To appear in Proceedings of TENICOLS'91
(Edited by M. DUCLOY, E. GIACOBINO, G. CAMY, World Scientific)

REVIEW ON FUNDAMENTAL PROCESSES
IN LASER COOLING

CLAUDE COHEN-TANNOUDJI,
FRANCOIS BARDOU and ALAIN ASPECT
Collége de France et Laboratoire de Spectroscopie
Hertzienne de I’Ecole Normale Supérieure(*)
24 rue Lhomond, F 75231 PARIS Cedex 05

ABSTRACT

Laser cooling is based on photon scattering. New physical insights can be obtained
on photon scattering by considering it as a quantum measurement process or by as-
sociating a series of quantum jumps with a sequence of scattering processes.

1. Introduction

Laser cooling and trapping is an expanding field of research where spectacular
developments have occurred during the last few years'. Very low kinetic temper-
atures, in the microkelvin range, have been obtained®, opening the way to the
realization of new schemes, such as atomic fountains, which seem quite promising
for the improvement of atomic clocks®. Another important feature of such ultra-
cold atoms is their long de Broglie wavelength which makes the wave aspects of
atomic motion easier to detect. Several papers of these proceedings are devoted
to the new subject of atomic interferometry.

All these developments provide a great stimulation for a deeper understanding
of the quantum features of atomic motion in laser light. New types of questions
may be asked leading to new physical insights in photon-atom interactions. In
this paper, we present and discuss a few examples of such problems which exhibit
the connection existing between photon scattering and a quantum measurement
process.

We first consider in Section 2 a single photon scattering process and we show
how it can be considered as a quantum measurement of the atom’s position in the
von Neumann’s sense. Such an analogy clearly explains why photon scattering
destroys spatial coherences and why therefore it should be avoided in atomic in-
terferometers. The theoretical analysis of Section 2 is then applied in Section 3 to
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the discussion of a question which has been asked about the detection of spatial
coherences. If an atom has been prepared in a coherent superposition of two non
overlapping wave packets, is it possible to detect this spatial coherence by inter-
ference fringes on the scattering cross section of an incoming photon ? Finally, we
consider in Section 4 a sequence of scattering processes and we give a description
of the atomic evolution in terms of a series of coherent evolutions separated by
quantum jumps occurring at random times.

2. Photon Scattering and Spatial Coherences
2.1 Spatial Coherence Length

Consider an atom in a translational state described by a density operator o.
Spatial coherence for such an atom is related to the off-diagonal elements of o,
(r'|o|r'"), in the position representation. More precisely, one can introduce the
global spatial coherence at a distance p, defined by

F(p) = [ &r (riolr + ) (1)

and which 1s the sum of all spatial coherences between two points separated by
a fixed distance p. Changing from the position representation to the momentum
representation, one can easily derive the following relation
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which shows that F(p) is the Fourier transform of the momentum distribution
(ple|p). The normalization of ¢ results in F(0) = 1.

The spatial coherence length £ is the typical length characterizing the decrease
of F(p) with |p|. From Eq. 2, it clearly appears that the narrower the momen-
tum distribution, i.e. the colder the atom, the broader is F(p), i.e. the larger is
€. For example, for a particle of mass M, in thermal equilibrium at temperature
T, ¢ is, within a numerical factor, the well known thermal de Broglie wavelength
AT = (2ﬂrh2 /M k:,'_a,'T)l'l2 . Laser cooling is thus interesting for achieving large spa-
tial coherence lengths. An important question concerns then the limits which can
be reached by such methods. If the cooled atoms don’t stop absorbing and reemit-
ting photons, it seems impossible to avoid the random recoil due to spontaneous
emission, so that the momentum distribution has a width Ap larger than the
photon momentum %k. It then follows from Eq. 2 that F(p) has a width smaller
than 1/k. The fundamental limit for the spatial coherence lengths which can be
achieved by usual laser cooling methods seems therefore to be the laser wavelength
A = 27 /k*). We try now to give a new physical insight in this problem in terms
of quantum measurement theory.

(x) Such a limitation can be removed in certain cases, for example if the photon absorption proba-
bility varies rapidly with the atomic momentum p around p = O (see Section 4).




2.2 Main features of a quantum measurement process

We first briefly recall the main features of a quantum measurement process in
the von Neumann’s sense*. Let S be the measured system and A the observable
of & which is measured by the measuring apparatus M. If S is initially in an
eigenstate |a) of A, and if M is initially in the state |X},), the S-M interaction
is supposed to lead the total S+M system in the state |a) ® |&,)

la) ® |Xin) — a) ® |Xa) (3)

In other words, § remains in the eigenstate |a) of A whereas M ends in a state
|X2) which is correlated with |a). This correlation is perfect if, for any pair |a),
la') of orthogonal eigenstates of A, the two corresponding states of S, |X,) and
|Xar) , are themselves orthogonal

(d'la) = 0 = (Xar| Xa) = 0 (4)

The measurement is then ideal in so far as observing the final state of M deter-
mines unambiguously the initial state of S.

From the linearity of Schrodinger equation, it then follows that, if S is ini-
tially in a linear superposition of the states |a), S+M ends in the same linear
superposition of the states |a) ® |X,)

(2 caia>) ® [Xin) — D cala) ® |Xa) (5)

a

Suppose now that, after the measurement process, § and M no longer interact.
It is then well known that all predictions concerning & alone can be deduced from
the reduced density operator of S obtained by tracing [¢fin) (¢fin| over M, where
|fin) is the final state of S+M appearing on the right hand side of Eq. 5

ofin = Traq lin) (il = D Y cacl (Xar| Xa) la){a'| (6)

If one compares Eq. 6 with the initial density operator of S, ¢, =
Y e 2oar CaCiila)(a'| one concludes that the diagonal elements of ¢ remain un-
changed during the measurement process since

(alonla) = leal” (Xa| Xa) = |eal” = (a |oin] a) (7)
whereas the off diagonal elements

(alosn|a’) = cacyr (Xar| Xa) = (aloin| a') (Xar| Xa) (8)



become multiplied by (X,/| X,) which vanishes if the measurement is perfect. In
other words, in the basis of eigenstates of the measured observable 4, the mea-
surement process appears as a pure 1, relaxation process.

2.3 Photon Scattering as a Quantum Measurement Process

We come back to photon scattering. Such a process is entirely characterized
by the scattering S-matrix which gives the amplitudes of the elementary processes

IK) ® |ki) — [K +k; — ky) ® |ky) 9)

where an atom with momentum AK scatters a photon whose momentum changes
from hk; to hky. Conservation of the total momentum explicitly appears in Eq. 9
since the atom momentum changes from RK to i (K + k; — kf). We will denote
S (ki, ks; K) the amplitude of such a process. The K dependence of this ampli-
tude is due for example to the Doppler effect which is proportionnal to the atomic
velocity hRK /M, where M is the atom’s mass.

The most general initial state |¢) for the atom can be written

o) = [ @r inele) = [ & o)
_ / PK |KY(K|p) = / PK F(K)|K) (10)

where ¢(r) = (r|p) and ¢(K) = (K|p) are the wave functions associated with
|¢) in the position representation and the momentum representation respectively.
From the linearity of the Schrédinger equation, one deduces that, if the initial
state of the “atom + photon” system is

[Bia) = Ii) ® [ki)
= [@r et elk) = [ K sE)K) @ ki (11)

the final state is
a) = / ky f PK S (ki kpK)3(K) K +k — k) @k (12)

We introduce now an approximation which consists in neglecting the K depen-
dence of S(*). In several cases, this is a very good approximation (see however the

(*) S could eventually depend on the average value of K. What we neglect here is the variation of
S with K over the width AK of @¢(K).



section 4 of this paper, for an example of situation where the K — dependence of
S plays an essential role)

kaf,kf;K)’;’S(k,',kf) (13)
Introducing Eq. 13 in Eq. 12 and using
K +k; — ky) = e"*s ) R|K) (14)

where R 1s the position operator of the atom, we can transform Eq. 12 into
an) = [ @y S (ki kg) SR ) @ k) (15)

We replaced [ d®K @(K)|K) by |¢). Using Eq. 10 to replace |p) by [ d®r ¢(r)|r),
and the fact that |r) is an eigenstate of R with eigenvalue r, we finally get

) = [ &1 o)) @ 1) (16)

where

) = [ @y SR 5 k) ) an

is a photon state which depends on r. Comparing Eq. 11 and Eq. 16, we can
describe the scattering process by the transformation

i) = ([ & o) 1) — o) = [ Er el 9

which is quite similar to Eq. 5.

As in a von Neumann’s measurement process, each position state of the atom
becomes correlated with a photon state |X,) which depends on r. The probability
for the atom to be in r, after the scattering process, is equal to |o(r)[? ( Xe| X:) ,
and remains unchanged since (Xx| X;) = 1 as a consequence of the unitarity of the
S-matrix. More precisely, one deduces from Eq. 17 that

Xer | Xprr) = d3k S kfak 2e£(ki_k!)‘(rf—r”) 19)
f f

Since the variations of |S (k;, k f)|2 with ks are restricted to an interval on the
order of 2hk, it follows from Eq. 19 that (X | X ) is a function of r' —r", which is
equal to 1 for r' = r" and which tends to 0 if [r' —r"| > A. The fact that |X,/) and
| Xer) become orthogonal only if [r' —r”| > A means that the measurement of the
atom’s position by photon scattering is not perfect, but has a finite resolution, on
the order of the photon wavelength A. This is in agreement with the well known



result of wave optics according to which two points cannot be resolved optically if
their distance is smaller than A.

The calculation which leads from Eq. 5 to Eq. 8 can be repeated for Eq. 18
and gives

(r' loan| ") = (") (r") (X | Xenr) = (r |ogin| ") (X | Xer) (20)

This shows that, after a scattering process, the spatial coherence length is neces-
sarily smaller than A, whatever the initial state may be. We find again the result
derived above in Subsection 2.1, but here in the context of quantum measurement
theory.

So far, we have considered only a single scattering process. One can show
that, if the atom undergoes a sequence of independent scattering processes, its
spatial coherences (r'|o|r") are damped, even if |r' — r"| is smaller than A, with
a rate proportional to |r' — r"|?. This explains why macroscopic systems, with
large scattering cross-sections, are rapidly localized by their interaction with the
environment and how classical properties emerge as a result of this coupling®.

To sum up, photon scattering may be considered as a measurement process
of the atom’s position. This measurement has a finite resolution given by A and
destroys spatial coherences beyond a range which is also given by A. These results
provide also some physical insight in the quantum state of an atom in an optical
molasses. Because of the quantum correlations which appear as a result of photon-
atom interactions, the state of the atom cannot be described by a wave packet, but
rather by a statistical mixture of wave packets. Since the spatial coherence length
is necessarily smaller than )\, as a consequence of scattering processes, each of the
wave packets forming the statistical mixture has a width which is smaller than A,
but the centers of these wave packets are distributed over a range Ar which may
be much larger than A. In other words, a clear distinction must be made between
the width Ar of the position distribution (r|o|r), which can increase indefinitely
by spatial diffusion (if the atom is not trapped), and the spatial coherence length ¢
which is reduced to very low values by photon scattering.

3. Are Photon Scattering Cross-sections Sensitive to Atomic Spatial
Coherences ?

Consider a single atom whose wave function ¢(r) is a linear superposition of
two wave packets @q(r) and ¢p(r), centered on two points r, and ry, the width of
each of these wave packets being small compared to |r, — rp]|.

o(r) = catalr) + csou(r) (21)
Suppose that a photon with momentum #k;, is impinging on this atom and that

one looks at the scattered photon along a direction ky/ks different from k;/k;.
Intuitively, one is tempted to consider that the incident light wave is scattered
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simultaneously by the two wave packets ¢, and ¢}, so that one expects to have
interference effects between the two outgoing waves emerging from r, and ry. Is
such a picture correct ? Does the differential scattering cross-section exhibit in-
terference fringes depending on r, — r; when k;/ky is varied 7 *)

The calculations of the previous section allow one to give a clear answer to
this question, since we know the final state of the “photon+atom” system after the
scattering process. The probability to find the photon in the state |ky) is equal to
the norm of the vector multiplying |k;) in Eq. 15, i.e. to**)

1S (ki k)P

e—s(k,-—k;)-nef(k.»—k;)-n| <p> = |5 (ki, kg)* (22)

This is independent of the double peak structure of ¢(r), which shows that there
are no corresponding interference fringes in the scattering cross-section.

Such a result, which remains valid even if the approximation corresponding
to Eq. 13 is not made, has actually a simple physical meaning. There are indeed
two scattering paths for the incoming photon, one through |¢,) and one through
|¢s) . But the final states of the atom corresponding to these two paths are not
the same : the scattering through |¢,) leaves the atom localized near r,, whereas
the scattering through |¢;) leaves the atom localized near ry. It follows that the
two scattering paths cannot interfere because they correspond to orthogonal final
atomic states.

This would be no longer true if, instead of a single atom, we had two atoms,
one in the state |p,) , the other in the state |p;) . Now, the two paths could inter-
fere, provided however that the momentum transfer (ks — k;) occurring after a
scattering through |¢;) (i = a or b) does not transform |¢;) into a state orthogonal
to |p;) . For such a condition to be fulfilled, the momentum spread in |¢;) must
be large compared to hk, which means that the spatial extent of the wave packet
i(r) must be small compared to .

4. Photon Scattering and Quantum Jumps
4.1 Coming Back to the Approximation Made on the S-Matrix

In the calculations of the previous two sections, we have neglected the
K — dependence of the amplitude S (k;,ky; K) associated with the process (see
Eq. 13). To interpret Doppler cooling, it is necessary to introduce the first order
corrections in K, which describe how the scattering cross-section depends on the
atomic velocity through first-order Doppler effect. It is then possible to describe

(*) We are grateful to W.D. Phillips and G.P. Lafyatis for bringing this problem to our attention.

() Note that we don’t specify here the final state of the atom. We measure only the final state of
the photon, so that the cross-section calculated here is the total one (elastic plus inelastic).



the competition between the broadening of the momentum distribution due to the
terms of S independent of K and the narrowing due to the first order corrections.
Note however that, since scattering processes never stop, the coherence length £
remains always smaller than A.

It may happen that the amplitude S (ki,ky; K) vanishes for certain values
Ko of K. For example, one can have two distinct absorption amplitudes whose
interference is perfectly destructive for K = K. This is the case for velocity selec-
tive coherent population trapping® (V.S.C.P.T.). Since scattering processes stop
for K = Ky, one can show that, as a result of optical pumping and filtering in
momentum space, it is now possible to get coherent lengths larger than A. Because
of the rapid variations of § around K = Ky, the calculations of Section 3 are no
longer valid for analyzing such a process. We present now a new approach to
photon scattering in terms of quantum jumps which can be applied to V.S.C.P.T.,
and which provides a new insight in the time evolution of the system.

4.2 A New Method for Describing a Sequence of Scattering Processes

We introduce the principe of this method on the simple case of one dimen-
ssomal V.5.C.P.T. (Fig. 1)
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Fig. 1 Laser configuration and atomic level scheme used in one dimensional V.S.C.P.T.

Two o and o~ laser beams, propagating along the positive and negative direc-
tions of the Oz axis, drive respectively the g_;,p — hk «— eg,p and the g4,
p + hk «—— eg, p transitions between the three atomic levels eg, g—1, g+1 with an-
gular momenta along Oz equal to 0, —h, +h, respectively (eg,p represents a state
where the atom is in the excited sublevel ey, with momentum p along Oz). Note
the selection rules resulting from the conservation of the total linear and angu-
lar momenta along Oz. The Clebsch-Gordan coefficients of the two ¢ and o~
transitions are equal to +1/v/2 and —1//2, respectively.

As long as spontaneous emission is not taken into account, we have a co-
herent evolution between the three states of Fig. 1, which can be described in
terms of Rabi precessions and stimulated Raman processes. Spontaneous emis-
sion introduces a random character in the atomic evolution. At random times,



the atom “jumps” into the lower states, while a fluorescence photon appears in
one of the initially empty modes of the quantized radiation field. Each individual
scattering process can thus be associated with a quantum jump of the atom. To
study the statistics of this sequence of quantum jumps, it is very convenient to
consider the “delay function”, introduced for analyzing intermittent fluorescence’.
We summarize now the main steps of such an approach, as it can be applied to

Yool

(i) When an atom in eg, with a well defined momentum p’ along Oz, spontaneously
emits a photon in a given direction with polar angles § and ®, and with a given
polarization €, it jumps into a well defined linear superposition of g—; and g4+;. In
a 1D problem, we are not interested in the azimuthal angle ® and in the polariza-
tion €. Averaging over ® and ¢ leads, for the state of the atom just after the jump,
to a statistical mixture with equal weights 1/2 of g_; and g4, the momentum of
the atom along Oz being p’ — hkcosf. So we can decide randomly the value of
(according to the emission diagram) and the sublevel g_; or g4; into which the
atom jumps after a spontaneous emission.

(ii) Suppose that the previous random choice has given an atom jumping at time
7 =0 into g_1,p' — hkcosf and let us put p' — hkcosf = p — hk. After such a jump
the wave function of the total system evolves according to

[¥(7)) = [co(7) leo, P} + €1(7) |91, p + Bk) + c—1(7) lg—1, P — Pik)]
® |0 — fluorescence photon)

+ States with 1,2... fluorescence photons (23)

(iii) The probability to have the next spontaneous emission occurring between
and 7 + dr is then given by

W(r)dr = T |co(7)|” dt (24)

where I' is the spontaneous emission rate (natural width of ey). According to
Eq. 24 and Eq. 23, W(7) is the departure rate from the 0 — fluorescence photon
manifold. W(7) can also be considered as the distribution of the time intervals
T = tp41 — tn, between two successive spontaneous jumps, the nt® one occurring
at t = t, and the next one occurring at ¢ = t,4;.

(iv) The three functions ¢o(T), c1(7),c—1(7) appearing in the first two lines of
Eq. 23 and describing the evolution within the 0-fluorescence photon manifold can
be obtained by solving a Schrodinger equation governed by an effective non Her-
mitian hamiltonian Heg, obtained by adding and imaginary term —:hI['/2 to the



energy of |eg, p)(*)

p2 o IRE _ ﬁ.Q; ﬁQl
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Heg o, e 0 (25)
hsh (p — hk)?
—_ 0 s ST (1)
24/2 oM

In Eq. 25, ©; is the Rabi frequency associated with the two o+ and o~ laser fields,
assumed to have the same amplitude, and § = wy —w  is the detuning between the
laser and atom frequencies. For 7 = 0, we have c_;(0) = 1, ¢o(0) = c4+1(0) = 0.
(v) Once the next spontaneous emission process has occurred at t = tp41, we
know a posteriori that, between ¢t = t,, and ¢ = ¢4, the system is certainly in the
0-fluorescence photon manifold. Its state is thus described between ¢, and ¢,41,
by the normalized state vector

co(?) leo, p) + c1(t) lg+1,p + RE) + c—1(?) [g-1, p — hk)
(1o + les (B + les ()]

(26)

4.3 Monte-Carlo Simulation of the Quantum Jumps Occurring in V.S.C.P.T.

The procedure outlined in the previous subsection can be applied to
V.S.C.P.T. and provides a Monte-Carlo simulation of such a phenomenon, pre-
serving its quantum features.

The key point for V.S.C.P.T. is the existence of atomic states which are not
coupled to the laser field. If one introduces the two orthogonal linear combinations
of g—1,p — hk and g4+1,p + hk given by

lonc(p)) =272 [ |g—1,p — hk) + |g41,p + k)]
[Wo(p)) =272 [ |g—1,p — Bk) — |g41,p + RE)], (27)

one can easily check that [t nc(p)) is not coupled to |eg, p) by the laser-atom inter-
action hamiltonian (terms proportional to ; in Eq. 25)). On the other hand, the
fact that the two states |g+;,p & hk) have not the same kinetic energy results in
the appearance a motional coupling between |¥nc(p)) and |4 c(p)) proportional
to the difference between these two kinetic energies. Actually, one can easily show
from Eq. 25 and Eq. 27 that

(Ync(p)| Hes [c(p)) = hkp/M (28)

(%) Such a simplification is due to the fact that, in the 0-fluorescence photon manifold, spontaneous
emission can be entirely described by departure rates.
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It follows that, if p = 0, the state | yc(p = 0)) is a perfect trap where the atoms
can remain trapped indefinitely, such a trap becoming less and less perfect when
|p| increases as a consequence of the indirect coupling between | nyc(p)) and |eg, p)
through [$c(p)) -

In the quantum jump description, one can say that one of the three com-
plex eigenvalues of Eq. 25 has a damping rate which becomes smaller and smaller
when p — 0, so that the time delay between two successive quantum jumps can
increase considerably when p gets smaller and smaller. Since p can change in a
random way after each jump, and since this change of p is taken into account in
the procedure of Subsection 4.2, it follows that the length of the “dark periods”
(periods between two successive jumps) can change during the time evolution, be-
coming longer and longer when p gets smaller and smaller. Figure 2 shows the
results of a Monte-Carlo type simulation which confirms such predictions.
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Fig. 2 Monte-Carlo simulation of the quantum jumps occurring in V.S.C.P.T. Curve giving the
variations of p with time. Each discontinuity corresponds to a quantum jump. The time inter-
val 7 between each jump and the next one (dark period) is a random variable which is chosen
according to the distribution W{(r) which depends on p. Note that the dark periods are longer
when p is close to zero.

4.4 Advantages of Such an Approach

Figure 2 shows that the atom spends most of its time in long dark periods.
Since its state is then given by Eq. 26 and since only |[¥nc(p)) is associated with a
small decay rate, it is clear that the weight of [ nc(p)) in Eq. 26 becomes rapidly
predominant in these dark periods. We thus clearly understand how an atom
which jumps into g_; or g4; after a spontaneous emission process is then rapidly
filtered in the dark state |y nc(p)) if p is small enough. Averaging over a set of
such Monte-Carlo realizations, one can reconstruct the momentum distribution
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of the atom. The results obtained in this way are in good agreement with those
obtained from a numerical solution of optical Bloch equations.

Similar Monte-Carlo approaches have been recently developed for dealing with
dissipative processes in quantum optics®. They lead to a picture of the time evo-
lution of the atom which consists of a series of quantum jumps separated by time
invervals where the atomic state can be described by a wave function. Such ap-
proaches are called for that reason “Monte-Carlo Wave Function”. Their complete
equivalence with optical Bloch equations has been proven. They not only give a
new physical insight in dissipative processes, but they are also numerically simpler
since dealing with wave functions requires less computer memory than for density
matrices. They look therefore very promising for investigating a whole series of
problems.
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