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Abstract

The purpose of these two lectures is to present a brief review
of theoretical works done at Ecole Normale Superieure in
collaboration with Jean Dalibard, Jacques Dupont-Roe and
Claude Fabre. The motivation of these works is to try to
understand the dynamics of an atomic system coupled to the
radiation field and to get some physical insight in radiative
processes in terms of fluctuations of the two interacting
systems. By radiative processes, we mean spontaneous emis-
sion of radiation by an excited atom and radiative corrections
such as the Lamb-shift or g — 2. We will focus here on
“spontaneous’ effects which are not induced by an incident
field. so that the two interacting systems are the atom and the
vacuum field.

The calculations presented in these lectures are based on
the quantum theory of radiation and are limited to order 1 in
the fine structure constant « = ¢’/4ne,he, and to the non
relativistic domain (electron velocity < ¢). Our motivation is
not to present a new method for calculating radiative processes
(the covariant Q.E.D. formalism is well established), but
rather to try to understand the physical mechanisms. We
would like also to establish some connections with the quan-
tum theory of damping and to discuss radiative processes in
terms of master equations, Heisenberg-Langevin equations
and linear response functions.

There are usually two extreme points of view for interpret-
ing radiative processes. The first one considers the interaction
of the electron with “vacuum fluctuations” as the basic
process which, for example, triggers the spontaneous emis-
sion of radiation by an excited atom or produces a vibration
of the atomic electron which is responsible for an averaging
of the Coulomb potential of the nucleus (Welton’s picture for
the Lamb-shift) [1]. One must not forget however that the
picture of the electron spin vibrating in vacuum fluctuations
leads to the wrong sign for g — 2 (see Section 5.2 below). The
second point of view tries to understand all radiative processes
in terms of interaction of the electron with its self field, which
gives rise to the well known “‘radiation reaction™ [2-5]. It
must be kept in mind however that the vacuum field and the
field commutation relations cannot be discarded [6]. This
raises the following question. Are these two pictures “two
sides of the same quantum mechanical coin”, as mentioned
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by Senitzky [7], or is it possible to identify their respective
contributions?

Actually, the same question can be asked for a small
system & (generalizing the atom) coupled to a large reservoir
# (generalizing the field). Is the evolution of % due to the
“reservoir fluctuations™ of # acting upon %, or should we
invoke a “self-reaction™, % perturbing # which reacts back
on .%? It turns out that such a generalization of the problem
is useful since it leads to theoretical expressions, with a more
transparent structure, which is not overlooked by simplifi-
cations specific to a particular choice of % and #. This is why
lecture I will deal with the dynamics of a small systems %
coupled to a large reservoir Z. The energy shifts and damping
rates of % will be calculated to order 2 in the coupling
constant and interpreted in terms of two important statistical
functions of the two interacting systems. which are the
symmetric correlation functions and the linear susceptibilities
[8]. These general results will then be applied in lecture II to
the particular case where # is the vacuum field and .% an
atomic electron [9].

LECTURE I — DYNAMICS OF A SMALL SYSTEM
COUPLED TO A LARGE RESERVOIR

1. Hamiltonian — Assumptions concerning the reservoir

The Hamiltonian of the total system can be written:

H = Hz+ He + V (1
where Hy (Hg) is the Hamiltonian of # (%), and:
V = —gRS )

is the coupling between both systems. In eq. (2). g is a coupling
constant, R and S are Hermitian reservoir and system oper-
ators. The following calculations could be easily generalized
for more complicated forms of V, such as —g X, R, S,.

We make two assumptions concerning #. (i) # is a re-
servoir, which means that the modification of the state of #
due to the coupling V is negligible. If g(7) is the density
operator of the total system, we have for the reduced density
operator of #:

op(f) = Trg o(f) = op(0) = op. (3)

In writing eq. (3). we have implicitly supposed that g, (0) is a
stationary state with respect to Hy,

[Hg, 0x(0)] = 0 “4)

which does not evolve under the effect of Hy. (ii) The fluctu-
ations of # are fast. More precisely, we suppose:

v1.fh < 1 (5)
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where v gives the order of magnitude of V and 1, is the
correlation time of the observable R of # appearing in eq. (2).
Condition (5) means that, during the correlation time of R,
the effect of the coupling between .% and # is negligible. Such
a condition reminds the one appearing in the theory of
brownian motion and expressing that, during a collision
time ., the velocity change of the heavy particle is very small.

A first consequence of these assumptions is the existence of
two time scales, the correlation time 7, and the relaxation time

T, such that:
Te < TR‘ (6)

We will see later on that the damping rate, 1/T, of .%, due
to the coupling with 2. is of the order of:

RS o O
T: g b

(7

Equation (6) is a consequence of egs. (5) and (7).

The existence of two time scales gives the possibility to
compute ‘‘coarse-grained” rates of variation for %, by
averaging the instantaneous rates over an interval [7, 1 + Ar1]
such that:

7. € At € Ty. (8)

Condition (8) allows two simplifications. First, since
Ar < Ty, a perturbative calculation of the evolution of &
between ¢ and ¢t + Ar is possible. Then. since At » 1., one
can neglect the correlations between % and # which exist at
the initial time r of the interval [z, + + Ar]. and which last for
a time 1, € Ar. These correlations are described by the
difference between the density operator ¢(t) of the total
# + & system and the tensor product of the reduced
operators of # and .¥:

Qcorrcl(") = Q("I) s [TrR Q{")] ® ETrS Q“)] (9)

A detailed discussion of the conditions of validity of this
second approximation is outside the scope of this paper.
Neglecting g, (t) transforms a reversible equation of
motion for o(r) into a master equation for Trg o(7), which, as
we will see later on, is irreversible. We have to suppose that
the initial state of the # + % system is such that the corre-
lations which appear between . and # are not “*pathological™
and can be neglected in the coarse grained rate of variation.
Such an assumption is implicit in most quantum theories of
damping. Sometimes, one explicitly supposes that the initial
state of the total # + & system, att = 1, is factorized. By
introducing in this way a privileged time ¢, 1n the past of 1, one
breaks the symmetry between the two arrows of time starting
from 1.

2. Master equation for the small system
2.1. Structure of the master equation [10]

In interaction representation with respect to Hy + H, (where
the operators are noted g(1), ¥ (1), . . . ), the coarse grained
rate of variation of g(1) is given by:

Ap(1) ot +An —o( 11 ¢

f+ At T s
R [ e j dr [P(1), [P(1"), a()])
(ih) Az ) , ‘ ). o(r)])

(10)

Physica Scripta T12

Equation (10) is exact. We now introduce two approxi-
mations:

(i) In the last term of eq. (10). we replace (") by a(r). This
means that we limit the calculation of Ag/Ar to order 2 in V
(such a perturbative calculation is valid since Ar < Ty ).

(11) In both terms of eq. (10), we neglect the initial corre-
lations between % and # at time 1, and we take:

o(1) =~ [Try ()] ® [Trg 0(1)] = ag(7)og (11)
where we have used eq. (3) and where:
as(r) = Trg o(1) (12)
is the reduced density operator of .%.

If, in addition we assume that:
Trrox¥ = 0 (13)

which expresses that the “mean field” of # “seen™ by &
vanishes (if this was not the case, it could be reincluded in
Hy), we get, by taking the trace of eq. (10) with respect to 4.

Ads 1o

1+ Ar

T G?FFE-L dr _|r dr Trg [V(0), [V(1"), 65(Dog]]

(14)
with:
P(ry = —gRuHS(r) (15)
and a similar equation for V(r").

The double commutator of eq. (14) is a product of
reservoir and system operators, in interaction represen-
tation, i.c., evolving freely, under the effect of Hy or H.
When the trace is taken over R, one sees that the reservoir
appears in eq. (10), only through two time averages such as
Try [ox R(1')R(1")] which depend only on r* — 1", because
of the stationary character of oy (see eq. (4)). and which
vanish if t' — ¢ » 7., by definition of the correlation time
.. This shows that the domain of integration of eq. (14), in
the 1, 1" plane. reduces to a narrow strip, along the diagonal
" =, with a width 7, and an area of the order of 7 Ar. The
right side of eq. (14) is consequently of the order of:
%ircm G ~ “"ﬁ_? . (16)

This shows that the master equation is a linear differential
equation coupling Ad(1)/At to a(1), with coefficients of the
order of the damping rate 1/Ty introduced above in eq. (7).
We will not give here the explicit expression of the coefficients
of the master equation and refer the reader to [10] for more
details. We prefer to focus here on the physical meaning of
the two time averages of # appearing in eq. (14).

2.2, Statistical functions of # and & appearing in the
master E(]H{.’”()H

The real and imaginary parts of the two time average
Trg [6g R(NR(t — 1)] have a clear physical meaning [8, 11].
The real part,

Ce(®) = 3 Trp {or[RNR(G — 1) + Rt — DR} (7

is a symmetric correlation function which describes the
dynamics of the fluctuations of R in the state oy,.
The imaginary part,
i = i
= Tre {ox[R@), R( = D10,

Xr(7) (18)



which we have multiplied by the Heaviside functions (1),
equal to 1 for r > O and to 0 for t < 0, is a linear suscepti-
bility which describes the linear response of (R) to a pertur-
bation, — A(1)R proportional to R, the initial state of #
being ay
CRWY = [ gt = N dr
Our procedure for extracting the physical content of the
master equation is to express every result in terms of Cy (1)
and y, (1) (or of their Fourier transforms Cr(w) and 7g()),
and also in terms of similar functions introduced for the
observable S of .% appearing in the expression (2) of V

1alSn)St — 1) + St — 1)S()la) (20a)

(19)

Ci(r) =

7 = ;%(al[g(f). St — )]la)b(x). (20b)

The averages in (20) are taken in an energy level |a) of Hs,
which is a stationary state of ..

2.3. Structure of the results concerning the energy shifis

of & [8]

A first category of terms appearing in the master equation
(14) correspond to a reversible evolution of an hamiltonian
type. They describe shifts of the energy levels |a) of &
produced by the coupling with . When expressed in terms
of Cy, yr. C§. ys, the energy shift 6E, appears as

OE, = — 5[ dt Cam(®
- @1
B %j-nf dr C;{T}ZR(T)-

The important point in (21) is that Cy is associated with ¢,
and C¢ with yg. This leads to very simple and clear physical
pictures. The first term of eq. (21) described processes in which
# fluctuates (in a way characterized by Cy), polarizes %
(which corresponds with its linear susceptibility x§), and
interacts with this induced polarization. This is the usual
picture one would expect for the effect of reservoir fluctu-
ations. The second term of eq. (21) is associated with a differ-
ent type of process. The small system in level |a) fluctuates
(in a way characterized by C¢), polarizes Z. i.e.. produces
a “field” (proportional to the linear response yi of #)
which reacts back on &. This second effect is a kind of **self
reaction’.

2.4. Structure of the results for the energy damping rates

of ¥ [8]

The non hamiltonian terms of the master equation (14)
describe an irreversible damping due-to the #-% coupling.
For example, {a| dHg/dt|a) is the rate of energy loss (or
gain) by % in level |a). We get for such a term a structure
similar to the one of eq. (21)

{a| dHg/dt]a) =
—g'n [ do Ce() io[iEHo) — 1)
+&7 [ do Ci(w) io[f(@) — t(w)] (22)

and, consequently, a similar physical interpretation.
It must be noted that we get in eq. (22) the dissipative parts
(7") of 7g and js, whereas it can be shown that the energy
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shifts 6 £, given in (21) only depend on the reactive parts (7).
This is in agreement with the reversible or irreversible nature
of the processes described by eqs. (21) and (22).

Finally, we can note that, if Z in thermal equilibrium. Cy
and jyg are proportional. This is the well known fluctuation
dissipation theorem [11]. It is clear however that the previous
considerations are still valid in more general situations where
# 1s in a stationary non thermal state.

2.5, Quasiclassical limit

When % is a quasiclassical system, with closely spaced.
locally equidistant energy levels, the set of populations of the
various energy levels of % can be approximated by an energy
distribution function #(E, r). We have shown in Ref. [8] that
A(E. 1) obeys a Fokker-Planck equation and that the drift
and diffusion terms are respectively associated with self reac-
tion and reservoir fluctuations. The drift term only depends
on 7, (and not on Cy) and describes the mean energy loss of
& per unit time due to self reaction. On the other hand, the
diffusion term, which only depends on Cg. describes a
random walk in the ladder of energy levels of % induced by
reservoir fluctuations. These general results can be applied to
the problem of the spontaneous emission of a large angular
momentum and give some physical insight in Dicke’s super-
radiance [12].

3. Heisenberg-Langevin equations for the observables of .%

In Section 2, we have used the Schrédinger picture and
studied the evolution of the density operator of &. We switch
now to the Heisenberg picture and consider the rate of vari-
ation of the observables G5 of &.

3.1. Principle of the calculation

We start from the Heisenberg equation for the observable R
of Z appearing in the expression (2) of V. The solution of this
equation can be written

R(1) = Ri(t) + Rs(1) (23)
where
R() = Ro(t) = eiHRn—rn]ﬁRUO) e~ HRU—t0)h (24)

is the “‘free reservoir field"” calculated to order 0 in V, and
where Rq(1) = R,,,..(7) represents the terms of order 1 and
higher in V in eq. (23), which describe the ““source field” due
to the coupling with %.

We then insert eq. (23) into the equation of motion of a
general observable Gg of %, more precisely in the term
describing the effect of the coupling V on dGg/dr:

(d(;s(r)) = — %[Gs(r). R(NS(1)] = gN(OR(

[ coupling 1 (25)
where

N@ = +[Gs(0), S0 (26)

is another observable of .%.

It is tempting now to consider that the contribution of
R.(1) in eq. (25) represents the effect of reservoir fluctuations,
whereas the one of Ry is associated with self reaction. But we
are immediately faced with a problem of order between com-
muting observables [7, 13-15].

Physica Scripta T12



22 Claude Cohen-Tannoudji

3.2. Indetermination in the order of commuting observables
The observables N(7) and R(r) appearing in eq. (25) commute
at any time since they are respectively associated with .% and
#. Equation (25) can therefore be written

dGg (1 . .
( ds’f( ]) = AN@ORG@) + (1 — HgRN(1) (27)
coupl
with 4 arbitrary. The rate (27) does not depend on /.
When we insert eq. (23) into eq. (27) we get
dG.
(d—:) = /ANOR(D) + (1 — AHgR(HN(1) (28a)
res. fluct.
dGs . ] .
<F) = JgN(DRs(1) + (1 — A)gRs(N(1). (28b)
sell react

The problem is that R;(¢) and Rs(7) do not commute separ-
ately with N(r) as their sum (23) does. It seems therefore that
the respective contributions of reservoir fluctuations and self
reaction depend on 4 and can be arbitrarily changed.

3.3. Physical argument removing this indetermination

This argument, introduced in references [8, 9]. is the follow-
ing. All orders are of course mathematically equivalent in eq.
(27), but there is only one order having a physical meaning.
We first note that, if G represents a physical quantity, it must
be hermitian, as well as its rate dGg/dr. Now, if the total rate
(dGg/dr) 1s split into two rates, egs. (28a) and (28b) represent-
ing two distinct physical processes, these two rates must be
separately hermitian if we want them to have a physical
meaning. This imposes 4 = 1 — A, 1e., 4 = 1/2, which
corresponds to be completely symmetrical order.

3.4. Structure of the results obtained with the completely
symmetrical order

We just give here the results of the calculations presented in
Ref. [8].

Starting from eq. (28), with 4 = 1/2, we integrate these
equations (in interaction representation) between ¢ and
t + At, and, as in the previous Section 2, we calculate to
order 2 in V coarse grained rates of variation for Gg(¢). The
equation obtained in this way for AG(r)/At has the structure
of'a Langevin equation, with a Langevin force and a **friction
force™ describing not only damping processes but also energy
shifts. The Langevin force has a zero reservoir average, is of
first order in ¥V, and comes from reservoir fluctuations. The
“friction force’ has a non zero reservoir average, is of second
order in ¥ and comes from both reservoir fluctuations and
self-reaction.

The important point is that, when one takes the reservoir
average of these rates

(AGs/Ag = Trg (g AGg/AY) (29)

one finds that the terms coming from reservoir fluctuations
(self reaction) have the structure of integrals of products of
Crxs (Csxr), as in egs. (21) and (22). This shows that the
symmetrical order, imposed by physical arguments, leads, in
the Heisenberg picture, to results in complete agreement with
those derived in the previous section from the Schrodinger
picture.

Finally, to conclude this lecture I, we can say that, by two
different methods, we have identified, in the equations of
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motion of .. two types of terms corresponding to two
different physical processes:

(i) # fluctuates and polarizes ..

(1) . fluctuates and polarizes Z.
We have obtained for the energy shifts and damping rates of
& simple and general expressions in terms of correlation
functions and linear susceptibilities of the two interacting
systems. We can apply now these general results to the
discussion of spontaneous emission and radiative corrections.

LECTURE II — APPLICATION TO SPONTANEOUS
EMISSION AND RADIATIVE CORRECTIONS

We consider now the particular case where % is an atomic
electron and # is the vacuum field. It is clear that the energy
shifts of . represent in this case radiative corrections (such
as the Lamb-shift or g — 2). whereas expressions such as
eq. (22) describe damping rates due to spontaneous emission.
We must note also that, because of the continuum nature of
the frequency spectrum of the field modes, the correlation
time 7. of vacuum fluctuations is very short so that condition
(5) 1s fulfilled.

Section 4 is devoted to a spinless electron coupled to the
vacuum field. Spin and magnetic effects will then be discussed
in Section 5.

4. Spinless electron coupled to the vacuum field

4.1. Nonrelativistic hamiltonian in Coulomb gauge and long
wavelength approximation

We consider an electron with charge g, mass m, position r,
momentum p. The hamiltonian of the electron-field system
can be written (in Coulomb gauge)

1 P
H = 5—1p — gAW] + V() + écou + Hr, (30)

=
where V(r) is a static potential, binding the electron near the
origin, A(r) is the vector potential of the quantized radiation
field, with the following usual mode expansion.

o h k-r + —ik-r
A(r) = ; ool [a,.e " + afee ™). (31N
Hy is the energy of the free radiation field
Hy = } hola;,a, + 1] (32)
ke

a, and a,, being the creation and annihilation operators for
a photon of wave vector k, polarization g, energy hw (L’ is the
quantization volume). Finally, &c,, is the energy of the
Coulomb field of the electron.

The long wavelength approximation consists in replacing
A(r) by A(0) in eq. (30) and is valid if the variations of the field
are negligible over the spatial extension of the electron wave
function (of the order of the Bohr radius a,). We will intro-
duce a cut off in the mode expansion of the fields at
ky = wy/c with

{Rydberg < hawy < mc
kyay, € 1

(33a)
(33b)

so that we can make the non relativistic and long wavelength



approximations (the effect of relativistic modes will be
discussed at the end of Section 5). Condition Rydberg < hw,,
means that we keep a frequency spectrum much wider than
the characteristic electron frequency. With the same cut off
for the longitudinal field, &, becomes finite and equal to

Bewa: = i:{: = om,c’

(34)

where dm, is a mass correction associated with the Coulomb
field.
Finally. the Hamiltonian (30) can be rewritten

L, A (0 :
H = H .+ mcd + ¢ }{n)—kh’“—q Yy %A,(O)
i (35)
where
o P'
H = + V() (36)
2m

is a pure electronic Hamiltonian. The third term of eq. (36) is
a pure field operator which will be interpreted later on (see
Section 4.3.3). The last term of eq. (35) is a coupling between
the electron and the field which can be written, as in eq. (2)

V. = —q) RS, (37)

with

{R;- = A4(0) (38a)
S, = p;/m (38b)

4.2. Correlation functions and linear susceptibilities for the

vacuum field and for the electron [9]

In order to apply the general results of Lecture I (Section 2),
we need the correlation functions and linear susceptibilities
for the operators A4;(0) and p,/m appearing in the electron
field coupling (37).

Replacing in eqs. (17) and (18). R(7) by A4,(0, 1) and
R(t — 1)by /'1;-(0, t — 1), using the expansions of 4,(0, f) and

,‘—{}(0, { — 1) in aq,, and a;, and the well known commutation
relations and matrix elements of a,, and a;,, we get
ho, +ay :
R el ) it
ClO) = es [l € doo (39a)
2200 | owd0) - 5 8() | 609 (39)
4 3ng | ™ 2

and the corresponding expressions for the Fourier transforms

e (NSRRI . SUUAC B S e SO 7 .
v 12n° g5
= 0 elsewhere
: oy oy
@ = 67:35}0 e |:wM =i m]. (40b)

We study now the # dependence of Cy and ys. This allows
a simple discussion of classical versus quantum effects as far
as the field is concerned. Radiation reaction effects are
proportional to Cgyg. It appears on egs. (39b) and (40b) that
¥r 15 independent of A and has the same value as in classical
field theory. Such a result is easy to understand. It comes
from the fact that the field is a set of harmonic oscillators, and
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it is well known that the linear susceptibility of an harmonic
oscillator is independent of h and independent of the state of
the oscillator. We expect therefore that all radiation reaction
effects, coming from Csyg., will have the same form in
quantum and classical radiation theories. On the other hand.
Cy is proportional to h, as it appears on eqs. (39a) and (40a).
This means that quantum theory of radiation is essential for
explaining the correlation function of vacuum fluctuations. It
follows that all vacuum fluctuation effects, coming from
Cg 75, have a quantum nature. It must be noted however that,
to second order in g, the contribution of the vacuum field to
these effects appears only through Cy. Once Cy is given by the
quantum theory of radiation, the effect of vacuum fluctu-
ations can be calculated semiclassically. It is the same as the
effect of a classical random field having the same correlation
function, i.e., a spectral power density equal to hw/2 per
mode.

For the sake of completeness, we give also the Fourier
transforms of the correlation functions and linear suscepti-
bilities, in the electronic energy level |a) (eigenstate of the
hamiltonian H, given in eq. (36)). of the electronic obser-
vables p,(1)/m and p,(t — 1)/m

A 1
Cg-;(w) = o] ; {(Pa‘)ab(ﬂg)mé(w — W)

+(pj)ah{pi)ba5(w + wab)} (41}
> 1 1
Zgy(w) e 2T[ﬁm2 z}.: {(P;)ub(ﬁ;)mga e wh
1
—(P)as(P)ra? m}
+ 3 AP — @)
= (P)a(P)sad(@ + @)}, (42)

where £, means of sum over a complete set of eigenstates of
H., hw, = E, — E,, and 2 means principal part. The first
two lines of eq. (42) give the reactive part of js, the last two
the dissipative one.

4.3. Energy shifts of electronic energy levels

4.3.1. Contribution of radiation reaction. From the expres-
sions of Cg and yg given above, we get for the second term of
eq. (21), which describes the contribution of radiation reac-
tion to 6E,

(5 Ea )I’ld. react. 4 5”1 —

el L |

| > (43)

where ém, ¢ is the Coulomb self energy given in eq. (34).
Combining eq. (43) with the unperturbed kinetic energy
(alp*/2m|a) gives
PZ

4 ém, p2
(l B 3_)< | om 192 2m + %om,)

It appears therefore that radiation reaction changes the mass
appearing in the kinetic energy from m to m + $dém,

{a| lay.  (44)

m—m+ $ém,. (45)

The mass corrections appearing in the kinetic energy term
(44), and in eq. (34), which can be interpreted as a correc-
tion to the rest mass energy, differ by a factor 4/3. This
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discrepancy is due to the non-covariant cut off (33) and also
exists in classical theory.

4.3.2. Contribution of vacuum fluctuations. From the
expressions of Cr and ys given above, we get for the first
term of eq. (21). which describes the contribution of vacuum
fluctuations to 0E,

—q Z
] .r: ( ah 10ﬁ
bnie,mc 4 ()l ahl

(5£:r)l'z|c. fluct. {46)

Introducing an average atomic frequency @ defined by

Y @ul(p)af* log log XY w,,l( pusl? (47)
r.lhl- w
and using
) 1
; W |(P)as | o (al[[H.. p). plla)
h )
== (alAV(r)lay (48)
we get
(5Ea )vac. fuct. = <G1(5 V(l") | a> {49?1}
where
h
V) = g Tog— M AV (49b)
12ngom-c w

is a correction to the potential energy V' (r) appearing in eq.
(36), proportional to AV(r), and associated with vacuum
fluctuations.

The physical interpretation of the energy correction (49),
which coincides with the standard non relativistic expression
for the Lamb-shift [16] is well known [1]. The electron, vibrat-
ing in vacuum fluctuations, averages the binding static poten-
tial ¥ (r) over a finite spherical volume, and this explains the
correction to ¥(r), proportional to AV (r). For a Coulomb
potential, ¥ (r) is proportional to 1/r, and AV (r) to é(r). It
follows that only s-states are shifted. Since the two states 2s,
and 2p,, in hydrogen have the same average kinetic energy,
the energy correction (43) due to radiation reaction cannot
remove the degeneracy between the two states, and we con-
clude that the Lamb shift is essentially due to the correction
(49) to the potential energy, i.e. to vacuum fluctuations.

4.3.3. Interpretation of the g°A°(0)/2m term. We interpret
now the third term of eq. (35), which is a pure field operator.
Taking the vacuum average value of this operator gives, to
order 2 in ¢

qz 2 qz""z:i
0l L 420)10) = HCs 50
Ol 5 4£O0 = 3 Lo (50)

where &, is the vacuum field in mode w. Physically, such an
energy represents the mean kinetic of vibration, &, of the
electron in vacuum fluctuations. It can be written

Epr = Omyc? (51)

and appears as a correction to the rest mass energy of the
electron, associated with vacuum fluctuations, in the same
Way as £cqy. in €q. (34), appears as a correction to the rest
mass energy due to self reaction, since it comes from the
Coulomb self field of the electron.

It may appear surprising that our calculation doesn’t give
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any correction to the kinetic energy associated with the mass
correction dm, due to vacuum fluctuations. One would expect
to find, as in Section 4.3.1. a term of the order of

ont,

=il !—Ia>

m

(52)

Actually, this comes from the fact that dm, is of a higher
order in 1/c than dm, . as it appears when we express eqgs. (34)
and (50) in terms of the fine structure constant x and of

4
hey, /me
o hy,

om .
— = = (53a)
m n omce

om

Y, o [ hwy \
m 2n \mc* ]’

(53b)

Pushing our non relativistic calculation to higher ordersin 1/¢
actually gives extra terms such as eq. (52) [17].

To conclude our discussion of energy shifts. we can say
that, to lowest order in 1/¢, radiation reaction changes the
kinetic energy by increasing the mass of the electron by
46m, /3, whereas vacuum fluctuations change the potential
energy by producing a vibration of the electron.

4.4. Rate of electronic energy loss

As in the previous section, we insert the values of Cy., Cs. 7z,
¥s. given in Section 4.2, in the two terms of eq. (22) which
represent respectively the contributions of vacuum fluctu-
ations and radiation reaction to the rate of variation of the
electron energy in level a.

4.4.1. Contribution of radiation reaction. The last term of
eq. (22) becomes here

CdH, i
(<0‘ al d" )rad.reacl T

I TR | Z Z 1( pa)th[uiu'
h i

6?tm £
(54)
Using
L (P)ww = — CallH,. pllad
m(pr abWap = mh a er Pi
1.
= —— (P = —i(Fa (5)
we can transform eq. (54) into
2 4 -
( ) = - I aPla.  (56)
rad. react 0

We find that the rate of energy loss is proportional to the
square of the acceleration of the radiating charge, which is a
purely classical result. We note also that, if radiation reaction
was alone, the ground state would be unstable since the
average value of #* does not vanish in the ground state.

4.4.2. Contribution of vacuum fluctuations. We find for the
first term of eq. (22)

(@

) g elae i
vac. fluet. 67[???280{‘3
x %Z [(P)as | a0 (57)

Distinguishing the terms w,, > 0 (E, > E,) and the terms



w, < 0(E, < E,). we can transform eq. (57) into

dH, 2 &
: ° 10, = =
(<0 a| dt | r:]Y>)\,ac.1'luc1. K 3 4}:30 ('j

x {;‘ Pl Bou = T (m.—{i-'),,u}‘ (58)

Ey < E,

We have mentioned above (in Section 4.2) that the effect
of vacuum fluctuations is equivalent to the one of a fluctuat-
ing field having a spectral power density hw/2 per mode. Such
a fluctuating field can induce transitions from level a to higher
levels b, which corresponds to an energy gain for the atom
(first term of the bracket of eq. (58)), as well as transitions
from level a to lower levels b, which corresponds to an energy
loss for the atoms (second term of the bracket of eq. (58)).

If we write (ali’|a) in eq. (56) as {a|i"|a)d = Z,(¥, * (),
and if we add egs. (56) and (58), we find of course that
spontaneous transitions can occur only from level « to lower
levels, under the combined effect of vacuum fluctuations and
radiation reaction (the first term of eq. (58) is cancelled by a
similar term of eq. (56) and the second term of eq. (58) is
doubled).

4.4.3. Application to a 2-level atom. When applied to a
2-level atom (ground state g and excited state ¢), the previous
results take a very simple form.

First, we find that vacuum fluctuations stabilize the
ground state, as already mentioned by Fain [18]. since the
energy gain due to vacuum fluctuations exactly compensates
the energy loss due to radiation reaction.

Then, we find that vacuum fluctuations and radiation
reaction contribute equally to the spontaneous emission rate
from the upper level e. The two rates are equal. This explains
the factor 2 missing in elementary calculations of the spon-
taneous emission rate from e and considering only one
physical process, emission by an accelerated charge or tran-
sition induced by a fluctuating field with a spectral density
equal to hw/2 per mode.

5. Spin and magnetic effects

In this last section, we try to understand the electron spin
anomaly, g — 2, and in particular its positive sign. So, we
introduce the spin degrees of freedom and the magnetic
couplings.

5.1. New terms in the Hamiltonian

To keep the calculations as simple as possible we consider a
single electron in a uniform magnetic field B, parallel to the
0z axis.

The electronic hamiltonian H, (which replaces eq. (36)) is
now

H o= >-1g.p, (59)
2m  m

where

7 = p - gdo(r) (60)

A, being the static vector potential associated with By. The
first term of eq. (60) is the kinetic energy of the electron, since
n,/m is the electron velocity. The second term of eq. (59) is
the coupling of the spin magnetic moment of the electron,
2(g/2m)S, where § is the spin operator, with the magnetic
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field B, (in absence of radiative corrections, the g factor of the
electron is equal to 2).

The interaction of the electron with the quantized radi-
ation field is now

V= —dn-aw-Ls B+ L 4.

(61)
m m

In the long wavelength approximation, the first and last terms
of eq. (60) are the same as for the spinless electron (see
eq. (35)). except that p is replaced by n,, given in eq. (60). The
second term of eq. (61) is new and represents the coupling of
the spin with the quantized radiation field B.

5.2. Failure of Welton's picture applied to the spin
magnetic moment

It has been known for a long time [1, 19] that the picture of
an electron spin oscillating in vacuum fluctuations leads to
the wrong sign for g — 2. The fact that such a picture leads
to a decrease of g, and, consequently, to a negative sign for
g — 2, is easy to understand. The angular oscillation of the
spin driven by the vacuum fluctuations of B produces an
angular spreading of the spin, and, consequently, a decrease
of the effective coupling of the spin with the static field B,.

What is missing in the previous description is the coupling
of the electron velocity with the vector potential of the
quantized radiation field. More precisely, we must consider
the whole dynamics of the electron coupled to the vacuum
field and study how the energy levels of the electron in the
static field B, are shifted by radiation reaction and vacuum
fluctuations [17].

5.3. Corrections to cyclotron and Larmor frequencies.

Why is g — 2 positive

Before considering the energy shifts produced by radiation
reaction and vacuum fluctuations, we have first to give the
unperturbed eigenvalues of H,, which can be written

(n + Hhow, + mghow, . (62)

In the first term of eq. (62), nis an integer (n = 0,1.2....)

and w, is the cyclotron frequency of the charge given by

DU | (63)
m

The corresponding energy levels are the well known Landau

levels of a charged particle in a uniform static field (we have

supposed here that the electron velocity along the direction 0z

of B, is zero). In the second term of (62),mg = + 1/20r —1/2

labels the eigenvalue mgh of S. and w is the Larmor frequency

of the spin which can be written
q

=g 8

64
m (64)

.
with g = 2.

When we introduce the coupling (61) with the quantized
radiation field, the energy levels given in eq. (62) are shifted.
and the cyclotron and Larmor frequencies are changed to @,
and @,

W, = O, W = @, (65)

The g factor of the electron in the presence of radiative
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corrections is defined by

E_ & (66)
2 W,

To understand eq. (66), we note that. if /i is the renormalized
mass appearing in the perturbed cyclotron frequency
; 5,

W, = —q

(67)

m’
then, the Larmor frequency @, is expressed by eq. (66) as

= . 4
Wy = _gﬂB(n

(68)
i.e.. in terms of g and of the renormalized Bohr magneton.
Furthermore, we must emphasize that the more precise deter-
minations of ¢ are given by a ratio of two measured fre-
quencies. as in eq. (66) [20].

In absence of radiative corrections, w, = w,and g = 2.
To understand why ¢ — 2 is positive, we have to understand
why @, is larger than @, in eq. (66). We give now the con-
clusions of a non relativistic calculation of @, and @, [9, 17].

Consider first the contributions of radiation reaction. We
find that, to lowest order in 1/¢, radiation reaction slows down
., but not w, . The interpretation of this result is that, in the
non relativistic domain, a charge is more coupled to its self
field than a magnetic moment. The cyclotron precession of
the charge is more perturbed than the Larmor precession of
the spin.

The contribution of vacuum fluctuations appears only to
the next order in 1/c and describes relativistic and magnetic
effects (including the angular oscillation of the spin driven by
vacuum fluctuations) which, as a whole, reduce both w, and
, (at this order in 1/¢, new terms such as spin orbit couplings
must be added to H, and V, see [17]).

The conclusion of this calculation is that, in the non
relativistic domain, the main effect (to lowest order in 1/c) is
a slowing down of &, by radiation reaction, and this explains
why § = 2@, /&, becomes larger than 2. Similar conclusions
have been obtained by Grotch and Kazes [21].

5.4. QOutline of a completely relativistic calculation

Because of the cut off introduced at w,, (see eq. (33)), the
previous calculation considers only the coupling of the
electron with non relativistic modes of the radiation field.

4f3
T (x)
1
12—
T (x)
| | L £
0 1 2 3 4

Fig. 1. Graphs of the functions n(x) and {(x).
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We have tried to evaluate the contribution of relativistic
modes. for which hwy, can be of the order or larger than mc’.
Starting from the full relativistic Hamiltonian, for coupled
quantized Dirac and Maxwell fields, we have derived an
effective Hamiltonian giving the energy levels of a non
relativistic electron (i.e. in a frame where this electron is
moving slowly), and including the contribution of virtual
emissions and reabsorptions of photons of any frequency w.
(In the virtual intermediate state, the electron can be rela-
tivistic and electron-positron pairs can be created). We just
give here the main results of such a calculation which is
presented in Ref. [22].

To order | in «, we find that the effective Hamiltonian H,,
has the following form

" U dx] (69)
where x = hw/mc’ is related to the frequency w of the photon
which is virtually emitted and reabsorbed, x), is cut off, which
is much stronger than 1 (so that the effect of relativistic modes
is taken into account), m, is the same as in eq. (60).

The two functions 5(x) and {(x), which describe how the
various modes of the radiation field contribute to the modifi-
cation of the cyclotron frequency (first term of eq. (69)),
and of the Larmor frequency (second term of eq. (69)), are
given by

iy I x 4
’I(-‘) e xl: o (l + x2)l,'2 + 31,(] Y X:‘_)l,-'l
x 2x
T30+ )T+ xz)-‘ﬂ] (766)
- - 5 x 2 X
e [5 (] RO xz)'-'ﬁ) T3a+ xﬁ)“] 1)

and are represented on Fig. 1. For x < 1 (non-relativistic
domain), the main correction comes from #(x) and produces
a decrease of the cyclotron frequency (because of the minus
sign in the first term of eq. (69)). This confirms the previous
calculation discussed in Section 5.3. For x » 1, n(x) and {(x)
are both equivalent to 3/2x, leading to the same logarithmic
divergence for the coefficients of n}/2m and — (g/m)S - B,.

To see how this divergence can be reabsorbed in the mass
normalization, we come back now to the definition (66) of
2. Since the correction factors for @, and @, are the two
brackets of eq. (69), we get

o 1= [ ax
- & : ()
g 1 - %J;M n(x) dx

b | O
g
=

The two integrals of eq. (71) are of the order of log x,,. Since
e’ > 1, we can choose 1 <€ x, < €™, i.e. take a very high
cut off and simultaneously have the two terms in a very small
compared to I, so that eq. (71) can be written

(72)

[T LT

= 1+ 2 [N - () dx.

The function n(x) — {(x) is represented in Fig. 2 and the
integral of eq. (72), which is no longer divergent, is equal to
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M (x)-T (x)
1L
/2
0 a2 ] | X
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Fig. 2. Graph of the function n(x) — {(x).

1/2.if x,, is large enough. We get therefore the correct result
(to order 1 in ) for the spin anomaly

2| O
52

(73)

The curve of Fig. 2 shows how the various modes of the field
contribute to § — 2. It clearly appears on this curve that the
main contribution comes from x < 1 and that it is not
necessary to invoke ultra high relativistic modes for explain-
ing the sign of g — 2 (actually the contribution of the domain
x > 1 to the integral is negative!). The physical interpre-
tation derived from the non relativistic calculation is
therefore confirmed.

To conclude this Lecture II, we can summarize the main
results which have been obtained:

(i) It is possible to make a clear separation between the
effects of radiation reaction and those of vacuum fluctuations
(to order 1 in a).

(i) Radiation reaction effects are exactly the same in
classical and quantum theories of radiation. Vacuum fluctu-
ation effects appear as induced by a fluctuating field having
a spectral power density equal to hw/2 per mode.

(iii) Radiative corrections can be interpreted in terms of
simple physical pictures: vibration of the charge and spin in
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vacuum fluctuations, electromagnetic inertia slowing down
the motion of the charge.

(iv) The Lamb shift is mainly due to vacuum fluctuations.
The spin anomaly g — 2 is mainly due to radiation reaction.

References

1. Welton, T. A, Phys. Rev. 74, 1157 (1948).

2. Series. G. W.. in Optical Pumping and Atomic Line Shapes (Edited by
T. Skalinski), p. 25. Panstwowe Wdawnictwo Naukowe, Warszawa
(1969).

3. Bullough, R. K., in Coherence and Quantum Optics (Edited by
L. Mandel and E. Wolf), p. 121. Plenum Press, New York (1973).

4. Ackerhalt, J. R., Knight, P. L. and Eberly, J. H., Phys. Rev. Lett. 30,
456 (1973).

5. Ackerhalt. J. R. and Eberly, J. H., Phys. Rev. D10, 3350 (1974).

6. Kimble, H. J. and Mandel, L., Phys. Rev. Lett. 34, 1485 (1975); Phys.
Rev. A13, 2123 (1976).

7. Senitzky. 1. R., Phys. Rev. Lett. 31, 955 (1973).

8. Dalibard, J., Dupont-Roc, J. and Cohen-Tannoudji, C., J. Physique
45, 637 (1984).

9. Dalibard, J., Dupont-Roc, J. and Cohen-Tannoudji, C., J. Physique
43, 1617 (1982).

10.  Cohen-Tannoudji, C., in Fontiers in Laser Spectroscopy, Volume 1,
Les Houches 1975, Session XXVII (Edited by R. Balian, S. Haroche
and S. Liberman), p. 3. North Holland, Amsterdam (1977) (and
references therein).

11.  Martin, P., in Many Body Physics, Les Houches 1967 (Edited by C. de
Witt and R. Balian), p. 39. Gordon and Breach, New York (1968).

12.  Gross, M. and Haroche, S., Phys. Rep. 93, 301 (1982) (and references
therein).

13. Milonni, P. W., Ackerhalt, J. R. and Smith, W. A.. Phys. Rev. Lett.
31, 958 (1973).

14. Milonni, P. W. and Smith, W. A, Phys. Rev. Al1, 814 (1975).

15. Milonni, P. W., Phys. Rep. 25, 1 (1976).

16. Bethe, H. A. and Salpeter, E. E., Quantum Mechanics of One and
Two-Electron Atoms. Plenum Press, New York (1977).

17. Dupont-Doc, J., Fabre, C. and Cohen-Tannoudji, C., J. Phys. B11.
563 (1978).

18. Fain, V. M., Sov. Phys. J.E-T.P. 23, 882 (1966); Fain, V. M. and
Khanin, Y. L., Quantum Electronics, M.I.T. Press. Cambridge (1969);
Fain, B., Il Nuovo Cimento 68B, 73 (1982).

19. Avan, P, Cohen-Tannoudji, C., Dupont-Roc, J. and Fabre, C., J.
Physique 37, 993 (1976).

20. Dehmelt, H. G., in Atomic Physics 7 (Edited by D. Kleppner and
F. Pipkin). p. 337. Plenum Press, New York (1981).

21. Grotch, H. and Kazes, E., Phys. Rev. Lett. 35, 124 (1975); Phys. Rev.
D13, 2851 (1976); erratum D15, 1184; Am. J. Phys. 45, 618 (1977).

22. Dupont-Roc, J. and Cohen-Tannoudji, C., in New Trends in Atomic
Physics, Les Houches, Session XXXVIII 1982 (Edited by G. Grynberg
and R. Stora), p. 156. Elsevier Science Publishers B.V. (1984).

Physica Scripta T12



