
Physica A 306 (2002) 381–394
www.elsevier.com/locate/physa

Phase transitions and complexity in computer
science: an overview of the statistical physics
approach to the random satis%ability problem

Giulio Birolia, Simona Coccob, R-emi Monassonc;d ;∗
aCenter for Material Theory, Department of Physics and Astronomy, Rutgers University,

Piscataway, NJ 08854 USA
bDepartment of Physics, The University of Illinois at Chicago, 845 W. Taylor St.,

Chicago, IL 60607, USA
cCNRS-Laboratoire de Physique Th.eorique de l’ENS, 24 rue Lhomond, 75005 Paris, France

dThe James Franck Institute, The University of Chicago, 5640 S. Ellis Av., Chicago, IL 60637, USA

Abstract

Phase transitions, ubiquitous in condensed matter physics, are encountered in computer science
too. The existence of critical phenomena has deep consequences on computational complexity,
that is the resolution times of various optimization or decision problems. Concepts and methods
borrowed from the statistical physics of disordered and out-of-equilibrium systems shed
new light on the dynamical operation of solving algorithms. c© 2002 Published by Elsevier
Science B.V.
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1. Introduction

“You are chief of protocol for the embassy ball. The crown prince instructs you
either to invite Peru or to exclude Qatar. The queen asks you to invite either
Qatar or Romania or both. The king, in a spiteful mood, wants to snub either
Romania or Peru or both. Is there a guest list that will satisfy the whims of the
entire royal family?”
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This example, quoted from Brian Hayes’ excellent review article [1], illustrates the
so-called satis%ability (SAT) problem, of central importance in computer science from
both theoretical and practical points of view [2]. An instance of the problem SAT is a
set of logical constraints involving Boolean variables (having only two possible values,
true or false). The question is to know whether there exists at least one solution (con-
%guration of the variables) satisfying the set of constraints. From a formal standpoint,
the chief of protocol must solve a SAT instance comprising three Boolean variables
p; q; r (true, respectively false, if the ambassador of the corresponding country will be
present, resp. absent at the ball) and three constraints, also called clauses, that can
be written as (p ∨ Fq), (q ∨ r), ( Fp ∨ Fr). The overbar denotes the logical negation; for
instance Fp is true if the Peruvian ambassador is not invited. The symbol ∨ stands
for the logical inclusive OR operator. A few seconds of reGection are suHcient in the
present case to scan the 8=23 lists of guests and select some satisfactory combination.
But no eHcient procedure is known to solve large SAT instances. Even with the best
available algorithms, the time of resolution may dramatically (exponentially) grow with
the size of the instance, i.e., the number of variables and clauses. SAT is a paradigm
of hard computational problem and is thus at the root of complexity theory in com-
puter science [2,3], see Appendix A. Understanding why SAT is hard and improving
the performances of its solving procedures would also bene%t to the resolution of the
optimization tasks frequently associated to industrial applications.

2. Random 3-SAT and its threshold

With such objectives in mind, computer scientists started a few years ago to study
a particularly interesting class of instances of the SAT problem, called random 3-SAT
[4]. This is a simpli%ed, model class of instances which depend on two parameters
only: the number N of variables and the ratio � of clauses per variable. Each clause
contains three variables or their logical negations. The �N clauses are randomly drawn,
independently of each other. The demands of the royal family correspond to an instance
of the 2-SAT problem, with N = 3 variables and ratio �= 1.
Intuitively, � is the ratio of the number of constraints divided by the number of

degrees of freedom. It is a sensible guess that, at %xed N , a randomly drawn instance
of 3-SAT has solutions if � is small (underconstrained situation), and has none if � is
large (overconstrained situation). The probability P(�) that an instance be satis%able
as a function of �, and for diMerent sizes N is shown in Fig. 1. In addition to being
a decreasing function of � as expected from above, a striking phenomenon happens
as N grows. An abrupt decrease of P takes place at a critical value �c � 4:3 of the
ratio. Instances with less than �cN clauses are almost surely satis%able, whereas the
ones with more than �cN clauses have almost never any solution.

This transition is accompanied by an outburst of resolution hardness (computational
complexity). Fig. 2 shows the median time necessary to solve a random 3-SAT instance,
that is to %nd a solution (below the threshold), or check there is none (above the
threshold). The curves of Fig. 2 obviously depend upon the speci%c solving procedures
used. However, the general pattern of the complexity as a function of �, namely the
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Fig. 1. Probability P(�) that a set of �N clauses be satis%able for diMerent sizes N (number of variables).
This probability is obtained from numerical experiments, consisting in generating randomly 10,000 instances
of the 3-SAT problem for each values of � and N , and measuring the fraction of them being satis%able. In
the large N limit, the threshold �c � 4:3 separates the satis%able (�¡�c, P = 1) and the non satis%able
(�¿�c, P = 0) phases. A similar transition also takes place for random 2-SAT instances, where all clauses
involve two variables; the threshold is then equal to �c = 1.
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Fig. 2. Resolution time of 3-SAT instances as a function of the ratio of clauses per variable � and for three
diMerent sizes. The time is measured from the size of the search tree generated by the solving procedure
(Figs. 6 and 7). Data correspond to the median resolution time of 10,000 instances; the average time may
be somewhat larger due to the presence of rare, exceptionally hard instances. The computational complexity
is maximal at �c. It is exponential in the vicinity of the threshold and in the unsatis%able phase, but less
and less as � increases.
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presence of successive regions corresponding to, roughly speaking, easy, hard, and less
hard resolutions is a generic feature valid for commonly used solving algorithms.
Why should physicists get interested in SAT, a strictly mathematic problem by def-

inition? First of all, 3-SAT is complex. Mathematicians have been able to establish
rigorous bounds on the threshold, 3:146 �c6 4:51, but the exact value seems out of
reach with the available probabilistic techniques. Approximation methods developed by
physicists in the course of the study of phase transitions allow not only to estimate the
value of the threshold but also to unveil the microscopic structure of the solutions and
the mechanism leading to their disappearance. Concepts as phase diagrams, dynamical
renormalization Gows, Markovian evolution also prove to be useful to understand the
operation of algorithms. Statistical physics therefore oMers precious intuitions, a few of
which have already been con%rmed by mathematicians or have paved the way to the
derivation of new rigorous results [7].

3. A spin glass at zero temperature

In order to unveil the relationship between random satis%ability problems and statis-
tical physics, let us translate in Fig. 3 the 3-SAT problem and its ingredients (Boolean
variables, clauses,: : :) in a language more familiar to physicists (Ising spins, interac-
tions, : : :). The main idea is to introduce an energy function, which is merely a

Fig. 3. Dictionary translating the 3-SAT problem (left) into statistical physics language (right).



G. Biroli et al. / Physica A 306 (2002) 381–394 385

cost function equal to the number of unsatis%ed clauses for each variables-spins
con%guration, and study the ground-state properties. The satis%ability of the 3-SAT
problem is therefore equivalent to the vanishing of ground-state energy.
From a physical point of view, the 3-SAT energy function is similar to the Hamil-

tonian of spin glasses. These systems, characterized by a frozen-in structural disorder,
have been intensively studied in the last twenty years. Spin glasses are materials weakly
diluted with magnetic ions. The random positions of the ions induce random (in sign
and strength) magnetic interactions. The lack of homogeneity results in an extremely
complex energy landscape. In particular, the enormous number of metastable states
makes the low-temperature behavior very unusual and interesting from a fundamental
point of view. In the 3-SAT case, the disorder is induced by the random clauses which
make the problem more and more frustrated as � increases (See Appendix B for an
introduction to frustration.)
The physical scenario we obtained for random 3-SAT is the following. For �¿�c

the ground-state energy becomes positive with probability one, whereas it vanishes
for �¡�c. The exact solution of random 3-SAT remains an open (and very hard)
problem yet. However, combining some exact results with approximated techniques
we were able to obtain �c � 4:48 which is just 5% larger than the numerical value.
Some aspects of the transition are indeed surprising. For � slightly lower than �c
the number of solutions remains enormous ∼20:14 N [8], and then vanishes abruptly at
�c. Hence, increasing slightly the number of clauses is enough to make all solutions
disappear simultaneously! Moreover, immediately beyond the transition, a %nite fraction
of over-constrained variables assuming the same value in each optimal con%guration
abruptly emerges. This backbone of variables plays the role of an order parameter:
it vanishes for �¡�c and jumps discontinuously to a value ∼15% at the transition.
Hence, the 3-SAT transition may be interpreted as a %rst-order transition.
This abrupt transition is clearly diMerent from the one displayed by 2-SAT, a less

interesting problem from a computational point of view, since it can be solved in a
polynomial time (Appendix A). The 2-SAT transition is of the second order, and the
onset of the backbone is continuous. To get a better understanding of the relationship
between computational complexity and the features of the phase transition, we have
introduced a mixed model, called 2+p-SAT, which interpolates between 2 and 3-SAT
[5]. This model is de%ned by taking (1−p)�N random clauses of length 2 (i.e., with
2 variables) and p�N clauses of length 3. For p = 0 and for p = 1 one recovers
exactly 2-SAT and 3-SAT, respectively. A tricritical point at p0 � 0:4 appears, which
separates the phase diagram (p; �) in two parts: a 3-SAT-like region (p0¡p¡ 1)
with a discontinuous jump in the backbone and a 2-SAT-like region with a continuous
transition (0¡p¡p0), see Fig. 4.
Before discussing how the phase diagram of 2+p-SAT allows one to understand the

computation complexity of 3-SAT, let us stress that random 3-SAT displays a very
interesting physical behavior already in the satis%able phase. In fact, for �¿�s �
3:96 (but always lower than �c), the space of solutions is no more homogeneous.
Instead, it breaks up in an enormous number of disjoint groups of solutions
(Fig. 5) [9]. These groups have a multifractal distribution that can be computed
analytically. As a consequence, the statistical physics approach allows one to
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Fig. 4. Phase diagram of 2+p-SAT and dynamical trajectories of DPLL. The threshold line �c(p) (bold full
line) separates sat (lower part of the plane) from unsat (upper part) phases. Extremities lie on the vertical
2-SAT (left) and 3-SAT (right) axis at coordinates (p=0; �c=1) and (p=1; �c � 4:3), respectively. Departure
points for DPLL trajectories are located on the 3-SAT vertical axis and the corresponding values of � are
explicitly given. Hatched regions symbolize tree trajectories in the unsat region, and dashed curve represent
branch trajectories in the sat phase. Arrows indicate the direction of “motion” along branch trajectories
parameterized by the fraction t of variables set by DPLL. For small ratios �¡�L, branch trajectories remain
con%ned in the sat phase and end in S of coordinates (1; 0), where a solution is found. At �L � 3:003, the
single branch trajectory hits tangentially the threshold line in T of coordinates (2=5; 5=3) (T depends a priori
on the heuristics used, but lies very close to the tricritical point). In the intermediate range �L ¡�¡�c, the
branch trajectory intersects the threshold line at some point G (that depends on �). A dense tree then grows
in the unsat phase, as happens when 3-SAT departure ratios are above threshold �¿�c � 4:3. DPLL then
reaches back the highest backtracking node in the search tree, that is, the %rst node when �¿�c, or node
G for �L ¡�¡�c. In the latter case, a solution can be reached from a new descending branch while, in
the former case, unsatis%ability is proven, see Fig. 7.

analyze in detail the structure of the space of solutions and not only the global prop-
erties of 3-SAT.

4. Solving algorithm and trajectories

Why is the complexity of 3-SAT solving aMected by the phase transition? To answer
this question, let us %rst brieGy expose the ubiquitous solving procedure of Davis–
Putnam–Loveland–Logemann (DPLL). DPLL is an exhaustive search procedure oper-
ating by trials and errors, the sequence of which can be graphically represented by
a search tree (Fig. 6). BrieGy, (1) a node in the tree corresponds to a choice of a
variable. An outgoing branch, attached to the value the latter (true or false), grows
from the node. Thus a node gives birth to two branches at most. (2) Along a branch,
the logical implications of the last choice are analyzed. (3) If a contradiction
(violated clause) arises, the last choice is modi%ed (backtracking of the tree) and
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Fig. 5. Schematic representation of the structure of the solutions space for the random 3-SAT at �¿�s. The
space of optimal con%gurations is divided in an exponential number of disjoint groups. The typical distance
(measured as the fraction of diMerent spins) between two optimal con%gurations is equal to d1 inside the
same group, and to d0 between two groups.

the procedure goes on along a new branch (step 2); if all clauses are satis%ed, a
solution is found and the search process is over; otherwise, the algorithm resumes
to step 1.
Computational complexity, the amount of operation necessary to solve the instance, is

given by the size of the search tree, i.e., the number of nodes it contains. Performances
can be improved by designing sophisticated heuristic rules for choosing variables
(step 1).
The DPLL algorithm gives rise to a complex, non Markovian dynamical process,

diMering largely from the common modelization of the evolution of physical systems
e.g. Monte Carlo dynamics. Our study of the operation of DPLL is based on the
following, elementary observation (Fig. 5). The recursive procedure of DPLL turns the
initial instance of the 3-SAT problem into a mixed instance with clauses of length two
and three (clauses of length unity are eliminated at step 2 of the procedure, see above).
Therefore, if the initial instance is symbolized by a point of coordinates p = 1; � in
the phase diagram of Fig. 4, this representative point will evolve under the dynamical
action of the algorithm and de%ne a trajectory. Three ranges of initial ratios � must be
distinguished on the vertical axis p= 1 of the 3-SAT problem.
When �¡�L=3:003, the search tree essentially reduces to a unique branch (Fig. 7A),

which ends up with a solution [11]. The trajectory corresponding to this branch depends
on the heuristic rule implemented in DPLL (Fig. 5) and is schematically represented
in Fig. 4. It %rst heads to the left and then reverses to the right until reaching a point
on the 3-SAT axis at a small ratio without ever leaving the sat region. Further action
of DPLL leads to a rapid elimination of the remaining clauses and the trajectory ends
up at the right lower corner p = 1; � = 0, where a solution is achieved. Thus, in the
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Fig. 6. Example of 3-SAT instance and Davis–Putnam–Loveland–Logemann resolution. Step 0. The instance
consists of M = 5 clauses involving N = 4 variables x; y; w; z, which can be assigned to true (T) or false
(F). Fw means (NOT w) and v denotes the logical OR. The search tree is empty. 1. DPLL randomly selects
a variable among the shortest clauses and assigns it to satisfy the clause it belongs to, e.g. w=T (splitting
with the Generalized Unit Clause–GUC–heuristic) [6,9]. A node and an edge symbolizing respectively the
variable chosen (w) and its value (T) are added to the tree. 2. The logical implications of the last choice
are extracted: clauses containing w are satis%ed and eliminated, clauses including Fw are simpli%ed and the
remaining ones are left unchanged. If no unitary clause (i.e., with a single variable) is present, a new choice
of variable has to be made. 3. Splitting takes over. Another node and another edge are added to the tree. 4.
Same as step 2 but now unitary clauses are present. The variables they contain have to be %xed accordingly.
5. The propagation of the unitary clauses results in a contradiction. The current branch dies out and gets
marked with C. 6. DPLL backtracks to the last split variable (x), inverts it (F) and creates a new edge. 7.
Same as step 4. 8. The propagation of the unitary clauses eliminates all the clauses. A solution S is found
and the instance is satis%able. For an unsatis%able instance, unsatis%ability is proven when backtracking (see
step 6) is not possible anymore since all split variables have already been inverted. In this case, all the
nodes in the %nal search tree have two descendent edges and all branches terminate by a contradiction C.
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Fig. 7. Types of search trees generated by the DPLL solving procedure. Nodes (black dots) stand for the
choices of variables made by the heuristic, and edges between nodes denote the elimination of unitary
clauses. A. simple branch: the algorithm %nds easily a solution without ever backtracking. B. dense tree: in
the absence of solution, the algorithm builds a “bushy” tree, with many branches of various lengths, before
stopping. C. mixed case, branch + tree: if many contradictions arise before reaching a solution, the resulting
search tree can be decomposed in a single branch followed by a dense tree. The junction G is the highest
backtracking node reached back by DPLL.

range of ratios �¡�L � 3:003, 3-SAT is easy to solve: the computational complexity
scales linearly with the size N (Fig. 2).
For ratios above threshold (�¿�c � 4:3), instances almost never have a solution

but a considerable amount of backtracking is necessary before proving that clauses are
incompatible. As shown in Fig. 7B, a generic unsat tree includes many branches. The
number of nodes grows exponentially with N , and is conveniently expressed as 2N!.
The sequence of points (p; �) characterizing the evolution of the 2+p-SAT instance
solved by DPLL does not de%ne a line any longer, but rather a patch, or cloud of
points with a %nite extension in the phase diagram of Fig. 4.
The value of ! can be calculated analytically as a function of the initial ratio,

see Appendix C. The main idea is to monitor the growth of the dominant, that is,
most numerous branches (Appendix C) in the tree until their extinction resulting from
the onset of contradictions. Results are in excellent quantitative agreement with the
numerical experiments of Fig. 2 [10]. Main qualitative features are: ! is positive in
the whole unsat phase �¿�c, indicating that computational complexity is exponential
in this region; ! is maximal at the threshold and gets smaller and smaller as � increases
(as the instance is more and more over-constrained, it becomes easier and easier to
detect a group of mutually incompatible clauses).
The intermediate region �L¡�¡�c juxtaposes the two previous behaviors, see tree

Fig. 7C. The branch trajectory, started from the point (p = 1; �) corresponding to
the initial (and satis%able) 3-SAT instance, crosses the critical line �c(p) at some
point G (Fig. 4). The algorithm then enters the unsat phase and generates 2+p-SAT
instances with no solution. A dense subtree, that DPLL has to go through entirely,
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forms beyond G (Fig. 4). There is no need for DPLL to backtrack above G (Fig. 7C),
since nodes immediately above G are located in the sat phase and carry 2+p-SAT
instances with solutions. DPLL will eventually reach a solution (point S in Fig. 7C).
The corresponding branch shown in Fig. 4 is highly non typical and does not contribute
to the complexity. The resolution complexity of the initial 3-SAT instance thus reduces,
to the exponential order in N , to the complexity of the critical unsatis%able 2+p-SAT
instance located in G, and can be analytically predicted from our theory (Appendix C).
In this intermediary region, random 3-SAT instances are exponentially hard to solve.

5. Conclusion and perspectives

The existence of a phase transition and its inGuence on the computational complexity
is not unique to random 3-SAT but rather constitutes a common property shared by
many optimization problems on random structures, e.g. the vertex cover problem [12]
or the coloring of random graphs, : : : :

The statistical physics approach allows for a non rigorous but precious understanding
of these critical phenomena. It also emphasizes the relevance of the concept of average,
or typical-case complexity (occurring with high probability), in contradistinction with
the theory of complexity in computer science essentially based on worst case analysis.
As an illustration, the theory of NP-completeness [2] strongly suggests that no algorithm
exists capable of solving all 3-SAT instances in a polynomial time but we have seen
that DPLL solves almost all random 3-SAT instances with ratios �¡�L in a linear
time!
The goal of the present study, which is already partially concretized if one refers

to the success of optimization techniques issued from physics e.g. the simulated an-
nealing, would be to take advantage of this new understanding to improve the current
algorithms. Fig. 4 suggests for instance some general line to improve the heuristics
rules to assign variables: computational complexity would not be exponential below
the threshold if the heuristics trajectories were able to avoid crossing the critical line.
Recently, a brand new heuristic using the concept of backbone has permitted to solve
successfully instances with 700 variables at the threshold [13], while previous heuris-
tics could not solve instances with sizes larger than 500 (a huge improvement, indeed,
since resolution times increases exponentially at this point).
In turn, the objects and issues studied in computer science prove to be an original and

fruitful source of theoretical problems whose unusual dynamical or statistical aspects
may entice physicists to deepen their understanding of the frontiers of the statistical
physics of disordered and oM-equilibrium systems.
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Appendix A. Notion of computational complexity

Computational tasks are classi%ed according to their complexity, i.e., the number
of elementary operations (additions, substitutions, comparisons,: : :) that an algorithm
has to eMectuate in order to solve them. Usually a problem whose complexity grows
polynomially with its size (the number of variables and clauses used to de%ne the
problem) is considered to be easy, whereas exponential growths correspond to hard
problems.
Usually, to show that a problem is easy, one has to %nd explicitly a resolution

algorithm that requires a polynomial number of operations. A practical and important
example is the sorting problem which consists in classifying N numbers according to
their absolute value. The best algorithms are able to execute this task in ˙ N logN
operations for any initial list. It has been proved that 2-Satis%ability, where each clause
contain two variables, belongs to this class of polynomial (easy) problems.
This seems not to be the case of 3-Satis%ability. As for hundreds of optimization

problems, e.g. the famous traveling salesman problem (which consists in %nding the
shortest tour going through N cities), no polynomial algorithm has ever been found for
3-SAT in spite of an intense research in the last decades. In practice, all the algorithms
used to solve these problems may require an exponential running time. Moreover, it
has been proved that if one of these problems reveals eventually to be easy then all
the other ones would be easy too. This further diminishes the possibility to %nd such
a polynomial algorithm for one of these problems, which are called in the literature
NP-complete.
However, from a rigorous point of view, proving the impossibility to solve easily

(polynomially) NP-complete problems has been claimed to be one of the seven most
fundamental questions in mathematics at the Clay congress held recently in Paris.
Hence, the existence of an extremely ingenious algorithm solving easily 3-SAT is not
ruled out so far.

Appendix B. Solutions of SAT and ground-states of spin glasses

The number of unsatis%ed clauses for the problem of the embassy ball can be written
as (see dictionary in Fig. 3):

E =− 1
4 (sp sq − sq sr − sp sr − 3):

The cost function E de%nes a Hamiltonian for the three Ising spins si placed on a
triangle with vertices i = p; q; r. This model is a spin glass prototype. First of all, the
couplings do not have the same sign as in the Ising model case. Secondly, these signs
are quenched random variables depending on the particular realization of the clauses.
Finally, even if in the case of embassy ball the three couplings can be simultaneously
satis%ed (for this one has to take a spin con%guration such that the product of the two
spins on the vertices of a bond equals the sign of their coupling), this is not generally
true. Consider for example the energy function obtained by changing the sign of one
of the three couplings. In this case there exists no spin con%guration which satis%es
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simultaneously all the couplings and the system is frustrated. Disorder and frustration
are the two fundamental characteristics of spin glasses.
Actually, very interesting spin glass models has been de%ned and studied in order

to analyze the SAT problems by statistical physics tools. In these models each spin
interacts with a %nite and random number of other spins. Hence, the underlying lattice
structure is random graph characterized by local random connectivities which depend
on the particular realization of the clauses. Moreover, 3-SAT gives rise to a pretty
unusual disordered model, since the spins interact three by three, and not via a usual
pairwise interaction as for 2-SAT (Fig. 3).
In spin glass systems, thermodynamic observables (free energy, energy,: : :) depends

on the particular disorder realization. However, they become self-averaging in the ther-
modynamic limit, i.e., do not Guctuate from sample to sample. As a consequence, one
can obtain the free energy density by computing the average of the logarithm of the
partition function over the disorder distribution.
This is in general a diHcult computation that requires the replica method, widely

used to study disordered systems. By this technique we have computed, through some
approximations, the critical value �c, and we have analyzed certain microscopic prop-
erties of the solutions (fraction of %xed variables, number of diMerent spins from a
solution to the other,: : :).

Appendix C. Growth of the search tree and resolution time

DPLL solving procedure builds up the search tree in a sequential way, adding more
and more nodes, branches up to the completion of the tree. As shown in Fig. 5, each
node corresponds to an instance of the 2+p-SAT model, with de%ning parameters p; �.
We have imagined a diMerent building up, that results in the same complete tree but
can be mathematically analyzed: the tree grows in parallel, layer after layer, with two
branches simultaneously growing out of each node. Each branch obeys DPLL evolution
rules (choice of variables, simpli%cation of 1-clauses, and halt if a contradiction arises),
such that the %nal tree is identical to the obtained through the original, sequential pro-
cess. At each instant t of the building process, the tree consists of many branches,
the extremities of which have distinct characteristic parameters. Let us consider the
histogram B(p; �; t) of the values of these parameters. This histogram grows exponen-
tially with the size N of the instance. It is thus convenient to consider its logarithm
�(p; �; t) = 1=N log2B(p; �; t), which de%nes a surface in the three-dimensional space
p; �; � (Figs. 8 and 9).
The addition of a new layer to the search tree changes the characteristic parameters

of the existing branches, and leads to the appearance, or halt of other branches. As a
result, the search tree evolution can be recast in terms of a out-of-equilibrium growth
process of a bidimensional surface �, where the “time” t is simply the depth of the
tree. The equation of growth reads,

@�
@t

=H

[
@�
@p
;
@�
@�
; p; �; t

]
; (C1)
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Fig. 9. Snapshot of the histogram-surface � (p; �), at a given instant “t”.

where H depends upon the heuristic rule used by DPLL. The number of branches B(t)
at depth t is equal, to the dominant order in N , to 2N�

∗(t) where �∗(t) is the height
of the top of the surface. The growth is interrupted at depth ta, when contradictions
appear at the extremities of all dominant branches. The %nal number of branches, i.e.,
of leaves C (Fig. 7) is B(ta) = 2N�

∗(ta). It can be checked on Fig. 7B that, for any
complete tree, the number of leaves is simply equal to the number of nodes plus one.
In the large N limit, the knowledge of �∗(ta) gives a direct access to !.
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