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We calculate the shape of the deflection profile of a monoenergetic atomic beam crossing a laser standing wave, in a 
situation where many spontaneous emission processes occur during the interaction time. We predict that double peaked 
structures appear when the laser is detuned from resonance. 

1. Introduction 

During the last few years, the deflection of  an 
atomic beam by a resonant standing laser wave has 
received a lot of  attention. From an experimental 
point of  view, the deflection profile (i.e. the intensity 
of  the deflected beam versus the deflection angle) has 
been observed on a thermal sodium beam and the 
laser power dependence of  the width of  the deflec- 
t ion curve has been investigated [1,2] (see also [3] ). 

Several theoretical papers have been devoted to 
the interpretat ion of  such an experiment,  starting 
from the atomic equations of  motion and introducing 
various types of  approximations [ 4 - 1 2 ] .  The main 
purpose of  these papers was to understand the varia- 
tions of  the width of  the deflection profile with vari- 
ous parameters such as the laser power, the detuning 
and the interaction time. 

In this letter, we would like to point out the in- 
terest of  studying the deflection profile itself when 
the atomic beam is monoenergetic. We show that it 
exhibits important  changes when the laser is tuned 
through resonance: starting from a single maximum 
curve at exact resonance, the deflection profile chang- 
es into a double-peaked structure when the laser is 
detuned. Our analysis o f  the deflection profiles in- 

* Permanent address: Department of Physics, Kyoto Univer- 
sity, Kyoto 606, Japan. 

cludes situations where the atomic displacement 
along the standing wave cannot be neglected. This al- 
lows us to determine the optimal conditions for get- 
ting the largest possible structure. 

2. Situation considered in this paper. Notations 

All atoms of  the beam are supposed to have the 
same velocity o0, parallel to the z axis. They cross at 
right angle the laser standing wave propagating along 
the x axis. We take the electric field equal to E(x ,  t) 

= E 0 cos kx  cos coL t in the interaction zone 0 < z < l 
and zero elsewhere. The detuning is ~ = co  L - coO and 

col (x)  = - ( d E  0 cos kx ) /h  (1) 

is the spatially varying Rabi frequency (d being the 
atomic dipole moment) .  The time of  flight T = l/v 0 

of  atoms through the laser beam is the interaction 
time. We will suppose in this paper that 

PT>> 1, (2) 

where F is the natural width of  the upper atomic 
state. Condition (2), which corresponds to most ex- 
perimental situations [1,2], means that many spon- 
taneous emission processes occur during the interac- 
t ion time. 

All subsequent calculations will be performed in 
the initial atomic rest frame moving with velocity v 0 
along the x axis. 
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3. Fokker-Planck equation for the atomic motion 

We will suppose that during its lifetime p - l ,  the 
atom does not move appreciably in comparison with 
the wavelength 3, of  the radiation characterizing the 
spatial variation of  the light intensity. This condition 
oF -1 ,~ X, where v is the atomic velocity along the 
x-axis (due to an imperfect collimation of the atomic 
beam or to a transfer of  momentum from the laser 
beam), is equivalent to 

kv < P, (3) 

which is the usual condition for the "adiabatic ap- 
proximation": during its radiative lifetime, the atom 
experiences a nearly constant light intensity. As a 
consequence of  (2) and (3), one shows that the mean 
force [13] experienced by an atom at point x is given 
by 

f (x)  = -dU(x)/dx,  (4) 

where 

U(x) = (h8/2) log (1 + s(x)) (5) 

is the potential "seen" by the atom and 

s(x) = 2co2(x)/(P 2 + 462) (6) 

is the saturation parameter. Because of  spontaneous 
emission, the force exerted by the light wave fluctuat- 
es; this leads to an atomic momentum diffusion. We 
refer the reader to references [14,15] for a correct 
calculation of  the diffusion coefficient. From their 
results, one derives the following diffusion coeffi- 
cient along the x axis 

2 

16s(1 +S) 3 

{ X l + ( 4 r - 1 ) s + 3 s 2 +  + ~ P i ~ - s s '  (7) 

where r = F2/(P 2 + 482) is the resonance parameter. 
A convenient quantum description of  the trans- 

lational degrees of  freedom of  the atom makes use 
of  the so-called "Wigner distribution" w(x, p, t), 
where p is the momentum along the x axis [17]. When 
conditions (2) and (3) are fulfilled, the Wigner dis- 
tribution can be shown to obey a Fokker-Planck type 
equation [11,12,18-20] 

O +_p ~ +  a _ D(x) w (x ,p , t )  = 0. (8) b7 Max f(x)~ 
The second term of eq. (8) describes the free flight 
of  the atom along the x direction (in the rest frame 
defined in sect. 2). The last two terms respectively 
describe the "drift" due to the mean force and the 
"diffusion" associated with the fluctuations of the 
force (we neglect the velocity dependent friction 
forces since we suppose throughout this paper the 
interaction time T shorter than the "thermalization" 
one). 

4. Deflection profiles when free flight is neglected 

We suppose in this section that, during the inter- 
action time T, the atom does not move appreciably 
along the standing wave, even if it gets some momen- 
tum in this direction from the light beam. This re- 
striction will be removed in sect. 5. The correspond- 
ing condition vT'~ X or 

kv ~ T -1 (9) 

is more stringent than the adiabatic condition (3), 
as a consequence of (2). 

When (9) is fulfilled, one can ignore the free flight 
term (p/M)O/ax in the Fokker-Planck equation (8) 
which becomes local in x and then admits the follow- 
ing solution 

Wout(X, p) = f dq Win(X, p - q)G(x, q, T), (10) 

where Win and Wou t are the Wigner distributions for 
t = 0 and t = T respectively and where G(x, q, 73 is 
the well-known Green function of  a second order 
differential equation in p 

a(x, q, T) = [4rrTD(x)]-l/2 

X exp [ - (q  - Tf(x))2/4TD(x)l. (1 1) 

From (10), it appears that such a Green function can 
be considered as a probability distribution for the 
momentum q transferred during the time T to an 
atom located at a point x. Strictly speaking, such a 
picture violates the Heisenberg relation for x and p. 
This is due to the fact that the Green function does 
not describe a physical state. Actually, the physical 
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states are described by Wigner distributions satisfy- 
ing the Heisenberg relation. 

As a next step, we now suppose that the initial 
distribution in p is much narrower than the distribu- 
tion of  the momentum transfer q, so that eq. (10) 
becomes 

Wout(X, p) = a(x, p, 70 f dq W i n ( X  , p - -  q) 

= G(x ,  p ,  T)Xin(X), (12) 

where Xin(X ) is the probabil i ty  for the atom to be 
initially at position x. One gets the momentum dis- 
tr ibution by integrating (12) over x 

= f dx Wout(X , p) = f dx G(x, Pout(P) T) Xin(x). P, 

(13) 

G(x, p, 7) thus appears (with the same restrictions 
as above) as the distribution of  the final momentum 
of  an atom crossing the laser beam at point x. Accord- 
ing to (11), G(x,p, 7) is a normal distribution i n p  
(gaussian shape), centered at 

fi(x) = T f (x )  (14) 

and having a dispersion 

2xp2(x) = p2(x) -- fi2(x) = 2TD(x).  (15) 

Eq. (13) expresses that the deflection profile is obtain- 
ed by superposing such gaussian curves corresponding 
to different values ofx .  

Finally, since G(x, p, 7) is, as f (x )  and D(x), a 
periodic function o f x  (period X/2), and since the 
width of  Xin(X ) is much larger than X, we can write 

2 +x/4 
P o u t ( P ) = X ! M 4  dxG(x ,p ,  70. (16) 

r 

Fig. 1 represents deflection profiles [Pout(P) versus 
p] computed for various values of  the detuning 6. 

For  a resonant excitation (6 = 0), one gets a single 
peak centered around p = 0 (curve a). This is due to 
the fact that the Green functions appearing in (16) 
are gaussian curves in p with different widths, but all 
centered on p = 0 If(x) -= 0 for 6 = O; see eq. (5)].  
Their superposition therefore gives a bell-shaped pro- 
file. 

For a non resonant excitation, Pout(P) exhibits 

P..t 

C 

-10 0 10 P 

Fig. 1. Deflection profiles (Pout(P) versus p in units of  hk) 
for various values of the detuning: 6 = 0 (curve a), 6 = - 5 F  
(b), 6 = -1OF (c). Calculations have been performed for si- 
dium atoms with a Rabi frequency dEo]h = 5I" and an inter- 
action time T = 7 I "-1 . With these parameters, free flight can 
be neglected. 

two maxhna for sufficiently large values of  6 (fig. 1, 
curves b and c). In order to understand such a struc- 
ture, consider the values ~(xi) corresponding to points 
x i equally spaced on the x axis. Fig. 2 clearly shows 
that they are not uniformly distributed. They rather 
bunch near the two extrema +PM' When summing the 
gaussian curves centered on ff(xi), a greater number 
of  values o fx  i will contribute to deflections in the 
neighbourhood of  +PM than for p = 0. Such a graphi- 
cal construction clearly explains why the deflection 
profile exhibits two maxima near +PM (provided 
that PM is larger than the width of  the gaussian curves). 

0 1 / 4  
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X 

Fig. 2. (a). Mean momentum p(x) = Tf(x) versus x (same 
parameters as for fig. lb). (b). Distribution of the fi(xi)'s 
for equally spaced values of x i. Bunchings appear near the 
two extremal values -+PM" 
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When the detuning 8 is too large, the gradient force 
tends towards zero (it varies with 8 as a dispersion 
shaped curve) and one understands wily the distance 

between the two maxima +PM decreases (fig. 1, curve 

c). 

5. Free flight taken into account 

In order to increase the distance 2PM between the 
two peaks of the deflection profile, one can try to in- 

crease the interaction time T. But, if T is too long, 
condition (9) is violated and the derivation of sect. 4 
breaks down. We try now to predict what happens 
when the transverse motion of the atom along the 
standing wave cannot be neglected. We thus come 
back to the Fokker-Planck equation (8), keeping 
now the free flight tenn.  

Suppose first that we neglect the diffusion term in 

eq. (8). This is equivalent to consider the atomic mo- 
tion as a classical one and this problem is easily solved 
from Newton's equations: for each initial position x, 
the atom oscillates in the periodic potential U from x 
to the position symmetrical with respect to the stable 
equilibrium point (node or antinode of the standing 
wave depending whether 6 is positive or negative). 

P ¢ I  
Ta T~ Tc To 7~ Tc 

0 T 

Fig. 3. (a) Set of curves giving the classical momentum 
Pcl(Xi) acquired by an atom entering the standing wave at 
equally spaced positions x[. The units are lik for the momen- 
tum (vertical axis) and F- for the interaction time (horizon- 
tal axis). Parameters are dEo/~ = 5 F, 6 = -5 F. (b) Distribution 
of the p .(x.)'s for T b = 17.5 r -1 (quarter of the oscillation 

el l X 
period) and T c = 35 F- (half an oscillation period). The 
Pcl(Xi)'s bunch near the two extremal values of Pcl for Tb, 
whereas they bunch near p = 0 for T c. 

Fig. 3 represents the variation of the classical momen- 

tum Pcl(Xi) versus the interaction time for equally 
spaced initial values x i ofx. 

For an interaction time T much shorter than the 

oscillation period (T a on fig. 3), the Pcl(Xi)'s can be 
identified with the quantities ~(xi) = Tf(xi)  of sect. 
4. One thus gets the same conclusions: the deflection 
profile has a two-peaked structure (in this section, we 
only consider the non resonant case). 

For an interaction time T of the order of a quarter 

of an oscillation period (T b on fig. 3), most of the 

Pcl(Xi)'s reach their maximum values compatible with 
energy conservation p2 /2M + U(x) = U(xi). As 

previously, the Pcl(Xi)'s bunch near two extremal 
values (fig. 3b). One still expects two-peaked deflec- 
tin profiles, with now the largest possible structure 
[of the order of (2MU0)1/2 where U 0 is the potential 

depth]. 
On the other hand, for an interaction time T of 

the order of half an oscillation period (T c on fig. 3), 

the Pcl(Xi)'s bunch around p = 0 and one expects a 
single-peaked structure. 

A numerical integration of the Fokker-Planck 

equation (8) has been performed in order to check 
these qualitative predictions. The computed deflec- 

tin profile corresponding to T b is represented on fig. 
4 and indeed exhibits a double-peaked structure, 
whereas the profile corresponding to T c exhibits a 
single-peaked one, which confirms the previous dis- 

cussion. 

~ t  

j \ 
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Fig. 4. Deflection profile computed from a numerical integra- 
tion of the Fokker-Planck equation (the free flight term being 
taken into account). Same parameters as for fig. 3 with T = 
rb. 
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6. Conclusion 

We have predicted double-peaked structures in the 
deflection profile of a monoenergetic atomic beam 
crossing a laser standing wave slightly detuned from 
resonance. The experimental observation of such an ef- 
fect should be possible by using a velocity selected 

effusive beam or a supersonic beam. The qualitative 

discussion of section 5 shows that the optimal inter- 

action time is equal to a quarter of the oscillation 
period in the periodic potential. This corresponds to 
the maximum value of the deflection angle and to the 

best contrast for the double-peaked structure. 
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