
Europhys. Lett., 50 (2), pp. 148–154 (2000)

EUROPHYSICS LETTERS 15 April 2000

Statistical mechanics of point particles
with a gravitational interaction

M.-L. Chabanol
1(∗), F. Corson2 and Y. Pomeau2

1 Institut Fourier, Université Joseph Fourier
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Abstract. – We study the dynamics of N point particles with a gravitational interaction.
The divergence of the microcanonical partition function prevents this system from reaching
equilibrium. Assuming a random diffusion in phase space we deduce a scaling law involving
time, which is numerically checked for 3 interacting masses in a quadratic nonsymmetrical
potential. This random walk on the potential energy scale is studied in some detail and the
results agree with the numerics.

The dynamics of N point masses with a gravitational interaction is of great interest in un-
derstanding many structures observed in astrophysics [1]. Some studies [2] restrict themselves
to collisionless systems; this is a mean-field approach which is not based upon a systematic
expansion in a small parameter, as in plasma physics, and its applicability to systems of point
masses is hard to assess. Other studies [3, 4] assume that a temperature T can be defined
for a gas of point masses, that is that it can reach thermal equilibrium. But the existence of
such a statistical equilibrium requires to cut off the interaction at short distances: without
such a cut-off, the partition function heavily diverges. Therefore one cannot define any finite
invariant Lebesgue continuous measure of the phase space. Hence equilibrium statistical me-
chanics cannot be applied here as based upon the ergodic assumption: the system cannot fill
uniformly all the accessible phase space in the course of time. Nevertheless, as we shall see,
the study of this divergence can give some hints on the main features of the long-term dynam-
ics. This divergence already occurs with N = 3 particles, suggesting that many features of
the N particles dynamics are present for 3 particles in a confining potential. This divergence
was mentioned by Padmanabhan [5], but he ignored the problem by introducing an arbitrary
cut-off on the distances, therefore making the equilibrium problem well defined so.

We have considered a quadratic and nonsymmetrical confining potential V = x2 +3.1y2 +
2z2: with a symmetrical potential, because of the restriction of phase space due to conservation
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of angular momentum that makes the microcanonical partition function converge, the system
would reach true equilibrium. In this case, by looking at the dynamics as a kind of diffusion
in a phase space of infinite volume, one gets a scaling law for the long-time behavior of the
potential energy of a pair: 〈Ep〉 ∝ t1/3. Numerical simulations confirm those predictions.

We propose to unify two points of view that are usually not related to each other: the
“statistical mechanical” one, with all the machinery of Gibbs-Boltzmann ensemble, and the
observations by Heggie [6] that collisions between close pairs (“hard binaries”) and a third
slow mass tend (on average) to bring the pair to a lower energy state. This letter presents
itself as an attempt to understand a fundamental problem in statistical physics, not as a way
of describing real astrophysical objects, a nontrivial task anyway. Nevertheless, it is certainly
of interest to understand what happens exactly in a model system to build on solid ground
statistical mechanics of large assemblies of interacting point masses.

Let us consider N particles of unit mass in a box, attracting each other with a 1/r2 central
force in a d-dimensional universe. The gravitational constant G is set to 1. The energy being
fixed by the initial conditions, a microcanonical approach should be used. The corresponding
partition function is formally

Z =
∫
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The change of variables d�pi = (SdN/2)(p2)(dN−2)/2d(p2), where Sn is the unit sphere surface
in IRn, yields
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Here E is assumed positive, a noncrucial point. The integrand diverges when two particles
are too close to each other. Let us assume |�ri − �rj | ≥ ε. The integrand in (2) diverges as
ε(2−dN)/2 when ε tends to zero, and the change of variables gives a term εd−1. Hence the
partition function diverges if N ≥ 2 + 2/d. For d = 3, Z diverges as soon as N ≥ 3. If d = 2,
the divergence is only marginal for N = 3: if the available phase space is reduced, by the
conservation of angular momentum for instance, Z does not diverge any more. Hence the
d = 2 case with N = 3 in a symmetric confining potential is a nontrivial convergent case: we
will use it as a reference for an equilibrium situation. Bringing 2 +M particles close to each
other can also cause a divergence, but it will obviously concern a smaller part of the phase
space: after changes of variables, Z diverges like

∫
dεεd(M+1)−1+1−dN/2. Hence the divergence

only occurs if N is bigger than 2 + 2/d+ 2M .
The dominating divergence thus comes from pairs. For the same reason, the divergence

due to two different close pairs is also less strong than for one close pair only. Therefore, we
can focus on the case with only one close pair: as this dominates the divergence of Z, it is
more likely to occur. This makes the 3-body problem of great interest: it bears the same
diverging microcanonical partition function as the few-body case, and is far more open to
numerical investigations than the many-body case.

In order to examine the effect of the divergence on the long-term dynamics, we will compare
what happens for d = 2, N = 3 in a confining V = x2 + y2 + z2 potential, with d = 3,
N = 3, and V = x2 + 3.1y2 + 2z2. As long as V is nonsymmetrical, the confining potential
changes nothing to the divergence of the partition function. It has been introduced because,
as suggested by the preceding remark, the N -body problem can be seen in a loose sense
as a collection of three-body problems. Hence the idea of examining what happens when
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Fig. 1 – Histogram of the distance between the closest particles for N = 3 and d = 2: particles are
most of the time far from each other.

perturbing two particles with a third one: if N is large, there will always be nearby a third
particle to interfere. We first planned to use a box with reflecting boundary conditions,
but non-soft potentials turned out to make simulations much harder. We will see that the
quadratic potential changes the expected exponent, but since the divergence is still there, the
basic conclusions are the same.

We used the Bulirsch-Stoer extrapolation method for solving differential equations [7].
When two particles are very close to each other, a change of variables concentrates the diver-
gent part of the dynamics in a term of the form: ü = 1/u2+ smaller terms. The quantity u(t)
is then written as uell + δu, where uell is solution of ü = 1/u2. With this trick, neither forces
nor accelerations get too important, allowing an efficient code, free of any arbitrary cut-off.

The above remarks led to the conclusion that the dynamics is governed by close pairs:
the system spends most of the time in the region of phase space contributing the most to
the divergence of the partition function. Hence one expects that in the divergent case a
close pair will almost always be present in the system [8], whereas in the convergent case
particles will mostly be far from each other. This is not a priori the same as the gravothermal
catastrophe [9]: this divergence occurs whatever the size of the system, and there is no real
core defined. The consequences for a big system are still not clear. In dense areas, pairs are
certainly going to be formed (in agreement with Heggie’s observations [8]) but it is not clear
at all that the size of this dense area will tend to decrease. At least this is not an obvious
consequence of our considerations. Histograms for the minimum pair distance of 3 particles
(representing the time spent with particles at a given distance) are shown in figs. 1 and 2, for
d = 2 and d = 3, respectively, in agreement with this predicted behavior. We have also done
simulations with different forces (in r−1.01 and r−1.6) such that the partition function in 3D
with 3 particles converges: there also the histogram of distances is not sharply peaked near
r = 0.

We noticed that the system cannot explore uniformly the entire phase space. It will
explore new parts of it as time goes by, corresponding to closer and closer pairs. Contrary to
what happens at equilibrium, the system stays forever in a transitory regime: the probability
distribution for the distance r between the closest particles will depend on time. It will never
average itself: the average of r on some large time interval ∆t at different times never reaches
an asymptotic value. Let us now focus on those pairs. Once a pair exists, its energy will
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Fig. 2 – Histogram of the distance between closest particles for N = 3 and d = 3, with a non-
symmetrical potential: there is most of the time a binary in the system.

be nearly constant, except during short-range collisions with the third particle. Therefore it
makes sense to explore the evolution of this energy.

Let us consider a pair with an internal distance of order r. The potential energy of the
pair is of order 1/r. From the virial theorem applied to the Keplerian orbit, its kinetic and
negative total energy are of order 1/r (this theorem does not apply here because the pair is
interacting with the third particle, but it can be used to find orders of magnitude). To ensure
conservation of the total energy, the kinetic energy of the center of mass of the pair has to be
of order 1/r as well. This is contrary to the equipartition of energy, but equipartition has no
reason to hold true in this system without well-defined equilibrium.

Now what will the time tcol be before our pair encounters the third particle? The pair
scans a volume vGrd−1dt during dt. Hence if n denotes the concentration of third particles,
one gets:

tcol � (nvGrd−1)−1.

After such a close collision, there will be some energy transfer. Hence r will change; because
of the infinite volume in phase space corresponding to r small, it will decrease on average.
Heggie [6] has found that a pair whose potential energy is smaller (in absolute value) than the
kinetic energy of the incoming third particle will most of the time not survive an encounter.
On the contrary, hard pairs (whose potential energy is greater than the kinetic energy of the
third mass) get harder on average at each collision: particles get closer. What we also claim
here is that this also happens if the third particle is not picked out from an infinite set of slow,
“cold” particles.

But the fact that the kinetic energy of the center of mass increases also increases the
effective size of our system: with a harmonic potential, this size is of order vG, thus n is of
order rd/2. Then, by assuming that the time scale of the system is of the same order as tcol,
one gets the scaling

r � t2/(3−3d).

In the absence of a quadratic potential, for example in the case of a box of constant volume,
there is still scale invariance when the energy of a pair is changed, but the exponent is not
the same: one gets instead r � t2/(3−2d).
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Fig. 3 – Mean energy of a pair as a function of its age for 3 particles in 3 dimensions. The dashed
line corresponds to x1/3.

We have numerically checked this law by looking at the average behaviour of the energy
of a pair. For this we considered that a pair is born in the system when the pair energy of
the two closest particles in the system becomes negative. The pair will then exist until this
energy becomes positive. During its lifetime, this pair can encounter the third particle (we
have defined such an encounter by the fact that the distance to the third particle is less than
1), and particles inside the pair can change. Thus we can define the age of a pair. We have
represented in fig. 3 the mean energy of a pair as a function of its age. We find 〈Ep〉 � (age)1/3

on two decades in time, as expected from the preceding scaling law.
One thus gets the following picture of the dynamics: a pair appears, lives for some time

during which its representation point walks at random in phase space until the energy of the
pair becomes positive again (although after a collision a pair is usually closer than before,
there will be with probability 1 a collision destroying the pair after a long time); another pair
comes up almost immediately, and the process repeats itself, independent of what happened
before. This picture does not contradict Heggie’s findings: they are valid for the average
collision only. We have tried to write a diffusion equation for this process. One problem is
that because of the finite size of the system, there is a minimum energy for the pair, which is
difficult to include in this framework.

Let us consider a set of different systems, and let us look for the distribution of the energy
of pairs of this set. When a pair is destroyed in a system, another one will appear with
an energy close to the minimum one, which would break the scale invariance. Let us thus
forget this recreation process, and focus for the moment on the evolution of a pair until its
destruction: we will consider systems containing initially one pair, and forget a system when
its pair is destroyed.

The dynamical equation would look like

∂p(E, t)
∂t

=
∫
(ncol(E′)F (E′, E)p(E′, t)−ncol(E)F (E,E′)p(E, t))dE′. (3)

Here p(E, t) denotes the pair energy distribution, ncol the collision rate and F (E,E′) the
probability that a collision will make the energy of a pair jump from E to E′. Assuming scale
invariance, F must only depend on the ratio E′/E. It is then natural to use as a new variable
x = ln(E). The important feature of this diffusion equation is the behaviour of ncol ∝ E−3.
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Fig. 4 – Number of pairs remaining at time t, for a big number of systems containing one pair at time
t = 0. The dashed line corresponds to t−1.

Assuming F peaked around 1, one replaces the right side of eq. (3) by a sum of diffusion,
drift and loss terms:

∂tp = (exp[−3x]p)xx + α(exp[−3x]p)x + δ exp[−3x]p(x).

Denoting u(x, t) = exp[−3x]p(x, t), this equation becomes

∂tu = exp[−3x](uxx + αux + δu).

The case α = 0, δ = 0 (keeping only the diffusion term) gives a solution with a moving front:
u(x, t) ∝ exp[−e3x/9t]/t. The general case has a stationary solution u(x) = exp[kx] where k is
solution of k2+αk+δ = 0. Hence one can look for solution of the form u(x, t) = exp[kx]v(3x−
ln(t))/t. Finally, the general solution is u(x, t) ∝ exp[kx+(2k+α)(ln t−3x)/3−e3x−ln t/9]/t.
p can thus be written: p(x, t) = p̃(3x− ln t)/t−k/3.

Hence we get a packet propaging to high energies, with a damping term which is a power
of t. t−k/3 is thus related to the loss of pairs when there is no recreation: one expects the
number n(t) of pairs of a given age to decrease as tk/3. Let us now suppose that we can
neglect the width of this packet (we consider that a pair of a given age has an energy age1/3)
and take into account the recreation of pairs after their destruction.

We will now show that the fact that the system cannot reach equilibrium can be seen as
the fact that this exponent k/3 is greater than −1 (it has been numerically found to be very
close to −1: see fig. 4; the difference at long time is mainly due to poor convergence due to
the small number of such events): if it is not, the integral

∫
dxxk/3 converges near infinity

and one can include a constant reinjection term c in the diffusion equation to balance the
destruction term. Indeed, the distribution of the energy of the pairs at time t is the sum of
all the packets which started at time t′, less than t, damped by (t− t′)k/3. Since this integral
converges when t tends to infinity, c can be chosen so that the number of pairs is conserved.
One expects thus to find equilibrium in this situation.

This is actually the case when the bounding potential is symmetrical. For V = x2+y2+2z2,
the angular momentum along z is conserved, and there is true microcanonical equilibrium.
That the partition function converges in this case makes it unlikely to observe the law of
growth of the energy of an aging pair, since pairs have a finite lifetime. Nevertheless, one may
still get scaling laws, corresponding to the occurrence of rare events (one explores the tail of
a distribution), and one numerically gets n(t) � t−5/4, and E � (age)1/2. The probability for
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a pair to have an energy between E and E + dE is thus the probability that it has an age
between E2 and E2 + 2EdE; it has then been damped by a factor age−5/4: hence it behaves
like E × E−5/2 = E−3/2. The study of the microcanonical distribution shows that, if we call
Zn the number of states with a pair of energy between 2n and 2n+1,

√
2Zn+1 = Zn. Hence the

exponent β of the probability of having a pair of energy E satisfies 1/2+n+1+βn+β = n+βn:
hence β = 3/2, which validates the present model.

When k/3 is greater than −1, the reinjection term c(t) defined as the number of pairs
destroyed and recreated at low energy per unit time must tend to zero when t → +∞.
Expressing the conservation of the total number of pairs in terms of c(t) yields

∫ t

0

c(t− t′)
(1 + t′)−k/3

dt′ = 1.

Considering that c(t− t′) ≈ c(t) for t′ < t/2 and evaluating the integral from 0 to t/2, we find
c(t)t1+k/3 = O(1). If we put c(t) ∝ t−k/3−1 the other half of the integral is also of order one
which validates this hypothesis. The distribution p(t′, t) of the pair ages t′ at time t is then

p(t′, t) ∝ (1 + t− t′)−k/3−1(1 + t′)k/3.

Equivalently, the distribution of pair energies corresponds to make the change t′ = E3. This
shows how older and older pairs (that is, more and more energetic pairs) are found in the
system in the course of time. Note that the integral of c(t) diverges, which means that the
pairs are nonetheless destroyed and recreated endlessly.

In conclusion, the three-body system in a trap without angular momentum conservation
never reaches equilibrium. This has important consequences on various features of the dy-
namics. The use of a cut-off in theoretical or numerical studies seems thus unjustified, and
could lead to wrong conclusions. On the other hand, the concept of diffusion in phase space
seems quite relevant, since the scaling law for the energy of a pair is well checked and the
solution of the diffusion equation we write coincides with the microcanonical distribution in
the equilibrium case.
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