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We derive a quantitative expression of photon noise reduction in interferometrie experiments which is not based on a 
few field modes analysis. We show that the reduction factor is quite sensitive to the coherence properties of the squeezed 
field. 

1. Introduction 

New methods have been recently proposed in order 
to reduce photon noise in interferometric measure- 
ments [1,2]. They use special types of  fields, the so 
called "squeezed fields" [3]. The purpose of  this paper 
is to emphasize the importance of  the coherence prop- 
erties of  such squeezed fields for the quantitative evalu- 
ation of  photon noise reduction. 

• Consider, for example, a Michelson interferometer 
(fig. 1). A laser beam, entering in channel A, is divided 
by a beam splitter into two parts which are reflected 
by two mirrors M 1 and M2, and then recombined to 
form two emerging beams in channels C and D. Any 
phase shift between the two interfering paths is trans- 
formed into an intensity change of  these two emerging 

BS M2 

B' 
D 

Fig. 1. The Michelson interferometer: we have sketched the 
beam splitter BS, the two mirrors Mt and M2, the two input 
ports A and B and the two output ones C and D~ Usually, only 
one input port (A) is used. 
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beams. In order to optimize the sensitivity of  such a 
device, one usually measures the difference N = N C - 
N D between the mean number of  photons in channels 
C and D, in conditions where the fringe contrast is 
equal to 1, and the phase difference ¢ between the two 
arms is adjusted to a value such that N = 0. A small 
variation dq~ of  ~ is then found to produce the optimum 
response 

dN = N  A d~b. (1.1) 

We will suppose that the usual noise sources have 
been eliminated and that the only limitation to the 
sensitivity is quantum noise. Furthermore, we will 
consider that quantum noise is dominated by photon 
noise or shot noise and not by fluctuations of  radiation 
pressure [4 -6 ] .  In this case, the fluctuations o f N  = 
N C - N D are characterized by a variance [4 -6 ]  

AOV2 = AN2 + AOV2 = N c  + ; D  =/VA" (1.2) 

It has been recently realized that the photon noise 
(1.2) could be reduced by entering squeezed fields in 
the second input channel B of  the interferometer [1 ]. 
A first analysis of  this effect considers only four field 
modes, two input (A,B) and two output ones (C,D) 
with annihilation operators a, b, c, d. One thus shows 
that, if the input field is in a coherent state lot) [7], 
eq. (1.2) has to be replaced by: 

AN2 = NAAb2 + N  B , (1.3) 

where 
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3 2 = i(b + - b) (1.4) 

is the component of  b in quadrature with a (which is 
supposed real). Note that eq. (1.2) is a particular case 
of  (1.3) corresponding to the situation where only 
vacuum fluctuations enter in B (N'- B = 0; Ab 2 = 1). It 
clearly appears in (1.3) that photon noise is reduced 
when the fluctuations of  b 2 are squeezed, i.e. when 

~ < 1 (1.s) 

(the number.V B of  photons in the squeezed field is 
supposed much smaller than NA). It will be useful to 
rewrite (1.3) (using [b,b+] = 1) as 

AN2 = NA (1 + q) + ~ B '  (1.6) 

where 

q = ( :6b 2 6b 2 :) (1.7) 

is the normally ordered variance of  b 2 (6b 2 = b 2 - 
(b2)). Note that q is necessarily positive for any das- 
sical field and that squeezing is therefore a non clas- 
sical feature [3]. 

Since the previous analysis considers the fields in 
the four channels as single mode fields, it does not in- 
dude any description of  the space-t ime coherence 
properties of  these fields. It is however well known 
that photodetection signals are directly related to cor- 
relation functions of  the field impinging on the photo- 
cathodes [7], so that such signals are generally quite 
sensitive to the coherence properties of  the fields [8]. 
The main motivation of  this paper is to derive a new 
expression for photon noise in a Michelson interfer- 
ometer in terms of  space-t ime integrals of  correlation 
functions of  the squeezed field entering B (for the 
sake of  simplicity, we will suppose that the field en- 
tering A remains perfectly coherent). 

We first consider (sect. 2) the problem of  photon 
noise in a single counter experiment and discuss, in 
this simpler case, the dependence of  photon noise versus 
the detection time T and the detection area S as com- 
pared to the coherence time r c and coherence area o c 
of  the field. After a generalization to experiments using 
two photodetectors, we consider the problem of pho- 
ton noise in a Michelson interferometer (sect.3) and 
derive a theoretical expression for £tN 2 which general- 
izes (1.6). We finally discuss the physical content of  
such an expression (sect. 4). 

2. Photon noise in photon counting experiments 

m 

The mean number N of  photons detected by a single 
counter 

F¢ = f f dt d2r (I(r,t)) (2.1) 

is the integral over the measurement time T and over 
the photocathode area S of  the mean value of  the in- 
tensity operator 

I(r,t) = eE-(r , t )E+ (r, t), (2.2) 

E+(E -) being the positive (negative) frequency compo- 
nent of  the electric field operator, and G a multipli- 
cative constant 

Q = 2eOc/hco (2.3) 

(we consider the field as quasi-monochromatic with 
mean frequency co;we suppose that the photodetector 
is a perfect one with a quantum efficiency equal to 1). 
The theory of  photodetection [7] gives also the expres- 
sion of  the factorial moment of  order 2 of  N 

N(N-1)= Ifffldt dt' d2r d2r' (:I(r,t) I(r' , t ')  :), 

(2.4) 

where the colons mean that the operators are taken in 
the normal order 

( :I(r,t ) I(r',t ') : ) 

= Q2(E-(r , t )E-(r ' , t ' )E+(r ' , t ' )E+(r, t )):  (2.5) 

from (2.1) and (2.4) one gets the photon noise 

2dr 2 = ~ - ~ = ; + C, (2.6) 

with 

C = f f f f d ,  dt' d2r d2r ' (:6](r, t)6I(r ' , t ' ):) ,  (2.7) 

where 8I = I (I). We can rewrite (2.6) as 

2ffV 2 =N(1 + Q) (2.8) 

with 

Q = C/N. (2.9) 
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The factor C in (2.6), or equivalently the factor Q 
in (2.8), describes the deviation from Poisson statistics 
due to intensity correlations. In order to reduce photon 
noise, we need Q < 0 and also Q not too small com- 
pared to 1. For this reason, we now discuss qualitatively 
how to choose the detection time T and detection area 
S in order to maximise the absolute value o f  Q. The 
correlation function appearing in (2.7) vanishes when 
It - t 'l is larger than the coherence time r c of  the field 
or when r and r '  are not in the same coherence area o c. 
If  the detection time T and detection area S are respec- 
tively larger than r c and ac, C is proportional to ST X 
ecr  c whereasN is proportional to ST, so that Q varies 
as Crcr c. On the other hand, i fS  < o c and T <  r c, 
C ~ (ST) 2 so that Q varies as ST. It follows that Q in- 
creases when the "observation volume" V = ST is in- 
creased from very low values and saturates to the co- 
herence volume v 0 = Oct c when T >  r c , S  > e c. It 
may happen that larger values for IQI are reached in 
the intermediate ~egion T ~ rc, S ~ 0 (S ee for exam- 
ple [9] ). But, if the correlation functions vary 
"smoothly" (for example, exponential decay versus 
It - t 'l and gaussian variation versus Ir - r 'l, as it is 
often the case), the largest possible value for Ia l  cor- 
responds to T > re, S > o c . 

We consider now experiments using two photo- 
detectors 1 and 2. For each detector i ( i = 1,2), we 
have 

Ni = f ydti  d2ri (l"(ri,ti)), (2.1o) 

Ni(N i - 1) 

= f f f f d t  i dr; d2r i d2r; " r t ' ' ('li( i' i) Ii(ri,ti) :)" (2.11) 

We can also calculate the "crossed" terms 

N1N 2 + N2N 1 

: f f f f  dt I dt 2 d2rl d2r2 (:Ii(ra,t l)I2(r2,t  2) 

+ I2(r2't2) [1 (rt ' t l )  :)' (2.12) 

We will suppose that the two photocathodes are mir- 
ror images of  each other through a beam splitter which 
divides the incident beam into two parts and sends 
them towards the two detectors. The two detectors ex- 

plore the same surface in the incident field so that 
I 1 (r 1 ,t 1) and I2(r2, t2) can be strongly correlated if 
the mirror image of  r 2 is close enough to r 1 . From 
(2.10) and (2.12), one gets the variance o f N  = N  1 - 

N2 
AN2 =-~1 + N 2  + C, (2.13) 

with 

c = f f f f  dt d,' d2rd2r'(:8I(r,t)6I(r',t '):) (2.14) 

where 

I = I  1 -12 ,  6 I = I -  (/), (2.15) 

and where r, t, r ' ,  t '  mean r l ,  t l ,  r~, t]  when appearing 
t I 

in I 1 , and r 2 , t 2 , r2, t 2 when appearing in 12 . Here also 
the term C in (2.13) describes deviation from Poisson 
statistics due to intensity correlations. The same argu- 
ment as above shows that the surface S of  the photo- 
cathode and the measurement time T have to be 
chosen large compared to o c and r e (at least, of  the 
same order) in order to maximise the effect on AN 2 of  
this correlation term C. 

Note that such a condition is opposite to the condi- 
tion of  observation of  photon correlations. If  one 
wants the effect of  correlations (bunching effect [10, 
11] as well as antibunching effect [12,13]) not to be 
washed out in the integration over S and T, one has in- 
deed to choose S < Oc, T < r c . 

3. Photon noise in a Michelson interferometer 

The previous section dearly shows the importance 
of  the coherence properties of  the field for a quanti- 
tative evaluation of  photon noise. We now extend this 
treatment to the Michelson interferometer considered 
in section 1. 

In the optimal conditions, leading to the optimal 
response (1.1), the two output fields in channels C and 
D are related to the two input fields in channels A and 
B b y *  

* When writing (3.1), we implicitly suppose that the frequency 
dispersion and angular spread of the fields entering the inter- 
ferometer are much narrower than respectively the spectral 
and angular acceptance of this interferometer 
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Ec(r C ,t) = [ E ;  (r A ,t) ~- ;~'B(rB, t)]/X/~-, 

ED(rD,t  ) = [E~(rB,t)~ ~A(rA, t ) l /x / - f .  (3.1) 

In these expressions, the four points rA,  rB, r c ,  r D are 
"conjugated" two by two in the interferometer,  which 
means (fig. 2) that r C and r D are the images in channels 
C and D of  the same point r A in the input channel A. 
and also of  the same point r B in channel B (after reflec- 
tion or transmission due to the beam splitter and to the 
two mirrors M l and M2). From now on, we will use 
the simpler notat ion r for the four conjugated points 

t # t ¢ 
r A , rB, r e ,  r D (or r '  for rA,  rB, r c ,  rD), being under- 

s tood that E~ (r) actually represents E{(ri) with i = A, 
B, C, D. We will also suppose that the two photocath- 
odes in the two output  channels are conjugated in the 
interferometer .  This optimizes crossed correlation 
terms appearing in the following calculations. 

Tile mean value N of  N = N C N D can be written 

= f f d t  d2r (l(r,t)) (3.2) 

where 

I(r, t) = 1 c(r, t) - I D (r, t) 

= iC[EB(r, t  ) EA(r , t  ) -- E~(r , t )  EB(r,t)].  (3.3) 

For  the particular value of  the dephasing ~ here chosen, 
the signal N appears as an homodyning signal between 
the two input fields E A and E B . It must be noted that 
the variation of  N with the phase difference 4) remains 
given by (1.1) provided that the energy entering B is 
nmch weaker than the energy entering A. It appears 
also from (3.1) that 

PB 

I 
/ 
i 

J 

J~ M J 1 

. . . . . . . .  PA 

M2 

" D  

Fig. 2. Output fields E C and E D are taken at two "conjugated" 
points r C and rD, images of the same point r A (resp. rB) in in- 
put channel A (resp. B). 

N-- C + N G =~7 A + N-- B (3.4) 

which expresses energy conservation. 
We come now to the problem of photon noise. One 

gets from (2.13) 

LXN2 = ~ 7 + T V D + C = ~ + G + C ,  (3.5) 

where we have used (3.4). The correlation factor C 
describing the deviation from Poisson statistics has the 
same expression as in (2.14) with I(r,t) given by (3.3) 

c= c 2f f f fat dr d2r d2r ' 

X (: 6(EBE A - EAEB) 6(EBE+A - EAEB)' :  ) (3.6) 

where the two parentheses are taken respectively at 
points (r,t) and (r',t'). 

4. Physical discussion 

4.1. Structure o f  the correlation factor 

As mentioned in the introduct ion,  we suppose that 
tile field entering A is in a coherent state. Since the 
operators are normally ordered in (3.6), we can there- 
fore replace the operators E A by the corresponding 
classical fields g ~ .  Expression (3.6) thus appears to 
give the correlation factor C in terms of  space - t ime  in- 
tegrals of  the second order correlation functions of  
the field entering B 

- - +  # + p r F B ( r , t ; r , t ' ) =  e (6E~(r , t )  f E B ( r , t  )) (4.1) 

++ ' ' (6Eu(r  t )8EB(r '  t')) (4.2) F u (r . t;r  . t ) =  C , , 

(and the complex conjugate expressions). The first 
correlation function, FIT +, is very usual in quantum 
optics. It can be measured for example as an intensity 
signal in a two beam interference experiment [8]. The 
second one is less familiar. Actually,  it cannot be 
easily measured on the field E B alone. It appears here 
because of  the homodyning between the two fields 
entering A and B. 

More precisely, the correlation factor C may be 
written 

C = C O - C 2 cos ~ ,  (4.3) 

where 
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C o = 2  C f f f f d t  d t ' d  2 rd2r '  

X ~ A ( r , t )  + -+ ' ' - ' ' ~A(r, t)FB (r,t;r , t ) ,  

= 2effffdt dt' d2r d2r ' 

(4.4) 

X CA(r',t' ) eA(r,t)FB+(r,t;r' , t ') .  (4.5) 

The factor 2 in the expression (4.4) of  C o is due to the 
fact that there are two contributions in (3.6) related 
to Fff + and that these contributions are equal. There 
is also a contribution proportional to F B-  which is ac- 
tually complex conjugate to the contribution propor- 
tional to F~  +, which explains how cos qJ appears in 
(4.3). 

The first term C O of  (4.3) is positive since it can be 
considered as the norm of the state 

[~) = f f d t  d2r e-h(r,t ) 8E~(r,t)l~), (4.6) 

where 1~) is the state of  the field entering B. Such a 
positive term can only increase photon noise. On the 
other hand, the sign of  the second term depends on 
the value of  cos ff (we can suppose C 2 > 0 in eq. (4.5)). 
By varying the phase of  the field CA, we can actually 
achieve cos ff = 1 and thus C = C O - C 2 . Photon noise 
is thus reduced when C 2 > C 0. The present treatment 
taking into account coherence effects confirms that 
photon noise can be reduced by homodyning a 
squeezed field by a coherent one [14 -17] .  

4.2. Matching of  the two input fields 

We now discuss how the time and space dependence 
of  the A and B fields have to be matched in order to 
increase the factor C 2 (see (4.5)) which is responsible 
for photon noise reduction. We will consider first the 
simple case where the A field is a plane monochromatic 
wave with frequency coA" 

Consider the double time integration appearing in 
(4.5) and let us introduce the new variables 

0 = ( t + t ' ) / 2 ;  r = t - t ' .  (4.7) 

The factor 6~,(r , t )  6~,(r',t') varies as exp(2icoA0 ) 

. a - +  

and is independent of  r.  The correlation function F B 
varies as exp(--2icoB0), where co B is the mean frequen- 
cy of  the B field, and also depends on r. When coA ¢ coB, 
the integral over 0 therefore vanishes. If  we want to re- 
duce photon noise, we must take coB = coA" In other 
words, we must achieve a "time matching" of  the two 
input fields. The integral over/9 gives in this case a factor 
T (measurement time). Note that the integrand in (4.4) 
does not depend on 0 so that the C o term is propor- 
tional to T even if coA 4: coB" 

Consider now the space integration in (4.5). Since 
the A field is a plane wave, 6A(r,t) and 6-A(r',t') do 
not depend on the position o f r  and r '  on the photo- 
cathodes. Suppose then that Fi~ + only depends on a 
reduced space variable 19. The double space integration 
in (4.5) thus gives a factor S (detection area) on one 
hand and an integral over l) on the other hand. This 
corresponds to a "space matching" of the two fields. 

In such a case, expressions (4.4) and (4.5) can be 
simplified. Noting that 

N-- A = el  6AI2ST (4.8) 

(I 6 A [ 2 is constant for a plane wave), we can write 
(supposing S >> Oc, T ~  %): 

Q = C/NA = Qo - Q2 cos if, (4.9) 

with 

Qo = 2 ffdr d2p FB+(p, r),  (4.10) 

Q2 = 12 f f d r  d2p F ; + ( p , r ) l  (4.11) 

(p is the reduced space variable; it is equal to r - r '  in 
(4.10) but not necessarily in (4.11)). The expression 
(3.5) of  the photon noise becomes 

z2~¢2 =NA (1 + Q) +-NB" (4.12) 

This generalizes (1.6) but the correlation factor Q now 
appears as a space- t ime integral over the coherence 
volume % %  of  some correlation functions of  the B 
field. 

Suppose for example that the correlation functions 
of  the B field vary as e x p ( - I t  - t ' l / rc)  exp(-p2/2Oc). 
One thus gets 

a o  = 2(2rc) (27r°c) FB +(0,0), (4.13) 

Q2 = 2(2rc) (2rr°c)IFB +(0,0) 1. (4.14) 
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Coming back to the definit ion (4.1) of  the correlation 
functions (see also (2.3)),  one notes that Qo and Q1 
have the meaning of  a number of  photons in the coher- 

ence volume OcCr c. 
The case of  plane waves studied above is very crude. 

The A and B fields have generally a curvature which 
cannot be neglected. The principle of  space matching 
remains however valid. One must adjust the curvatures 
of  the two fields so that  the product  appearing in (4.5) 
does not depend on two variables but  only one. With 
such a space matching, the double space integral of  
(4.4) and (4.5) reduces to the product  of  the detect ion 
surface S by  a single space integral where the coherence 
area o c of  the B field appears. 

4.3. Generalization to a bichromatic  f ield 

Suppose now that the A field is a bichromatic  field 

with two frequencies coA + p and coA -- u. 
The factor ~ A (r, t) (2 A (r', t ' )  thus contains two 

types of  terms. The "squared" terms where the two ~A 
evolve at the same frequency will give non zero con- 

tr ibution when this frequency, coA + u or coA -- v, is 
equal to the mean frequency co B of  the B field (see the 
previous section for the discussion of  such terms). The 
"crossed" term varies versus 0 and r (see (4.7)) as 
exp(2icoA0) exp(-+im-). The time matching (non 
vanishing 0 integral) thus requires coA = coB" the two 
frequencies of  the A field have to be symmetric with 
respect to the mean frequency of  the B field. The new 
feature of  these crossed terms is the appearance of  

oscillating factors exp(+iur) in the integrals (4.10) and 
(4.11). In other words, we now take the Fourier trans- 
form of  the correlation function of  the B field at fre- 
quencies + u and - u  rather than at frequency 0 as in 
(4.10) and (4.11). This extra degree of  freedom (choice 
of  u) can be interesting for two reasons. First ,  it is well 
known that  other noise sources can be important  at 
very low frequency but  much reduced at higher fre- 
quency. Second, it allows to use for photon noise re- 
duction, squeezed fields such that the spectrum of  the 
correlation functions appearing in C 2 is important  at 
non zero frequency. 

5. Conclusion 

We have presented in this paper a quantitative eva- 
luation of  photon noise in an interferometric experi- 
ment.  In the interesting case where the two input fields 
in A and B are respectively a coherent field (A) and a 
squeezed field (B), photon noise can be reduced. We 
have expressed the corresponding reduction factor in 
terms of  space - t ime  integrals of  well defined correla- 

tion functions of  the B field and shown that the reduc- 
tion of  photon noise is quite sensitive to the coherence 
properties of  the B field. 
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