TD de physique du solide

Erwann Bocquillon - Frédéric Chevy

1 Théorème de Bloch

On considère une particule de masse m évoluant dans un potentiel v(x) périodique de période a. On note \widehat{T}_a l'opérateur $\exp(i\widehat{P}a/\hbar)$.

- 1. Soit $|\psi\rangle$ l'état quantique du système. On pose $\psi(x) = \langle x|\psi\rangle$. Donner la fonction d'onde décrivant l'état $|\psi'\rangle = \widehat{T}_a|\psi\rangle$.
- 2. Montrer que \widehat{T}_a est un opérateur unitaire.
- 3. Calculer $\hat{T}_a^{\dagger} \hat{P} \hat{T}_a$ et $\hat{T}_a^{\dagger} \hat{X} \hat{T}_a$. En déduire que \hat{T}_a commute avec le hamiltonien $\hat{H}_0 = \hat{P}^2/2m + V(\hat{X})$.
- 4. On cherche les états propres de \widehat{H} sous la forme d'état propre de \widehat{T}_a . Montrer que $\widehat{T}_a|\psi\rangle=e^{iqa}|\psi\rangle$ avec $q\in[-\pi/a,\pi/a]$.
- 5. On pose $u(x) = e^{-iqx}\psi(x)$. Montrer que u(x) est périodique de période a.

2 États de Wannier

On impose des conditions aux limites périodiques, tout état satisfaisant alors la condition $\psi(x+Na)=\psi(x)$.

- 1. Montrer que les valeurs de q sont quantifiées.
- 2. Soit X=ja, avec j entier compris entre 0 et N-1. On appelle états de Wannier les états $|X,n\rangle$ de fonction d'onde définie par

$$|X,n\rangle = \frac{1}{\sqrt{N}} \sum_{q} e^{-iqX} |q,n\rangle.$$

où $|q,n\rangle$ désigne l'état de quasi-impulsion $\hbar q$ de la bande n.

- 3. Montrer que les états $|X,n\rangle$ forment une base orthonormée.
- 4. Montrer que $\widehat{T}_a|X,n\rangle = |X-a,n\rangle$.

3 Interaction avec une onde électromagnétique

On éclaire le cristal avec une onde électromagnétique que l'on décrit par un potentiel vecteur $\mathbf{A}(x) = A_0 \cos(kx - \omega t)\mathbf{u}_x$.

- 1. Quel est le hamiltonien du système? Montrer que dans la limite des faibles puissances, on peut le mettre sous la forme $\hat{H} = \hat{H}_0 + \hat{H}_1$, où \hat{H}_1 est linéaire en A_0 .
- 2. Montrer que l'élément de matrice $\langle \psi_{q'} | \hat{H}_1 | \psi_q \rangle$ n'est non nul que si $q' = q \pm k[2\pi/a]$. Interpréter ce résultat.