiation with non-resonant light (references are
given in section 1 ). The calculation of those shifts
requires the computation of the dipole matrix elements
between the considered level and all the others, and a
numerical summation of all their contributions. The
effective hamiltonian, the eigenvalues of which are the
perturbed energies, gives directly the result of this
infinite summation. In counterpart of this great
simplification, we are limited to states (n, l) which
fulfill the high frequency condition :

If we exclude the case of far UV light (1ïw &#x3E; Ry),
only weakly bound states satisfy the condition (4.1).
For these states, one can then make the Rydberg state
approximation, i.e. consider the unperturbed energy
levels as those of a single electron moving in a core
potential U(r), which is central and coulombic at long
range. The unperturbed Hamiltonian is then

where J6fs is the fine structure hamiltonian. The

perturbed energy levels then appear as those of a
dressed electron moving in the same potential U(r).

In fact the condition (4.1) is not sufficient to ensure
that the coupling of the initial state with energy levels
far from it (at a distance no or more) has negligible
effects and thus that the complete high frequency
condition (i) of section (2.4) is fulfilled. Photoioniza-
tion or virtual transitions to deep bound states may
occur. But, in such processes the velocity of the electron
undergoes a large change, which implies that the
electron be close to the nucleus in order to give it the
recoil necessary to the momentum conservation. We
thus expect the high frequency condition to be fulfilled
when the electron remains far from the nucleus, that
is for states with large angular momentum (I &#x3E;&#x3E; 1).
In the following, we essentially consider such states.
We will precise later the exact validity conditions of
the high frequency approximation.

4.1.1 Effective hamiltonian. - The effective hamil-
tonian in the presence of the light wave is deduced
from (2 .1 ). One finds :

The effect of the light beam is thus accounted for by
adding four terms to the atomic hamiltonian :

i) The first term 8y is positive and represents the
oscillatory kinetic energy of the electron in the light
wave; it appears as a mass shift of the dressed electron.

ii) The second term which is much smaller gives the
corresponding correction to the electron kinetic

energy.
iii) The third and the fourth terms arise from the

electrostatic potential averaging by the vibrating
electron (apparition of an electric form factor). We
have split the corresponding corrective potential into
its isotropic and anisotropic parts.

None of these terms concerns the electron spin.
Corrections to the spin orbit coupling indeed exist,
but are smaller than the terms considered here at least

by a factor toll nw.
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4.1.2 Perturbed energy diagram. - Consider now
the perturbation of the atomic energy levels brought
by these four new terms in the electron hamiltonian.
The first term ev shifts upwards all the Rydberg

levels by the same quantity and cannot be detected
on a transition between these states. Nevertheless in
the cases considered here, the high frequency approxi-
mation cannot be applied also to the ground state and
its energy shift is different from the one of the Rydberg
states. For instance, if the perturbing light has a fre-
quency lower than the atomic resonance line, the

ground state is shifted downwards (see Fig. 3).
Two-photon spectroscopy between the ground state
and the Rydberg states [24, 25] could be used to

measure the energy shift difference. In the typical
examples described above, the 0.1 cm-1 expected
shift is huge compared to the two-photon line width
and could be easily detected.

FIG. 3. - Effect of the first term of the effective hamiltonian : all
the Rydberg states are shifted by the same amount with respect to

the ground state which generally undergoes a different shift.

The second term changes the level energies by about
10-10 in the considered experimental examples,
without perturbing the Zeeman degeneracy or the
fine structure. We therefore neglect it in the following.

Only the third and fourth terms affect the relative
positions of the Rydberg states. The third term

commutes with the orbital angular momentum and
only produces a shift of all the sublevels of a (n, I)
configuration by the same quantity. This shift strongly
depends on the atomic pseudo-potential U(r) seen by
the outer electron. If U(r) is simply the mean potential
due to the other atomic electrons, the shift can be
written as

where p(r) is the core electron density. For I &#x3E;&#x3E; 1, the
mean value of the 6-function corresponding to the 

nucleus charge is zero, and the shift appears to be

negative, proportional to the probability of finding
the outer electron in the core.
The fourth term is an anisotropic zero mean value

potential. For Rydberg states of many electron atoms,
the fine structure is generally larger than this term
and it can be treated as a perturbation in each fine
structure sublevel. In each of these states, it is pro-
portional to .1 J) (E* J) + 3/2(e* J) (EJ) - J(J + 1),
and removes the Zeeman degeneracy of the atomic
level in a way similar to the Stark effect. The splitting
is about 40 MHz for n = 10 D state of sodium irradiat-
ed by the N2 laser.

Hydrogen is a special case, because of the properties
of Coulomb potential. The third term reduces to a
6-function (see formula (4.4)) and only shifts the (n, s)
states. The other states (I &#x3E; 1) are unaffected. The
fourth term of (4.3) has to be diagonalized within
the whole set of (n,l) states (n fixed, and 0  1  n -1 ),
since they are degenerate. Fortunately, selection rules
on both the angular and the radial parts of the matrix
elements [26] make the fourth term of the effective
hamiltonian diagonal in L For a (n,l) level, it is equal
to :

The ratio of this term to the (n, I) level fine structure
is approximately ev mc2/l(hw)2 and can be either
smaller than 1 (it splits each fine structure state in a
Stark-line pattern), or larger than 1 (the fine structure
is then decoupled by the perturbation into separate
spin doublets).

4.1.3 Discussion. - We have considered so far
that the excited electron moves in the unperturbed
core potential U(r). In fact, the atomic core is also

subjected to the light wave and becomes polarized :
this oscillating dipole interacts with the oscillating
electron and creates another effective interaction

potential between the core and the dressed electron.
Quantum mechanically, this phenomenon is accounted
for by the coupling of the one electron spectrum with
the many excited electron spectra. If no particular
resonance occurs, the corresponding effects are smaller
than the fourth term of (4. 3) by a factor (nw) 2 fRy nWe
(nwe being the core excitation energy).
We have already seen that the validity of the high

frequency approximation seems questionable for low
values of I. We have to discuss the magnitude of the
matrix elements of JCI, (formula (2.8)) between the
Rydberg state (n, I) and other energy levels 8’, either
in the discrete spectrum or in the continuum, which
do not satisfy the condition 1 &#x26;.1 - &#x26;’ I  ?0, and
we have to verify under what conditions their effects
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are smaller than those studied so far which are of the

order of &#x26;, &#x26;.1 The leading term of JC. is m e A r phw m

and its matrix elements are more easily evaluated in
momentum space. We separate the angular part of the
matrix element which obeys the selection rule Al = ± 1
and the radial part. Apart from the propagation
factors in Ar, which account for the photon momentum
and which are negligible (the photon momentum is
much smaller than that of the atomic electron), the
radial matrix element is diagonal in p. Thus, if the
wave functions of two atomic states do not overlap
in the momentum space, they are not coupled by the
interaction with the light wave. The radial momentum
wave function of the Rydberg state (n, /) is centered
at p ~ 2 m &#x26;,,, (see ref. [27]). Its extension around
this mean value is weak for I ~ n (classically, the
electron is orbiting at a nearly constant speed) and is
much broader for low I (large speeds are reached by
the electron near the nucleus).

Consider first the coupling of the Rydberg state
with deep bound states (E;n’l’  - hw). The extension
of such deep bound states in the momentum space is
roughly J2 mhw) and the two wave functions clearly
overlap. Hence, the radial matrix elements are gene-
rally not small. For instance, one can easily find that
in hydrogen the coupling with the ground state

produces a shift of the (n, I = 1) state of the order of
&#x26;,(&#x26;"Ilh(0)112, larger than the effects considered here.
But if we restrict ourselves to Rydberg states such
that I » JRYlnw, they are coupled only to states

(n’, l’) such that l’ = I + 1, and hence n’ lRylha);
the energy of such states verifies - hw  - Ry/n’2  0,
so that all the bound states, to which the Rydberg
state is coupled, fill the high frequency condition
I f nl f n’!’ I  hco.

The Rydberg state (n, l) is also coupled to continuum
states whose energy is equal to or larger than

Enl + hw ~ hm. In momentum space, the wave func-
tion of a continuum state with energy 6 has a very
small value for 0  p  /2-m&#x26; (the probability to
find the electron with a velocity smaller than its

velocity at infinity is very small). The momentum
distribution is mainly centered around J2 m&#x26;, and
decreases at infinity as a power of 1 /p which increases
with I. Thus for 6 &#x26; hm, the continuum wave function
overlaps only the large p tail of the Rydberg state,
for which analytical forms for hydrogenic wave-
functions are easily found [27]. Starting from those
considerations, the level shift and the broadening
due to the coupling with the continuum can be

roughly evaluated. They appear to be smaller than
the terms considered here, provided that I &#x3E;&#x3E; ,/Ry/hco.
This condition has a simple semi-classical interpreta-
tion : the maximum electron momentum in the

Rydberg state is reached when the electron is at its
closest distance from the nucleus and is equal to

h/lao ; if it is smaller than the minimum momentum

,J2 mnw for the continuum state, the two wave
functions do not overlap and matrix elements are very
small. Finally for Rydberg states, the high frequency
condition is fulfilled if

One must also mention that, for very high n Rydberg
states, energy shifts become smaller than the width
of the levels due to Raman and Compton scattering
(these processes are roughly independent of n and
are characterized by a cross-section of the order of ro,
where ro is the electron classical radius). A simple
calculation shows that n is thus restricted by :

which is about n N 100 for N2 laser light, n N 1 000
for CO2 laser.
To conclude, Rydberg states are not in general

dramatically affected by powerful optical irradiation.
But observable changes of the level energies are never-
theless expected, which can be described by a simple
effective hamiltonian. It would be interesting to

investigate in more detail the case of low angular
momentum states, for which the high frequency
approximation made in the present theory is not

appropriate.

4.2 MODIFICATION OF THE CYCLOTRON AND SPIN

PRECESSION FREQUENCIES IN A STATIC MAGNETIC FIELD.

- We investigate now how the cyclotron and spin
precession frequencies of an electron are mbdified by
high frequency irradiation. We consider an electron
orbiting in a constant uniform magnetic field Bo with
a non-relativistic energy. As explained in section (2.3),
we neglect in this paper the radiative corrections to
the electron g-factor so that the cyclotron and the spin
precession frequencies are equal :

The uniform magnetic field is described by the usual
vector potential :

The non-relativistic limit of the unperturbed hamil-
tonian He is sufficient for our purpose (the electron is
orbiting with a non-relativistic energy) :



1005

For a given value of the velocity along Bo, the
eigenvalues of the kinetic energy n2 0 /2 m are the
Landau level energies qhcoo (q = 0,1, 2, ...) ; the spin
magnetic energy is ± 2 hms, so that one gets the energy
diagram represented on figure 4a. As mo = ws, there
is a degeneracy between the two levels (q, +) and
(q + 1, - ). Using the matrix elements of r, no and a
between these energy levels, it is easy to show that the
interaction of the electron with the i.e.w. only couples
adjacent energy levels in the non-relativistic limit,

FIG. 4. - a) Unperturbed energy diagram of an electron in a

magnetic field (radiative corrections to the electron g factor have
been neglected). b) Energy diagram in an intense electromagnetic

wave.

and obeys the selection rule Aq , 3 if the 1 /c2 correc-
tions are included. Thus if wo, ws « m, the high
frequency condition is very well fulfilled. The motion
in presence of the i.e.w. is described by the effective
hamiltonian deduced from expressions (3.1) and

(3.12) :

In this expression of Heff, constant terms independent
of the electron variables have been discarded ; u is
defined by formula (3. 7).
The effective hamiltonian is the sum of an orbital

hamiltonian (first two lines) and a spin hamiltonian
(last two lines). The cyclotron motion and the spin
precession remain decoupled and can be studied

separately. The new terms displayed by Heff represent
the dressing of the electron by the i.e.w. and have the
following consequences :

i) The cyclotron motion is slowed down. - Let us

suppose first that the i.e.w. is linearly polarized;

p = 0 and the term of the second line vanishes.
The orbital hamiltonian reduces to n’/2 0 meff, taking
into account the increased effective mass of the dressed
electron defined by (3.2). The cyclotron frequency is
proportional to m -1 so that the’new cyclotron pulsa-
tion (t)’ 0 is smaller than (t)o :

For an arbitrary polarization, the third term is non-
zero, but does not change the previous result. It is
linear in no and can be written as - P. no, where P is a
vector proportional to 8y. Neglecting terms in V,
we can express the whole first line of (4.13) as

(no - p)2/2 meff. The components of P are c-numbers ;
the commutation rules of the components of xo, - P
are identical to those of no so that the hamiltonian

(no _ p)2/2 meff has the same Bohr frequencies than
n 2/2 meff’ It can be shown that the only physical
consequence of this third term is a very slow drift

velocity Plm added to the cyclotron motion.
Remark : One must remember that the evolution

of the expectation values of the electronic observables
cannot be computed simply by putting Jeeff in the
Ehrenfest (or Heisenberg) equations. The observables
must be transformed first by U + as mentioned in

paragraph 2.2 (remark ii). 

ii) The spin precession is slowed down more than
the cyclotron motion. - The second line of (4.13)
may be interpreted as a Zeeman spin hamiltonian in
a magnetic field Bo slightly different from Bo. For
circular or linear polarization, this apparent magnetic
field Bo seen by the spin has a simple expression which
can be easily calculated from (3.14) :

The component of Bo along the wave vector

is reduced by (1 - 6v/mc2), the other ones by
(1 - 2 Gv/mc2). The perturbed spin precession is

cos = (- ehl2 m) B’. According to (4.15), it depends
on the direction of Bo, but lies clearly between two
limits :

It can be easily shown that this result holds also for
all the possible polarizations of the i.e.w. Therefore
the spin precession frequency is always reduced by
the interaction with the i.e.w. A more careful investi-

gation of the contribution of the 4 different physical
processes described in section (3.2) shows that :

(i) The first two processes (smearing of the spin
magnetic moment over a finite angle and increase of
the electron mass) always reduce cvs ; (ii) The correc-
tions associated with the last two processes (motional
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fields and rectification effects) may have both signs,
but cannot change the sign of the overall correction
which is always negative. Comparing (4.16) to (4.14),
it appears that the spin precession frequency is reduced
more than the cyclotron frequency. It follows that the
energy diagram of figure 4a is perturbed as shown in
figure 4b. To realize experimentally such an energy
diagram, stimulated corrections are required to be at
least 10-’ (at least larger than the spontaneous
radiative corrections which are known to be 10- 3
and that we have neglected so far). To achieve this,
one finds that a light flux of about 1015 W/cm2 would
be necessary. Such a light intensity is for the moment
beyond the experimental possibilities. With the avai-
lable fluxes given in the introduction of section 4, the
corrections to the cyclotron and spin precession
frequencies are expected to be of the order of 10- 9.
The results discussed in this section are nevertheless

interesting from a theoretical point of view, in connec-
tion with the questions raised in the ’introduction.

Many attempts have been made to derive simply
the g - 2 correction of the electron magnetic
moment [28, 20]. Following Welton [28] some of these
derivations try to interpret g - 2 as resulting from the
vibration of the electron spin induced by the electro-
magnetic field vacuum fluctuations, considered as an
applied field. From the results obtained in the present
paper, we think that we can put forward the following
points :

(i) A consistent calculation must start from an
electronic hamiltonian which includes relativistic
corrections to the interaction between the electron
and the electromagnetic field (mass correction, spin-
orbit coupling, retardation effects). Taking into
account only the coupling of the spin magnetic
moment with the magnetic field of the i.e.w. leads to
incomplete results.

(ii) Even a consistent calculation, which includes
relativistic corrections, fails to produce an enhance-
ment of the electron magnetic moment. If one

averages over the polarization and the direction of the
wave, the electron g-factor is in fact more reduced than
a neutral particle g-factor. This fact can be clearly
attributed to the existence of the electron charge,
which causes supplementary couplings between the
spin and the fields. Thus, one cannot invoke the
electron charge nor the relativistic nature of the spin
to explain the failure of a Welton type calculation.

(iii) Finally, even if one considers that only the
relative magnitude of the spin precession frequency
to the cyclotron frequency has a physical significance,
one always finds a negative correction. This seems to
indicate that spontaneous renormalization of the
electron properties is qualitatively different from the
stimulated one. A tenn to term comparison between
spontaneous and stimulated effects associated to a

given mode of the e.m. field would be interesting to
understand this difference. The effective hamiltonian

formalism developed here appears to be very well
suited for such a comparison, since stimulated and
spontaneous terms are given in the same way by a
unique calculation (see formula (2 .16)). , We will
consider such a problem elsewhere.

Appendix A : Calculation of the effective Hamiltonian
matrix elements. - Let us rename a &#x3E;, I a’ &#x3E; ... the

eigenstates of the unperturbed Hamiltonian Jee + 3er
belonging to the multiplicity &#x26;N, I b &#x3E;, I b’ &#x3E; ... those
belonging to all other multiplicities &#x26;N’ (N’ # N),
and ÀXI the perturbation which couples the states

a &#x3E; and I b &#x3E;. 
We want to find a unitary transformation U = eiS

(S : hermitian operator) which eliminates up to À,2,
the off-diagonal part of the coupling i.e. : For each
a&#x3E; and b&#x3E; :

 a I eiS(Jee + :ref + A) e-" I b &#x3E; = O(À,2). (A. 1)

As a matter of fact, this condition does not comple-
tely specify the transformation e’s : if a given operator
e’s satisfies (A.1), the whole set of operators of the
form A ea also satisfies (2 .1 ), if A is a diagonal unitary
operator (i.e. only acting inside each multiplicity eN).
We therefore require S to be completely off diagonal,
more precisely : For each I a &#x3E;, I a’), I b), I b’) :

Let us now expand S in powers of A :

If we use the identity :

we are now able to expand the left side of eq. (A. 1) in
powers of A. The (A)° coefficient is 0 if we take So = 0.
Equating the (A)’ coefficient to 0, we obtain the

following equation for S, :

which gives for the off-diagonal matrix elements of 81 :

(all other matrix elements of Sl are 0). 
We can now use expression (A.6) to calculate the

matrix elements of Jeeff inside the multiplicity eN :

We have used eq. (A. 4) and condition (A. 2).
S2 only contributes to higher order terms in A. So, we
only need the expression (A. 6) of S, in order to
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compute Heff up to second order in A. After a few
calculations, we obtain the final expression of the
matrix elements of Jeeff inside the multiplicity eN :

If we come back to the notations of paragraph 2.2,
we are led to the expression of eq. (2 .12).

Appendix B : Classical vibration of an electron in a
plane electromagnetic wave. - o ELECTRIC AND
MAGNETIC FIELDS OF THE PLANE WAVE. - The expres-
sions of Er(r, t) and Br(r, t) are obtained by replacing
the corresponding quantum operators a and a+ by
J"N e - I.rot and N &#x26;00

e VIBRATION OF THE ELECTRON. - Since we are

interested in small corrections due to the vibration of
the electron, one can show that it is sufficient to

calculate this vibration to zeroth order in v/c. So, we
will neglect the effect of the magnetic force ev x B,,
which is vlc times smaller than the electric force eEr,
and we will replace e:tikr by 1, which gives for F-., :

The equation of motion of the electron is :

where Eo and Bo are the static electric and magnetic
fields which are eventually applied.

(i) Vibration in absence of external static fields
(Eo = Bo = 0). Let us call p the deviation of the
electron from its average position. When Eo = Bo = 0,
eq. (B. 4) is readily integrated to give :

The electron vibrates in phase with Er (e  0).
’For a linear polarization (E = E*), the electron

vibrates along g with an amplitude eE J2lmw2
(Fig. 5a).
For a circular polarization, it moves at frequency w

on a small circle of radius eElmw2, in a plane perpen-
dicular to x (Fig. Sb).

FtG. 5. - Classical motion of an electron : a) in a linearly polarized
plane wave, b) in a circularly polarized plane wave (Er, B, electric

and magnetic fields of the plane wave).

In all cases, the mean kinetic energy (averaged over
a period 2 nlw of the i.e.w.) is :

(ii) Vibration in presence of external static fields. -
The electric force eEo is static and cannot affect the
high frequency vibration of the electron. This is not
the case for the magnetic force ev x Bo which oscillates
at frequency to as a consequence of the modulation
of v. So, we will completely ignore Eo in the following.
We are interested in corrections to the electronic

vibration to first order in Bo. So, we can replace in the
magnetic force ev x Bo of eq. (B. 4) v by the zeroth
order solution (B. 5), independent of Bo. The equation
of motion so obtained is readily integrated to give :
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The last terms of eq. (B. 8) and (B. 9) give the modi-
fication introduced by Bo.
For a linear polarization (c = E*), the electronic

vibration which was rectilinear in the absence of Bo
becomes elliptical. The large axis of the ellipse is

along c and has a length eE /mc2. The small axis
eE j2 eBois along E x Bo with a length - . As E x Bomoo mm

is not in general perpendicular to K, the vibration of
the electron gets a small component along K.
For circular polarization, one can show from (B. 9)

that the motion of the electron consists of a circular
motion at frequency ro in the plane perpendicular to K
with a radius

and of a vibration along K which depends on the
projection of Bo in the plane perpendicular to K.

So, the effect of Bo is to change slightly the radius of
the circle of figure Sa and to introduce a component
of the vibration along K.

Appendix C : Fictitious d.c. magnetic field associated
with a circularly polarized plane wave. - We have
represented on figure 6, the electric and magnetic
fields % and Br of the circularly polarized plane wave.
Let us consider the reference frame Er rotating with Br
around x (we suppose a right circular polarization).

In Er, Br is static, but the spin sees another static

field - - x (where y = e is the gyromagnetic ratio),
y m

much larger than Br (Larmor’s theorem). The Larmor

frequency around the total field

FIG. 6. - Various fields acting on the spin in the reference frame E,
rotating with B, around K.

When coming back to the laboratory frame, we see
that the main motion of the spin is a precession around
x with a frequency

This precession can be considered as due to a fictitious
magnetic field

giving rise to a magnetic energy - h/2m (J. Dr which
exactly coincides with (3.15) when we use the relation

between the magnetic and electric fields of a circularly
polarized plane wave.
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