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Measuring order in the isotropic packing of elastic rods
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24 rue Lhomond, 75005 Paris, France, EU
2Department of Physics, McGill University, 3600 University - Montréal (QC) H3A 2T8, Canada
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Abstract – The packing of elastic bodies has emerged as a paradigm for the study of macroscopic
disordered systems. However, progress is hampered by the lack of controlled experiments. Here we
consider a model experiment for the isotropic two-dimensional confinement of a rod by a central
force. We seek to measure how ordered is a folded configuration and we identify two key quantities.
A geometrical characterization is given by the number of superposed layers in the configuration.
Using temporal modulations of the confining force, we probe the mechanical properties of the
configuration and we define and measure its effective susceptibility. These two quantities may be
used to build a statistical framework for packed elastic systems.
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Packed elastic objects are ubiquitous in Nature and
technology. For instance, DNA is packed in the cell
nucleous or in viral capsids [1,2], while growing tissues can
be confined by their environment [3,4]. The optimization of
folding is crucial in the design of self-deployable structures,
such as tents or solar sails [5], or in waste disposal. Like a
granular pile, a confined plate can be either in a crystalline
state, the stacked facets obtained by repeatedly folding a
sheet into two, or in a disordered state, exemplified by a
crumpled ball [6]. When a sheet is confined, the number
of metastable configurations blows up [7]. Meanwhile,
self-avoidance leads to jamming because it prevents the
system from exploring the space of configurations. This
raises the question of whether a confined sheet can be
viewed as a glassy system, in the same class as a static
granular medium [8]. Indeed, theoretical studies proposed
thermodynamical approaches for packed rods [2,9,10].
It has been argued that a system which is confined
isotropically experiences a configurational phase transition
from a disordered to an ordered (nematic) state [2,9].
The geometric characterization of the nematic ordering
has been developed in various numerical and experimental
works [6,10,11]. On the experimental side, a difficulty
in the study of crumpled balls [11–16] arises from the
hand-generation of configurations. In this context, the
confinement of a rod in a plane was an important and
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useful simplification [7,17–20]. However, drawing general
conclusions from these experiments can be questioned
because of issues such as friction between the periphery
of the configuration and the container, the anisotropic
injection of the rod in the container, plasticity or the
impossibility of unfolding a configuration.
Here we reconsider the packing of a rod in a plane by

proposing an original model experiment. In addition to a
geometric description of the transition from a disordered
to an ordered configuration, we developed a mechanical
characterization of the system allowing a global measure
of the order without addressing the local geometrical
properties of the folded configurations. To this purpose,
we devised an experiment allowing us to reversibly confine
a rod by a central force, deriving from an isotropic radial
potential. As a consequence, there is no contact between
the container and the periphery of the configuration,
while the intensity of the forcing is controlled through the
stiffness of the potential. We investigate the emergence of
geometrical order through the stacking of layers. As this
setup enables the temporal modulation of the confinement,
we probe the mechanical properties of configurations, and
define an effective susceptibility of a configuration, which
we associate with geometrical order. We thus obtain a
coupled geometrical and mechanical characterization of
the system.
The principle of the experiment is as follows. A circular

Hele-Shaw cell is filled with a liquid and entrained by a
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motor. A rod is inserted into the cell. The cell is slightly
thicker than the rod, so that the rod cannot cross itself,
constraining a two-dimensional folding. The liquid is
denser than the rod. As a consequence, when the cell is
rotated, the rod is submitted to a centripetal force and
thus confined in a radial, parabolic pressure potential
P (r) = P0+ ρω2r2/2, where r is the distance from the
centre of the cell, ρ is the fluid density, ω is the angular
velocity and P0 is the pressure at the centre of the cell. We
have checked that at the studied frequencies of rotation,
gravitational effects become negligible. The cell was fixed
in a vertical position on the axis of a 2 kW motor, through
a double ball bearing to avoid vibration transmission from
the motor to the cell. The rotation velocity was controlled
using an electronic frequency variator. The flexible
circular rod used in all experiments was made of PDMS
(Goodfellow) and had the following characteristics: diam-
eter h= 2± 0.2mm, total length L= 3± 0.01m, density
d= 1 and Young Modulus E = 1.0± 0.1MPa (measured
using a tensile testing method). The liquid was salt-
saturated degassed water of density ρl = 1.16 at ambient
temperature. The cell was made of three disks of 50 cm in
diameter: a stiff one in 10mm thick Duralumin (i), and
two successive 15mm thick transparent Polycarbonate
disks (ii) and (iii), allowing us to observe the confined rod
(fig. 1(a,b)). The two chambers communicate through two
holes pierced in disk (ii) and were filled with the liquid
through holes pierced in the edge of disks (i) and (iii).
Chamber 2 is a sacrificial one: when the cell is rotated,
the resulting pressure gradient in the liquid bends inwards
disk (iii) but the gap is thick enough so that it does not
close at our maximal rotation velocity of 20Hz. Never-
theless, the pressure is equilibrated between the two faces
of disk (ii) allowing to fix the gap throughout the whole
spacing of chamber 1. The rod was gently inserted using a
hole in the back of disk (i); the thickness of chamber 1 was
fixed at 2.5mm by a ring of Plexiglas inserted between
disks (i) and (ii). The whole setup was placed in a dark
room and lit with three stroboscopic lamps with diffusing
screens. Movies were taken with a CCD camera. The
duration of a flash was short enough (1ms) to get sharp
images of the rod, even at the highest velocities. Using
a computer interface, the camera and stroboscopes were
triggered with the same square periodic signal, while the
variator was controlled using a DC voltage. To enhance
contrast, we used a white rod on a dark back: an adhesive
sheet of black plastic was laid on the Duralumin disk (i).
Binary images of the rod were obtained by thresholding.
The initial configuration of the rod (fig. 1(a)) is prepared

using 8 magnetic beads of diameter 1.8mm inserted
into the first chamber and moved from outside with a
magnet. The cell is then set in rotation; the time to reach
the desired frequency is approximately 3 s. The control
parameter is the frequency of rotation f = 2πω. For a
given frequency f , a large number of folded configurations
is accessible from the same initial configuration (fig. 2).
Indeed, the folding process is non-deterministic and the
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Fig. 1: (Colour on-line) The experiment. (a) A rod of density
1 is confined in a circular Hele-Shaw cell, filled with saturated
salted water of density 1.16. The picture shows the rod in its
initial configuration, before the cell has been set in rotation.
(b) The cell is made of a superposition of three disks; the
intermediate one (ii) is pierced with two holes to enable
equilibration of pressure into the liquid. This setup enables
to fix the thickness of chamber 1 where the rod is placed,
chamber 2 being a sacrificial room. The chambers are made
watertight with flat and toric joints shown in dark. (c) Example
of an equilibrium configuration obtained when a centripetal
force is generated by the rotation of the cell around its axis.
(d) Corresponding skeletonized image in which the number of
layers per branch is defined.

folded configuration is selected by the experimental noise
at the very beginning of the experiment. We include in
the noise the influence of friction between the rod and the
disks and of fluid flow in the cell. During an experiment,
the fluid is in solid rotation; the timescale of the transient
flow to reach the solid rotation is of the order of 10−1 s
which is much smaller than the time to reach equilibrium
as it will be stated below. The second timescale to consider
is the lubrification time needed to expulse fluid between
the superposition of two segments of rod, which is of
the order of 1 s, again much smaller than the experiment
timescale.
First, the resulting configurations can be characterized

using their radius of gyration,

Rg =

√
1

L

∫ L

0
r2(s) ds,
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Fig. 2: Panel of folded configurations resulting from experi-
ments with the same parameters. The rod is prepared in the
initial configuration (fig. 1(a)) then the rotation frequency is
increased from 0 to 12Hz in approximately 3 s. The large vari-
ety of geometry shows that the folding is a non-deterministic
process.

where s is the curvilinear coordinate of the rod and r(s)
the distance to the cell axis. This quantity is directly
calculated using the binary image of the confined rod.
The radius of gyration decreases with time, rapidly when
the rotation is started (fig. 3(a)) and then more slowly,
reaching a plateau value in a time lapse of the order of
103 s. This final value is not unique and differs according to
realizations at a given frequency. As we only investigated
equilibrium configurations, we had to wait 1800 s for each
value of the frequency before taking measurements, to
ensure that equilibrium is reached. When averaging over
realizations, the mean radius of gyration R̄ is found to be
a decreasing function of confinement strength (fig. 3(b)).
It appears that, when the same experiment is repeated,
a large diversity of sizes and geometries is observed. The
aim of the present study is to quantify geometrical order
in equilibrium states. To do so, we extract the skeleton
of a folded configuration from binary images, in which
voids of area smaller than a given threshold have been
filled. This thresholding process did not influence results.
Vertices are detected as self-contact points, i.e. points of
the skeleton having three neighbors (fig. 1(c), (d)). We
define branches as portions delimited by two vertices. A
given branch may contain several layers of the rod: the
thickness of the branch on the binary image directly yields
the number of layers. The analysis of the experimental
patterns was coded allowing to treat a large number of
data.
Inspired by observations (fig. 4(a)), we first consider

a geometrical definition of order using the number of
superposed layers. Indeed, the configuration of absolute
minimum of energy is a spiral [7], which can be qualified
as very ordered and in which all layers are superposed and
contained in a unique branch. Experimentally, this number
of superposed layers is defined as the average number
of layers per branch in a given configuration. We jointly

(a)

(b)

Fig. 3: (Colour on-line) The radius of gyration. (a) The radius
of gyration Rg as a function of time for three realizations
in which the cell was launched from 0 to 14Hz in 3 s. Radii
reach a plateau value in about 103 s. The final radius differs
according to realizations. (b) On average, the radius of gyration
R̄ decreases with the strength of confinement (quantified by the
rotation velocity, f of the disk). The bars represent widths of
the distributions for each frequency of rotation.

measured the average number of layers per branch N̄l/b
and the radius of gyration of a configuration, as shown
in fig. 4(b). The data roughly collapse on a single curve,
independently of the confinement strength. Therefore,
either the radius of gyration or the number of layers
appear as better characterizations of the configuration.
A disordered configuration, i.e. with small N̄l/b, has a
larger radius than a spiral ordered configuration. As in
some previous experiments [11,19,20], stacking appears as
a distinctive feature of the confinement of rods, and our
setup allows us to show that stacking decreases with the
radius of the configuration. In the following we investigate
the possibility of characterizing geometrical order without
a detailed knowledge of the geometry of configuration. In
other words, we seek an independent measure of order.
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Fig. 4: (Colour on-line) Stacking. (a) Order and disorder. Two
extreme examples of equilibrium configurations obtained at
two different frequencies, with a large and a small number of
superposed layers, respectively. (b) Average number of layers
per branch, Nl/b, as a function of the radius of gyration Rg.
Each point corresponds to one realization of the experiment.
The colors of the symbols correspond to the imposed rotation
velocity of the disk. An ordered configuration (large Nl/b) has
a small radius of gyration.

We realized annealing experiments in which the confine-
ment strength was repeatedly increased then decreased
by varying the rotation velocity appropriately. At each
step in rotation frequency, we waited 1800 s in order to
reach equilibrium (fig. 3(a)), so that an annealing exper-
iment typically took 12 hours. After a few frequency
steps, the radius of gyration followed approximately the
same line (fig. 5(a)). The first steps are irreversible, while
the line is reversible. In other words, the system follows
an irreversible branch in the (f,Rg) phase space before
falling on a reversible branch. This behavior is reminis-
cent of the evolution of the density of a tapped granu-
lar pile according to the tapping acceleration, as reported
in [21]. In our case, each annealing experiment can be
characterized with the intercept, R0, and with the slope,
χ, of the reversible branch. Furthermore, we observed
that no topological changes occurred along the reversible
branch, as illustrated in fig. 6: the relative positions of
loops remain constant, and the configuration only seems
to breath. As a consequence a given annealing experiment
leads to a well-defined configuration, which can be char-
acterized with R0 and χ. R0 corresponds to its effective

(b)

χ

∆f
∆R

R0

(a)

Fig. 5: (Colour on-line) Susceptibility. (a) Evolution of the
radius of gyration Rg during an annealing experiment. After a
first irreversible branch, the radius follows a reversible branch
(parallel to the dashed line). A configuration is characterized
by the slope of the line, χ, and its intercept, R0, with the
axis f = 0. (b) The characteristic radius R0 as a function of
susceptibility χ. Each point corresponds to one realization of
an annealing experiment. The error bars correspond to the
uncertainties estimates of the linear fits as described in (a).

radius, while χ defines an effective susceptibility of the
configuration as it measures its response to a variation in
the strength of confinement. Here, the effective susceptibil-
ity is defined as the response of the system to an external
field: the confinement potential. Thus, it is not the defin-
ition of the susceptibility used for glassy systems. When
plotting these two quantities, the characteristic radius R0
is found to be an increasing, roughly linear function of
the susceptibility χ (fig. 5(b)). The results are indepen-
dent of the confinement (frequency) since, whatever the
annealing path, points seem to collapse on the same master
curve. As we found above that an ordered configuration
has a small radius of gyration (fig. 4(b)), this second set of
results indicates that an ordered configuration has a small
susceptibility, and, conversely, a disordered configuration
is highly compressible. A possible interpretation is that
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Fig. 6: (Colour on-line) Example of the evolution of a config-
uration during an annealing experiment. Rotation frequency
was varied from 12Hz (left) to 6Hz (right), by steps of 2Hz of
1800 s duration. Each colored area corresponds to a loop. The
relative position of loops is invariant. The configuration only
breathes under the perturbation.

self-avoidance imposes a stringent constraint on ordered
configurations for which more stacking means less free-
dom in exploring phase space; as a consequence an ordered
configuration would be less compressible. In mechan-
ical terms, friction between layers is more important
in an ordered configuration because contact area is larger.
When confinement is decreased, unfolding is inhibited by
friction.
To summarize, we built an experiment allowing the two-

dimensional confinement of a rod in a parabolic potential.
This experiment allowed us to quantify order and disorder
in a configuration, using a geometrical measure of stack-
ing and a mechanical measure of an effective susceptibility,
this quantity being defined as the response of the system
to an external field. We found that these two quantities
are strongly correlated with the characteristic radius of
the configuration. Although this effective susceptibility is
strictly a response to variations in rotation velocity, it can
be readily generalized to other 3D systems such as crum-
pled membranes. Indeed the definition and the measure of
a nematic order in such systems are still unsolved issues.
In that context, a salient feature of susceptibility is that
its measurement does not require a full knowledge of the
geometry of the configuration. In other words, order could
be inferred from the effective stiffness of the crumpled ball.

Future work should address whether these quantities could
be used in a thermodynamic approach to packing, or how
these quantities could emerge in such an approach. Thus
geometrical and mechanical properties appear as strongly
entangled in the packing of sheets and rods.
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