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Dynamics of a small system coupled to a reservoir :
reservoir fluctuations and self-reaction
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(Reçu le 3 octobre 1983, accepte le 6 décembre 1983 )

Résumé. 2014 Les processus physiques responsables de l’évolution d’un petit système S faiblement couplé à un grand
réservoir R sont analysés à partir des équations de Heisenberg. Les contributions respectives des fluctuations du
réservoir (R fluctue et polarise S) et de la self-réaction (S fluctue et polarise R qui réagit en retour sur S) sont iden-
tifiées en suivant une méthode générale exposée dans un précédent article à propos de l’étude des processus radiatifs
(contributions des fluctuations du vide et de la réaction de rayonnement). Les parties hamiltonienne et non hamil-
tonienne de l’évolution de S sont explicitées et reliées aux fonctions de corrélation et polarisabilités de S et R.
La limite où S est un système quasi-classique est étudiée. On démontre que l’évolution de la fonction de distribu-
tion de l’énergie de S est décrite par une équation de Fokker-Planck dont les termes de dérive et de diffusion sont
respectivement associés à la self-réaction et aux fluctuations du réservoir. Ces résultats généraux sont enfin appli-
qués au problème de l’émission spontanée d’un grand moment cinétique (modèle de Dicke pour la superradiance).

Abstract. 2014 The physical processes responsible for the evolution of a small system S weakly coupled to a large
reservoir R are analysed through the coupled Heisenberg equations of the problem. The respective contributions
of reservoir fluctuations (R fluctuates and polarizes S) and self-reaction (S fluctuates and polarizes R which reacts
back on S) are identified with a general method developed in a previous paper dealing with radiative processes
(contributions of vacuum fluctuations and radiation reaction). The Hamiltonian and non Hamiltonian parts of
the evolution of S are made explicit and related to correlation functions and polarizabilities of S and R. The limit
where S is a quasi-classical system is investigated, and the evolution of the energy distribution function of S is shown
to be described by a Fokker-Planck equation, the drift and diffusion terms of which are respectively associated
with self-reaction and reservoir fluctuations. These results are finally applied to the problem of the spontaneous
emission of a large angular momentum (Dicke’s model of superradiance).
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1. Introduction.

In a previous paper [1], referred to as I in the following, we have considered the problem of the physical inter-
pretation of radiative processes (radiative corrections such as the Lamb-shift or the spin anomaly g - 2, spon-
taneous emission rates). It is generally considered [2-5] that, in quantum radiation theory, there exists an inde-
termination in the separation of the respective effects of « vacuum fluctuations &#x3E;&#x3E; (interaction of the electron
with the quantized vacuum field) and « radiation reaction » (interaction of the electron with its own field).
We have shown in I that such an indetermination can be removed by imposing to the corresponding two rates -
of variation to be Hermitian (this is necessary if we want them to have a physical meaning), and we have thus
obtained results in complete agreement with the usual pictures associated with the two types of physical pro-
cesses.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01984004504063700

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01984004504063700


638

Actually, the problem considered in I is very general and can be set for any small system 8 (generalizing
the atom) coupled to a large reservoir % (generalizing the field). Is the evolution of 8 due to the « reservoir
fluctuations &#x3E;&#x3E; acting upon 8, or should we invoke a « self-reaction », 8 perturbing R which reacts back on 8 ?
In this paper, we would like to discuss such a problem, to derive some general results which were just given in
I without demonstration, and to give some new physical insights obtained by considering the limit where 8
is a quasi-classical system.

In this introduction, we shall first follow the same procedure as in I for identifying the respective contri-
butions of vacuum fluctuations and self-reaction. This will allow us to summarize the method given in I and
to introduce our notations. We start from the total Hamiltonian H of the combined system

where HS(HR) is the free system (reservoir) Hamiltonian, and V the coupling which can always be written as

g being a coupling constant (analogous to the electric charge in electrodynamics) and Si(Ri) system (reservoir)
Hermitian operators. The rate of variation of an arbitrary system observable G (G = G +) is given by Heisenberg
equations, and the contribution of the coupling V to this rate can be written as

where

is an observable of the system 8 (Ni = Ni+). The respective contributions of reservoir fluctuations and self-
reaction are then obtained by replacing in (1.3) Ri(t) by

where

is the solution, to order 0 in g, of the Heisenberg equation for Ri, corresponding to a free evolution between
the initial time to and t (analogous to the free field of electrodynamics), and Ri (t) the solution to order 1 and
higher in g (analogous to the source field in electrodynamics). But we are then faced with the following problem.
In (1.3), Ni(t) and Ri(t) are commuting system and reservoir operators which can be taken in any order, so
that (1. 3) can be written as

with A arbitrary. When Ri(t) is replaced by (1.5) in (1.7), we get the following two rates of variation respectively
due to reservoir fluctuations and self reaction

The problem is that Rf(t) and Ris(t) do not commute separately with Ni(t), as their sum does. and

seem therefore to depend on an arbitrary parameter A [2-5].
We have removed in I this apparent indetermination by the following argument. G being a physical obser-

vable, represented by a Hermitian operator, we want to split the total rate dG/dt, which is also Hermitian,
into two distinct rates associated with two distinct physical processes, reservoir fluctuations and self-reaction.
These two rates should separately have a physical meaning, and consequently should be separately Hermitian.
This condition imposes A = 1/2 in ( 1. 8) ( 1) and, consequently, the completely symmetrical order in ( 1. 7). Using

(1 ) Note that A is implicitly taken real in (1.7), (1. 8) and (1. 9) [6]. Such a choice can be actually justified by time reversal
symmetry arguments [see Appendix C].
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the expression ( 1. 4) of Ni(t), we thus get

The next step is to compute the average of the two rates (1.9) in the reservoir state. Such a calculation
is not trivial. First, Rf(t) does not commute with So) and G(t). Secondly, the system observables So) and
G(t) also operate on reservoir states since they have been « contaminated » by reservoir operators during the
evolution between to and t. When the coupling constant g is small enough (more precisely when the motional
narrowing condition of relaxation theory [7, 8] is fulfilled), a perturbative calculation of the two rates (1.9),
up to order 2 in g, is sufficient. In I, we have just given the results of this perturbative calculation and discussed
their structure.

A first motivation of this new paper is to give the details of the perturbative calculation of the reservoir
averages of the two rates (1. 9), and to discuss the various approximations allowing to express these averaged
rates in terms of important statistical functions of the two interacting systems : correlation functions and linear
susceptibilities. We also show how it is possible to decompose the various rates of variation in a Hamiltonian
part, describing how the energy levels of 8 are shifted by the coupling with 3t, and a non-Hamiltonian part
describing dissipative effects, such as energy transfers between 8 and fll. These calculations are presented in
sections 2 and 3.

A second motivation of this paper is to present a new application of the general procedure leading to the
two rates (1. 9). We consider, in section 4, the case when 8 is a quasi-classical system. The equation giving the
rate of variation of the populations of 8 can be, in this case, transformed into a Fokker-Planck equation. We
show that the separation between self-reaction effects and reservoir fluctuation effects is particularly transparent
in this equation. The two effects are respectively associated with the « drift » and « diffusion » terms of the
Fokker-Planck equation. Applying these results to the spontaneous emission of a large angular momentum
(section 5) gives some insight to the superradiance problem.

As in the previous paper, we are concerned here with physical interpretation of equations, trying to identify
in these equations what corresponds to the usual pictures of fluctuations and reaction. Whether it is possible
to experimentally dissociate these two mechanisms is another interesting problem which is outside the scope
of this paper.

2. Reservoir averaged rates of variation : perturbative calculation.

2.1 INTRODUCTION. - In this section, we first calculate a perturbative expansion of the two rates of varia-
tion ( 1. 9a) and ( 1. 9b), up to order 2 in g [§ 2. 2 and 2. 3]. We then take the average, in the reservoir state, of
these two perturbative rates [§ 2 . 4] .

We shall suppose here that, at the initial time to, the density operator p(to) is factorized into a system part
oslo) and a reservoir part aR(to) :

In other words, we « put together » the system and the reservoir at time to and let them interact. Our problem
is to evaluate the subsequent rates of variation of 8, respectively due to reservoir fluctuations and self-reaction,
and averaged over the state UR(TO) of the reservoir.

The more general case of a non factorized initial state is examined in appendix C.

2.2 PERTURBATIVE RESOLUTION OF HEISENBERG EQUATIONS. - Any operator 0(t ) evolves in time according to
the Heisenberg equation

We want to calculate here the solution of this equation as a power series of g, in the case where 0 is a system
or reservoir operator.
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The first term of (2.2), which describes the free evolution of 0(t), is not in general proportional to O(t),
since several Bohr frequencies appear in the free motion of O(t). It is therefore useful to introduce a basis of
operators for 8 and 3t having each a single free evolution frequency :

where I A&#x3E;, I B &#x3E; (resp. a &#x3E;, I b ») are eigenstates of HR (resp. Hs), with energies EA, EB (resp. gal Bb)’
The Heisenberg equation for QAB reads

where

is the unperturbed Bohr frequency associated with I A &#x3E; and I B &#x3E;. This equation can be formally integrated
to give

where

is the « free » part of QAB(t), of order zero in the coupling constant g (i.e. the value of QAB if there was no coupling),
and where

is the solution of (2.4) to order one and higher in g, which we shall call the « source &#x3E;&#x3E; part of QAB(t), by analogy
with the atom-field problem.

The coupling constant g explicitly appears in (2.8). If we want to calculate QAB(t) up to order one in g,
we can replace the three operators appearing in the integral of (2. 8) by their free parts.

This gives

which can also be written, according to (2. 7)

For the small system qab operators, the same algebra can be done, leading to :

with

These results can be generalized to any reservoir operator R (resp. system operator S), using the expansion
of this operator on the QAB (resp. qu6) basis. One gets
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where the free and source parts of R(t) are

The source part RS(t) can also be written, according to (2.10)

In the same way, one gets for a system operator

with

Remark : Validity oj’ this perturbative expansion.
The order of magnitude of ( QsAB &#x3E; is, using (2.10)

whereJV2&#x3E; represents the root mean square value of the coupling V. The following term in the perturbative
expansion (2.10) of ( QsAB(t) &#x3E; would be of the order of

Introducing the correlation time !c of the reservoir, the integral over t" can be evaluated [8]

The neglected term (2.19) is then certainly less than

Our approximation is valid as long as this term is small compared to both  QfAB &#x3E; and the first-order value (2 .18)
of  QAB(t) ).

(i) The comparison of (2 . 21 ) with (2 .18) leads to

This is the well known « motional narrowing condition » : The 1-8 coupling can be treated perturbatively if the
effect of this coupling during a correlation time tc is small [8].

(ii) The comparison of (2 . 21 ) with QFAB &#x3E; leads to the condition

If we note that V2 T"lh2 is the inverse of the relaxation time TR of the system 8 under the action of 3t, we can
transform (2.23) into
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The approximate expressions (2.15) and (2.17b) for the source parts of R and S are then valid as long as t - to
is small compared to the relaxation time. (Note that, as long as the motional narrowing condition (2.22) is ful-
filled, the relaxation time TR is much longer than the correlation time tc.)
2. 3 PERTURBATIVE RATES OF VARIATION. - We can now use the results of the previous section 2.2 for evaluating
the two rates of variation ( 1. 9a) and ( 1. 9b) up to order 2 in g.

We split the system operators So) and G(t) appearing in (1.9) into their free and source parts and we use
the approximate expression (2.17b) for the source parts. We also use the approximate expression (2.15) for the
source part RiS(t) of Ri(t). This allows us, after a straightforward algebra, to get expressions for the two rates ( 1. 9),
valid up to order 2 in g and containing only free operators of 3t and 8

we note that the self-reaction rate (2.25b) is of order 2 whereas the reservoir fluctuations part contains terms
of order 1 (first line of 2.25a) and 2 (second line of 2.25a). Actually, the term of order 1 appeals to be the first
order term of the « Langevin force » acting upon G. (For the exact expression of this Langevin force, see for
instance [7, 9, 10].)

The great interest of expressions (2.25) is that they can easily be averaged on the reservoir state since they
only involve « free » operators. Their validity is the same as that of the expansions of§ 2 . 2. The motional narrow-
ing condition (2.22) being fulfilled, these expressions are valid as long as t - to is small compared to the relaxa-
tion time TR.
2.4 RESERVOIR AVERAGED RATES. - As explained in the introduction of this section, we take a factorized initial
state (2 .1 ). The averages of the two rates (2.25) in the reservoir state UR(to) are therefore

We can always suppose that the average value of Rf(to) is equal to zero, possibly by writing

and by reincluding - g L  Rfi(to) &#x3E;R Si(t) in the system Hamiltonian Hs. It follows that the reservoir average
i

of the first line of (2. 25a) is equal to zero (as is expected for a Langevin force).
Since the two rates (2.25) contain only free operators, their average value in the reservoir state is easily

calculated. We get

where we have put

0 being the Heaviside function (9(x) = 1 if x &#x3E; 0, 0(x) = 0 if x  0). The two functions CijR) and Xij(R) are real,
and they depend only on ! = t - t’ if UR(TO) commutes with HR (other properties of these functions are listed in
appendix A). Clf) and Xij(R) are actually two important statistical functions of the reservoir [11]. Clf) is the ,symme-
tric correlation function, describing the dynamics of the fluctuations of Ri and Ri in the stationary state (jR(tO).
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It is a satisfactory result to see that Cij(R) appears in the « reservoir fluctuations » term (2. 28a). Xij(R) is the linear
susceptibilily of the reservoir, determining the linear response of the averaged observable ( Ri(t) ) when the
reservoir is acted upon by a perturbation proportional to Rj. It is also an interesting result to see that Xij(R) cha-
racterizes the « response » of the reservoir in the self reaction rate (2. 28b).

The width of the two functions Cij(R) and Xij(R) is of the order of tc. If we restrict ourselves to time t such as
t - to &#x3E; tc (and 1 - to « TR so that the perturbative calculation remains valid (see 2.24)), the expressions
(2.28) can be simplified and written as

where

Note that the expressions (2 . 31 ) of the rates remain valid to order 2 in g, if we replace in the right member the
free operator [Yfi(t), [Sfi(t), Gf(t)]] by the reservoir average  [Yi(t), [Si(t), G(t)]])R (from (2 .11 ) and (2.12), the
difference is at least of order 1 in g) : 

’

Each rate of variation of G(t) is now expressed as a function of G(t) itself rather than G’(t), and this will be more
convenient for the calculations of section 3.

Remark : Our assumption concerning the factorization (2 .1 ) of the initial state may seem questionable.
Usually, the system 8 and the reservoir 3t are always interacting, and 8 and % cannot be considered as being
« put together &#x3E;&#x3E; at some initial time to. It follows that, at any time to, the total density matrix p(to) should rather
be written

where

and where A a(to) describes correlations which exist at time to between 8 and 3t as a result of their previous
interaction. In the presence of such correlations, the calculations presented in this section must be modified. We
show, in appendix B, that, if 3t is a large reservoir, expressions (2.33) remain valid provided that the two rates
of variation are considered as « coarse grained » rates of variation, i.e. as rates of variation averaged over a time
interval At large compared to the correlation time rc, but small compared to the relaxation time TR.

3. Effective Hamiltonian and relaxation.

The two rates (2 . 33a) and (2. 33b) only involve observables of the system 8. Their expressions are more compli-
cated than averaged Heisenberg rates, which are mere commutators of G(t) with another 8 operator. Never-
theless, one can distinguish in these two rates a part which is of that kind, i.e., which is physically equivalent to
the effect of an effective Hamiltonian Heff. The remaining non Hamiltonian part of the evolution of G(t) will
simply be called relaxation.
3.1 SEPARATION PROCEDURE. - Consider first (2 . 33 . a). The double commutator can be developed into

The last two terms cannot contribute to a commutator such as [Heff, G], (unless Si reduces to a number, but, in
this case, it does not express a real coupling between A and 8). Thus, the last two terms only contribute to relaxa-
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tion. The first two terms can be split in a unique way into the sum of a commutator and an anticommutator, so
that equation (3 .1 ) becomes :

In the same way, the operator of (2. 33b) is transformed into :

We introduce the two effective Hamiltonians (Heff)rf and (Heff)sr corresponding to the commutator part of
(3 . 2) and (3 . 3) :

The two rates (2. 33a) and (2. 33b) are then split into two parts using (3.2) and (3.3) :

The first line of (3.6) (resp. (3.7)) describes the part of the evolution due to reservoir fluctuations (resp. due to
self reaction) and which can be described by an effective Hamiltonian. The second line describes the non Hamil-
tonian part of the evolution of G, which we have called relaxation, caused by reservoir fluctuations (resp. self
reaction). We discuss now the physical content of these equations.

3.2 EFFECTIVE HAMILTONIANS. - The Hamiltonian part of the evolution of 8 is now described by Hs(t) +
(Heff(t))rf + (Heff(t))sr. We calculate in this section the modification of the energy spectrum of 8 due to the two
effective Hamiltonians.

We have introduced above the unperturbed energy levels ] a ) of 8 as the eigenstates of Hs(to). The energy
shifts (ðEa)rf and (ðEa)sr produced respectively by reservoir fluctuations and self reaction are therefore

Using formula (3.4), (bEu)rf becomes :

Noting that Si(to) is identical to S/(to) and that Yi(t0) can be transformed into
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and introducing the susceptibility of the system 8 in the state I a &#x3E;

we transform (bEu)rf into :

i.e., as a sum of time averaged products of susceptibilities of the system 8 by correlation functions of reservoir
observables [12]. This expression has a simple physical meaning : the fluctuations of the reservoir observables
polarize 8 and produce an additional motion of So) given by

The corresponding polarization energy is

as for an atom in an electric field which gets a polarization energy - ! xE 2 - - 2 E. 6D for an induced dipole
6D = XE. Of course, equations (3.14) and (3.15) are only qualitative, since they do not take care of the operator
nature of the quantities Tri and 65;. But they explain physically the structure of the exact equation (3.13). Using
the symmetry properties (A. 4) and (A. 22) of C and x (see appendix A), one finds that only the reactive part
x’ij(S,a) contributes to (3.13) :tj

Only the reactive part of the susceptibility contributes to the polarization energy of 8.
From the expression (3.5) of (Heff)sr, and following steps similar to those which have led us from (3.8)

to (3.16), we find that the shift of the energy level I a &#x3E; produced by self reaction is :

where Cij(S,a)(r) is the symmetric correlation function of Si and Sj for the system 8 in the state I a &#x3E; :

In the same way as in (3.16), only the reactive part of the susceptibility of 3t contributes to (ðEa)sr. Physically,
it represents the polarization energy of the reservoir 3t due to the motion of the system 8.

Note that the physical interpretation of both (bE,,)rf and (bEa)Sr is in complete agreement with the physical
pictures associated with their basic origin, reservoir fluctuations and self reaction.

3.3 RELAXATION RATES OF ENERGY. - As an illustration of the relaxation processes produced by both reservoir
fluctuations and self reaction, we compute the variation rates of the mean energy of 8 initially in the state I a &#x3E;.
So, we replace in (3.6) and (3. 7) the observable G by the Hamiltonian Hs of 8 and we take the diagonal matrix
element of both members in the state a &#x3E;. To order two in g, all the operators appearing in the right side of
these equations can be considered as free operators. In this approximation, the commutators of the first lines
of (3. 6) and (3. 7) reduce to :

since I a &#x3E; is an eigenstate of Hfs. The rates (3.6) and (3. 7) reduce to their relaxation parts, where we can replace

[Sfi(t), Hsf(t)] by I’ £ S/t&#x3E;, and similarly for Y’t&#x3E; and z/t&#x3E;.
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Replacing in (2. 32a) and (2. 32b) qab(t) by qp6(t), one expresses Yi (t) and Zfi(t) as a function of SI(t - T). Since
 a I Sf(t) Sfj(t - T) I a &#x3E; is independent of t, the time derivatives on Si(t) can be transferred with a minus sign
to Sj(t - i), and written there as djd!. We get in this way :

We recognize in (3.22) the dissipative part iX’ ij !S,a)(,) of the susceptibility of the system 8 in the state I a &#x3E; (see
formule (A . 21) of Appendix A)

and in (3.23) the corresponding symmetric correlation function Ci1,a)(t), so that

Since x!f)(!) is zero for T  0, the lower limit of the integral in (3.26) can be extended to - oo. Using the sym-
metry properties (A. 4) of Cij(T) and (A. 22a, b) of Xij(!)’ one easily sees that only the dissipative part ij
contributes to (3.26). Also, in (3.25), the integrand is an even function of !, so that twice the integral from 0
to oo is just the integral from - oo to + oo . We finally obtain two simple formulae of the same form (after an
integration by parts in (3 . 25)), which may also be expressed by using the Fourier transforms Cij(w) and Xij(W)
of the corresponding functions of T (see appendix A) :

These expressions are familiar : when a system 8 is perturbed by a classical random field r(t) through the
coupling - gr(t) S, the energy absorption rate is [13] :

where G(w) is the spectral power of r(t) and i2"((o) is the Fourier transform of the dissipative part of the sus-
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ceptibility of the system. The formula (3.27) is the extension of (3.29) for a quantum perturbation of the form
(1.2). The spectral power, which, for a classical stationary random function, is just the Fourier transform of
the correlation function, is replaced here by the quantum symmetric correlation function [14]. The energy
relaxation rate due to reservoir fluctuations is exactly what we would expect on a physical basis : it is the power
absorbed by 8 when it is driven by reservoir fluctuations.

Conversely, the relaxation rate of energy due to self reaction (3.28) represents the power dissipated in the
reservoir by the free motion of the system 8. The damping effect of the reservoir is expressed by the dissipative
part of its susceptibility.

It is clear on these examples (effective Hamiltonian, relaxation rate of energy), that the separation of dG dtdt

into two parts (1.9a) and (1.9b), which was based on formal considerations, leads to results which have simple
physical interpretations. The corresponding pictures are consistent with the initial assignment of the process
involved, reservoir fluctuations or self reaction. This can be taken as an a posteriori proof of the validity of
the criterion used for this separation.

4. Quasi-classical system 8 coupled to a reservoir.
4.1 MOTIVATION. - This section is devoted to the application of the previous results to the case of a quasi-
classical 8 system. We shall see that both self reaction and reservoir fluctuation terms take remarkably simple
forms; reservoir fluctuations broaden the population distribution of 8, without changing its average position,
while, on the contrary, self reaction produces a drift of this distribution without deforming it.

In all this section, we assume that the following properties are fulfilled by the quasi-classical system 8 [15] :
(i) 8 has a single degree of freedom (or several separable ones).
(ii) The energy levels, labelled by the quantum number n, are locally equidistant :

Actually, (4.1) holds as soon as the difference n - n’ is small compared to n, co being the frequency of the cor-
responding classical motion of energy En.

(iii) The matrix elements ( n’ I G I n &#x3E; of any physical quantity G decrease rapidly as a function of n - n’,
while being very smooth functions of n (for n - n’ constant).

The quasi-classical nature of 8 introduces interesting simplifications in the general results of section 3,
mainly concerning dissipative terms. In the following, we shall then focus on the evolution of the populations
of 8. More precisely, rather than working with the population Pn(t) of a unique level I n &#x3E;, which has no classical
limit, we shall study the evolution of the average population P(E, t) of an energy band of width bE around E :

The width bE of T is chosen small compared to E, but large compared to hm so that many energy levels contri-
bute to the sum (4.2). We have thus replaced the discrete set of populations Pn(t) by the smoothed « energy
distribution function » P(E, t).
4.2 RESERVOIR FLUCTUATION CONTRIBUTION. - The rate of variation of P(E, t ) under the effect of reservoir
fluctuations is

We first calculate the rate (dPnjdt)rf from the results of section 2. Putting G = I n &#x3E; ( n in equation (2 . 33a)
and taking the average on both 3t and 8, one gets (2)

(the coupling is replaced in this section by the simpler one The matrix ele-

(2) We have neglected non secular couplings between populations and « coherences ».
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ment  n’ I Y I n &#x3E; can be written, using (2.32a) and (4. 1) :

It is then convenient to put

Because of property (iii) of § 4. l, Ak is practically independent of n. Furthermore, parity properties of C
imply that

Introducing a closure relation in the first lipe of (4.4), can then be written as

We now carry this last expression into

We change the index of summation n in n - k in the second sum to get

The summations over k concern both positive and negative values of k. Using (4. 7), this can be written

We can now use the fact that the width of the function cp as a function of k (through E - En+k or E - En-k)
is much larger than the width of Ak (property (iii) of § 4.1). The quantity cp(E - En +k) + cp(E - En-k) -
2 cp(E - En) in (4.11) can then be approximated by (1ikro)

Finally, the rate can be written as

or

with

(4.13) is a very simple diffusion equation, on the energy axis, with the diffusion rate D. It follows that the only
effect of reservoir fluctuations is a symmetrical broadening of the population distribution P(E, t), while its
centre remains constant. In particular, reservoir fluctuations do not change the average energy of the quasi
classical system. This result can be understood in the framework of section 3 by noting that our approximations
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concerning the quasi classical nature of 8 imply that X"(s) is zero. Equation (3.27) thus gives

The diffusion coefficient D can be interpreted by simple semiclassical arguments. Reservoir fluctuations induce
a random walk of the system on the energy axis with steps multiple of hm. The transition rate Fk from level
n to levels n + k is

i.e., the product of the square of the matrix element of S by the spectral density C(kw) of the fluctuating field
created by the reservoir at the frequency kw. The diffusion coefficient Dk associated with a random walk of
step 1ikw is then equal to half the square of the energy step times the transition rate

Summing (4.17) over k &#x3E; 0 gives (4.14).

4.3 SELF REACTION CONTRIBUTION. 2013 Self reaction terms can be calculated in the same way as reservoir fluc-

tuations ones. One first determines the rate (dPn) and then carries the result into
dt ).,,

From section 2 (see Eq. (2.33b)), one has :

We now introduce the real coefficient Bk :

Using (2. 32b), Bk can be written as

Since X(R)( - Q) = 2(R)*(Q), we get from (A. 19)

with the following property (compare with (4.7))

As Ak in the previous paragraph, Bk decreases rapidly when ] k increases, while being nearly independent of n.
The rate (dPnjdt)sr of (4.19) can be written
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We now put this rate into

The first term is zero since, with (4. 23)

then becomes :

Because of the presence of Bk in (4. 27), only small values of k contribute and the quantity cp(E-En-k)-
cp(E - E.1k) can be approximated by

We finally get

or

with

Equation (4.29) is a propagation equation : the energy distribution function drifts along the energy axis with
the« speed » K. Note that - K is equal to the energy lost per unit of time by the system 8 in the state n,.because
of self reaction (see Eq. (3.28))

If we combine the results of this section, we find that the energy distribution function of a quasi classical
system obeys a Fokker-Planck type equation

The drift term K OPIDE describes the emission or absorption of energy by the system, resulting from self reaction
effects, while the diffusion term D a2P/aE2 describes the broadening of the distribution function caused by
reservoir fluctuations.

5. Application to the spontaneous emission of a large angular momentum.

5.1 INTRODUCTION. - This last section is devoted to the application of the previous results to a specific
example : we study the emission of energy by a large angular momentum coupled to the quantized radiation
field in its vacuum state, which plays the role of a large reservoir.
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The angular momentum is supposed to be put in a static magnetic field Bo so that its energy levels are
equally spaced with a splitting liroo, where mo = - yBo is the Larmor frequency (y gyromagnetic ratio). We
thus have 

The Hamiltonian of the reservoir is simply

where aKE (a+k£ ) is the destruction (creation) operator of a photon in the mode ks. We take a magnetic dipole
coupling between J and the radiation field

where B is the magnetic field operator.
At the initial time, the angular momentum is supposed to be in its upper level J, m = J &#x3E;.
We want to study here the contribution of reservoir fluctuations (i.e. vacuum fluctuations) and self reaction

to the evolution of the system :

(i) in the early stage of the emission (i.e. : the transition J, J ) - J, J - 1 &#x3E;) (§ 5.2),
(ii) in the following regime where the populated levels I J, m &#x3E; are such that J - m is large compared to 1.

The angular momentum can then be treated as a quasi classical system (§5.3) and the results of § 4 apply.
Our principal motivation for studying this problem lies in the fact that the spontaneous emission of a large
angular momentum is a simple model [16] for describing the superradiance of 2 J two level atoms put initially
in their excited state. We shall see that vacuum fluctuations and self reaction equally contribute to the initial
stage of superradiance, but that self reaction becomes predominant in the following part of the process.

5.2 EARLY STAGE OF THE EMISSION PROCESS. - If the angular momentum is put into its upper level J, J &#x3E;,
vacuum fluctuations and self reaction will both induce transitions towards J, J - 1 &#x3E;. The easiest way to

compare their contributions is to study the two rates and

We shall not give here the explicit calculations of the statistical functions X"(R), C(R) and X"(S), C(s) involved
in these rates; a similar algebra has already been performed in I. We just indicate the final result

where we have put

We therefore find that vacuum fluctuations and self reaction equally contribute to the emission of energy
in the early stage of superradiance (half the total rate for each process).

Such a result also appears in the analysis of superradiance based on a Bloch vector ( J &#x3E;) approach [16],
where the emission process is described in terms of a pendulum starting from its metastable (upwards) equili-
brium position. Without fluctuations, the pendulum would remain indefinitely in this position. Actually, the
quantum fluctuations of atomic dipole moment, and those of the quantum vacuum field play an essential role
in the initial stage of the process by removing the pendulum from its metastable position; they introduce a
small «tipping angle » 0. The correct equation of motion for  J &#x3E; is obtained if one takes [16]

The tipping angle (Jsr due to self reaction can be obtained simply by remarking that, since J is a quantum
operator,  Jx + J2y ) is non zero. This gives

Since the power radiated by the pendulum is obviously proportional to 82, one finds that the emission rate
due to self reaction is only half of the total rate (compare (5.6) and (5 . 7)). The remaining part is due to vacuum
fluctuations.



652

Remark : This result is actually not specific of the previous simple example. It also occurs for the sponta-
neous emission of any excited atomic level by electric dipole coupling : the contributions of vacuum fluctuations
and self reaction for transitions towards lower levels are the same and equal to half the total emission rate [1].
This explains the well known following result : if one tries to calculate the spontaneous emission rate of a two
level atom by coupling it to a classical random field having an energy nwj2 per mode, one gets only half the
emission rate. This is simply due to the fact that one calculates in this way only the vacuum fluctuations rate.
The missing emission rate is simply that due to self reaction.

5. 3 FOLLOWING STAGE OF THE EMISSION PROCESS. - When the populated levels J, m ) are such as J - m &#x3E;&#x3E; 1.
the results obtained for a quasi classical system (§ 4) can be applied : the levels are equally spaced and a given
level I J, m &#x3E; is only coupled to J, m - 1 &#x3E; and J, m + 1 ) b the coupling V (5.3). Furthermore, matrix
elements of V vary very smoothly with m (as J J(J + 1) - m(m + 1)). One therefore gets a Fokker-Planck
type equation (4.32) for the evolution of the energy distribution function P(E, t) :

with (3)

As seen in § 4, the emission of energy (term K OPIOE) is entirely due to self reaction, the only effect of vacuum
fluctuations being to broaden the energy distribution (term D ð2 PjðE2).

Moreover, the vacuum fluctuation term is in fact negligible in the present case; the order of magnitude of
D ð2 P/ðE2 is (D/bE), (aP/aE), where bE is the width of P(E, t), so that one gets from (5.10) :

Since the width bE of P(E, t) has been taken much larger than hmo (see § 4 .1 ), we have

The evolution of the system in this later stage appears then as being mainly due to self reaction. The energy
distribution function drifts as a « quasi classical probability packet » [16] downward the energy axis.

When the emission process is completed, the angular momentum ends in the lower level J, - J &#x3E;. Vacuum
fluctuation effects play again a very important role ; they exactly balance the energy loss due to self reaction,
ensuring the stability of the ground state [14].

Appendix A. - Some properties of correlation functions and susceptibilities.

We illustrate these properties, for the reservoir 3t in a stationary state defined by the density matrix 6R (aR
commutes with the Hamiltonian HR). Similar results also hold for the system 8 in an eigenstate of Hs. We use
here the same definitions as in references [11] and [13] for the Fourier transforms C(w) and 2(cm). The ê(w)
and 2(cm) of reference [1] are related to C and 2 by :

Correlation functions :

For a stationary state, Cij depends only on t = t - t’

(3) The simple relation between D and K is actually a consequence of the fluctuation-dissipation theorem applied
to the electromagnetic field in its ground state (reservoir at zero temperature).
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Cij(t) is real. The expression (A. 2) being invariant in the exchange of (i, t) - ( j, t’), we have the important
property :

Developing on the eigenstates of HR, one can write (A. 2) as

The Fourier transform Cij is defined by :

From the reality of Cij, it follows that

From the property (A. 3), we get

Susceptibilities :

Stationarity makes Xij depend only on r = t - t’

Xij(t) is real and is equal to zero for t  0. It is easily seen on formula (A. 9) that exchanging (i, t) and ( j, t’)
amounts to changing 0(t - t’) into - 0(t - t’). Using the fact that 0(t - t’) + 0(t’ - t) = 1, we obtain the
relation

valid forr positive or negative. Using a development on the eigenstates of HR, one can put (A. .10) in the follow-
ing form :

Its Fourier transform is given by :

The reality of Xij{!) implies that
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One distinguishes the reactive P?rt Xij(w), corresponding to the principal parts, and the dissipative part x;j(w)
involving the 6 functions :

For a symmetric susceptibility (i = j), flj; and X"ii correspond to the real and imaginary parts of Xii. This property
is not true in general, but is replaced by the properties

From (A. 15) and (A. 17), one easily gets

and then

by using (A. 10).
The Fourier transform of (A .18a and b) gives the symmetry relations :

Appendix B. - Coarse grained rates of variation.

The reservoir averaged rates of variation (2.28) have been calculated in § 2 with the assumption of a factorized
initial state (2.1). We consider in this appendix the more general case of a non factorized initial state (2. 34)
(see remark at the end of § 2).

The fact that Xl is a large reservoir has interesting consequences [8] on the reservoir operator UR(to) appear-
ing in (2.34) and on the correlation term Au(to) :

(i) The state of the large reservoir is not perturbed by the small system. We can therefore neglect the to
dependence of aR(tO)’ which will be simply written QR.

(ii) The correlations A a(to), which exist between 8 and A at time to, contribute to the future evolution of 8,
but only within a correlation time !C’ i.e. in the interval [to, to + !c]. After this interval, the effect of the correla-
tions A a(to) washes out.

We consider now the average of the two rates (2. 25) in the state (2. 34). The contribution of the factorized
part of (2. 34), US(TO) URI is the same as in (2.28). Since it is given by an integral from to to t involving statistical
functions of the reservoir C(R) and X(R), this contribution vanishes for t = to, increases over an interval !c and
then saturates (for t - to &#x3E; rj to the value (2 . 31 ). On the other hand, the contribution of the correlation part
A a of (2.34) is non zero only for t - to  !c because of the point (ii) mentioned above. It follows that, if we
average the rates of variation over a time interval [to, to + At] such that

we can ignore the contribution of A 6, and replace the contribution of as(to) UR by its asymptotic value (2.31) ;
the relative error associated with these two approximations is of the order of Tcl LBt. With such a « coarse grained
average » at time to, we implicitly renounce to a detailed knowledge of the dynamics of 8 on a time scale Tc.
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Actually, the coarse grained average must be done on the part of the rate of variation which is due to the
coupling (and not to the system Hamiltonian Hs). Mathematically, it is therefore more convenient to use a set
of operators qab(t) having no free evolution and defined by :

The coarse grained rate of variation is thus given by :

where dqab/ dt (t) is deduced from (2.25). We then make the two previously mentioned approximations, and replacedt

by its asymptotic value deduced from (2.31). After a straightforward algebra, one gets for example
for the reservoir fluctuation term (compare with 2. 33) :

where the index « SEC » means that, in the expansion of the atomic operator [yi(tO)l [So)’ qab(tO)]] in the basis
4,d(tO)l only the secular terms qed(tO) with I Wcd - cvab I « ð.t -1 are kept. This is due to the fact that non secular
couplings I Wcd - a),,b I , &#x3E; At -’ are washed out in the integral (B. 3) by a factor :

Equations (2.33a) and (2. 33b) can therefore be generalized to any time to, provided that they are understood
as secular equations for coarse grained rates of variation.

Appendix C. - Time reversal properties of the two rates of variation due to self reaction and reservoir fluctuations.

In the splitting (1.7) of¿ Ri(t) Ni(t), we have implicitly supposed A real, so that hermiticity of reservoir fluctua-
i

tion terms (1.8a) and self reaction ones (1.8b) implies A = 1/2. Actually, one could consider taking. A complex,
in which case hermiticity would only require A + A* = 1, i.e., À. = 1/2 + ix (x real). But it appears that x must
be zero if we want that the two rates of variation respectively due to vacuum fluctuations and self reaction behave
separately as « good velocities ».

Consider a physical quantity G having a given signature in time reversal. If G is even, dG/dt is odd. It seems
reasonable to impose separately the same property to reservoir fluctuation terms and self reaction ones. Actually,

since we calculate only coarse grained rates of variation at time (to) anc (to) (see appendix B),

it is sufficient to consider time reversal around to. Furthermore, the total interaction Hamiltonian is even, so
that Ri and Si can be chosen with a well defined parity. It then follows that Rf and Rsi have the same parity as R
in time reversal around to (see (2.7) and (2. 8)) (4). Putting this result in (1. 8), one easily sees that (dG/dt)rf (t)
and (dGjdt)sf (t) have the parity opposite to that of G in time reversal around to if and only if K is equal to zero.

Such a property remains valid for the coarse grained rates AG t and (AG) t (see (B. 3)).P p Y g 
A7t ),f rf 

( o) 
et sf 

( o) ( ( 

(AG) (AG)We have therefore shown that A has to be real in order that (AG) t and At ) t behave as « goodWe have therefore shown that À has to be real In order that 
7i:ï rf (to) 

and 
71i sr (to) 

behave as « good

velocities », i.e., that they have the opposite signature of G in a time reversal around to.

(4) In equation (2.19b) of [1], giving the source field (RQ) in terms of the atomic velocity n/M and acceleration n/M,
t - to is implicitly supposed to be positive. In the general case, the acceleration term is found to be multiplied by the sign
of (t - to), ensuring the good time reversal symmetry for Ris.
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