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a b s t r a c t

Development commonly involves an interplay between signaling, genetic expression and biophysical

forces. However, the relative importance of these mechanisms during the different stages of

development is unclear. Leaf venation networks provide a fitting context for the examination of these

questions. In mature leaves, venation patterns are extremely diverse, yet their local structure satisfies a

universal property: at junctions between veins, angles and diameters are related by a vectorial equation

analogous to a force balance. Using a cell proliferation model, we reproduce in silico the salient features

of venation patterns. Provided that vein cells are given different mechanical properties, tensile forces

develop along the veins during growth, causing the network to deform progressively. Our results

suggest that the local structure of venation networks results from a reorganization driven by

mechanical forces, independently of how veins form. This conclusion is supported by recent

observations of vein development in young leaves and by the good quantitative agreement between

our simulations and data from mature leaves.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Natural networks such as the vascular systems of plants and
animals or river basins exhibit a strikingly regular, hierarchical
structure, which has long been an object of scientific inquiry. In
their study, two approaches can be distinguished, which address
their organization in relation with their function or their
development. This is true in particular of leaf venation networks
(Roth-Nebelsick et al., 2001; Nelson and Dengler, 1997). Although
they also serve for mechanical support (Niklas, 1999), the main
function of leaf veins is fluid transport, and their structure can be
interpreted in terms of optimal transport properties (McCulloh
et al., 2003; Durand, 2006) or tolerance to damage (Sack et al.,
2008). As regards their development, new veins are formed
progressively during leaf growth (Nelson and Dengler, 1997);
while there is some evidence that the network is remodeled
(through changes in relative vein size) as it develops (Kang and
Dengler, 2004), its hierarchical organization largely reflects the
history of its formation (Nelson and Dengler, 1997), which may
thus be inferred by examining the thicknesses of its branches.

The development of veins involves the differentiation of
ground cells into procambial (vein precursor) cells, which
subsequently differentiate into the specialized tissues that make
ll rights reserved.
up the veins, and the reorganization of the network by
coordinated growth. Here, ‘‘reorganization’’ refers to the progres-
sive deformation of the network that results from the non-
uniform growth of the leaf. The formation of veins is generally
thought to be driven by the canalization of the hormone auxin
(Sachs, 1981), although it was also proposed to involve mechanical
stresses (Couder et al., 2002; Laguna et al., 2008). That the
network undergoes reorganization during leaf development may
be inferred from its geometrical properties in mature leaves (Bohn
et al., 2002), and is apparent in the evolution of the network
geometry in young leaves (Sawchuk et al., 2007), although it is
seldom remarked upon. Moreover, if these geometrical properties
can be understood as achieving an optimum in some sense, then
reorganization is not a mere byproduct of growth, but a
requirement for this optimum to be attained, and should be
investigated alongside vein differentiation mechanisms to give a
proper account of leaf venation morphogenesis. In the present
study, leaving the question of vein differentiation aside, we
propose a model in which veins are formed successively, and
study how the network evolves through non-uniform growth
driven by mechanical stresses. This model is most relevant to the
leaves of dicots, one of the two groups of flowering plants;
monocots—the other group—exhibit different patterns of leaf
growth and venation (Nelson and Dengler, 1997).

While the role of mechanical forces in plant growth is well
established (Schopfer, 2006), and the importance of coordinated
growth has been recognized in several areas of plant development
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(see e.g. Coen et al., 2004), the role of mechanical stresses as a
patterning mechanism has received much less attention where
plants are concerned (Green et al., 1996; Couder et al., 2002;
Dumais, 2007; Laguna et al., 2008; Hamant et al., 2008) than in the
study of animal development (see e.g. Farge, 2003; Hove et al.,
2003; Nelson et al., 2005; Nguyen et al., 2006; Lecuit and Lenne,
2007; Hufnagel et al., 2007). This is true of experimental as well as
modeling approaches, with most models of plant patterning
involving biochemical mechanisms, in which auxin plays a
prominent role. One notable exception is phyllotaxis (the arrange-
ment of leaves or flowers on a stem): alongside biochemical models
focusing on the transport of auxin (Jonsson et al., 2006; Smith et al.,
2006; de Reuille et al., 2006), biomechanical models giving a
central role to buckling under compressive forces have also been
proposed (Green et al., 1996). More recently, Newell et al. (2008)
integrated the two approaches, showing that together they might
ensure the stability of the obtained patterns, a matter left
unresolved by otherwise successful models (Jonsson et al., 2006;
Smith et al., 2006). Returning to leaf vein patterning, the role of
growth is considered in some models (Runions et al., 2005; Fujita
and Mochizuki, 2006), but most revolve around the auxin
canalization hypothesis (e.g. Sachs, 1981; Mitchison, 1980; Dimi-
trov and Zucker, 2006; Feugier and Iwasa, 2006). To our knowledge,
the only biomechanical approach was proposed by Laguna et al.
(2008), who suggest that mechanical stresses induce differentia-
tion; however, their model does not account for the reorganization
of the vein network during growth, which we address here.

Veins in dicot leaves are typically laid out as follows: a midvein
runs along the axis of the leaf, and secondary veins extend from
the midvein to the margins; a reticulum formed of higher-order
veins interconnects the secondary veins, dividing the surface of
the leaf into areoles. The arrangement of the veins shows great
variations among species (Hickey, 1973). This is particularly true
of the largest veins, the layout of which is correlated with the
shape of the leaf, and involves specific mechanisms (Scarpella
et al., 2006). As regards the geometry of the higher-order veins,
both visualization of cell identity markers in young leaves (Kang
and Dengler, 2004; Scarpella et al., 2004, 2006; Wenzel et al.,
2007; Sawchuk et al., 2007) and image analyses of vein skeletons in
mature leaves (Bohn et al., 2002) suggest the reiteration of a self-
organized process. Indeed, the local structure satisfies a universal
property, which can be formulated as a simple vectorial equation
which has been termed the ‘‘force model’’: if one associates with
each vein a virtual force having the same direction as the vein and a
magnitude proportional to its diameter, these forces are approxi-
mately balanced at each junction (Bohn et al., 2002). This result
was found to hold across several species of dicotyledons.

To study the reorganization of venation networks, we developed
a model incorporating well-established mechanisms of plant tissue
growth. In this two-dimensional model, cell proliferation is driven by
turgor pressure and two cell types are distinguished: ground cells
and vein cells. The model is built upon the following rules, some of
which are common in the modeling of plant growth (Prusinkiewicz
and Lindenmayer, 1990; de Boer et al., 1992; Dupuy et al., 2008):
(1)
 cell walls are viscoelastic and elongate under turgor pressure;

(2)
 the mechanical properties of vein cells are different from

those of ground cells; this assumption is essential as it
induces the inhomogeneous mechanical stresses that drive
the reorganization of the venation network;
(3)
 cells divide when they reach a threshold area;

(4)
 new veins appear when the areoles reach a threshold area.
This model is found to reproduce several qualitative and

quantitative features of leaf venation geometry. We account for
observations on young leaves (Scarpella et al., 2004, 2006;
Sawchuk et al., 2007) as well as we recover the local geometrical
properties of vein patterns in mature leaves (Bohn et al., 2002),
quite independently of the details of the model. Overall, our
results suggest that mechanical forces are important in shaping
venation networks. Note, however, that, in contrast with the
mechanism proposed by Couder et al. (2002) and implemented in
the model of Laguna et al. (2008), in which mechanical stresses
are involved in vein differentiation, they act here by driving the
reorganization of the network. Indeed, while previous mechanical
and biochemical models of vein patterning have focused on vein
differentiation, we find that reorganization is essential in
accounting for venation patterns. This conclusion is supported
by the results of a simplified model, which shows how the effects
of differentiation and reorganization may be separated in
describing the formation of venation networks. The article is
organized as follows: the model is detailed in Section 2; in Section
3, we give the results of the simulations and compare them to
available experimental data; finally, in Section 4, we discuss the
respective roles of differentiation and reorganization in leaf
venation morphogenesis, and review the main hypotheses of our
model, its limitations and its implications.
2. The model

We consider a single, two-dimensional layer of cells, repre-
sented as a partition of the plane into polygons. There are two cell
types, ground and vein cells. As we are primarily interested in the
local structure of the network, we consider a square, growing
domain, with periodic boundary conditions.

2.1. Cell walls and growth

Plant cell growth is driven by the tensions induced in cell walls
by turgor pressure (Schopfer, 2006). Cell walls respond to these
tensions by a combination of elastic (reversible) and irreversible
extension, the latter being identified with growth. To describe this
process, Lockhart (1965) introduced a model in which elastic
deformation is proportional to tension (Hooke’s law) and growth
rate is proportional to the tension in excess of a certain yield
threshold. In our model, each wall i (corresponding in fact to the
two walls that separate adjacent cells) is described as a
viscoelastic rod with a time-dependent rest length l0i . Elastic
deformation corresponds to the deviation between the actual
length li of the wall and its rest length, and irreversible extension
to the increase of the rest length with time. For simplicity, we
assume that there is no growth threshold, so that both are
proportional to the tension Ti borne by the wall:

Ti ¼ mh
li

l0i
� 1

 !
¼
nih

l0i

dl0i
dt

. (1)

Here h is the thickness of the wall, m its elastic modulus, and ni its
viscosity. We assume that all walls have the same elastic modulus
m and that cells actively maintain a constant wall thickness h

through the addition of new material during elongation (Proseus
et al., 1999; Cosgrove, 2005).

As noted by Lockhart (1965), elastic relaxation is much faster
than growth, so that over the course of growth, elastic equilibrium is
achieved at any given time (in other words, the evolution of the
system is quasi-static). In this state of elastic equilibrium, the
mechanical energy E of the system is minimized. In our simulations,
a constant uniform turgor pressure P is assumed, so that E is given by

E ¼
X

i2walls

mhl0i
2

li

l0i
� 1

 !2

�
X

j2cells

PSj, (2)
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where Sj is the area of cell j. The first term corresponds to the elastic
energy stored in the walls, which is proportional to the square of
their elastic deformations. The second term is the pressure potential
energy, which reflects the tendency of cells to swell under the effect
of turgor (the potential energy becomes more negative when cell
areas increase). More precisely, the variation of pressure potential
energy when cell j changes size by DSj is minus the work performed
by the pressure inside cell j, which is equal to PDSj (this is the two-
dimensional equivalent of the work of pressure forces in three-
dimensions, which is the pressure times the change of volume; the
areas Sj can be seen as the volumes of cells in a tissue layer one unit
length thick). The tendency of cells to swell under turgor is
counteracted by the elasticity of their walls. At equilibrium, the
two effects are exactly balanced.

To simulate the evolution of the system, we proceed as follows.
At each time step, the state of the system (i.e., the positions of the
junctions between walls) is determined by minimizing the
mechanical energy E (with the rest lengths being fixed) using a
conjugate-gradient algorithm, then the rest lengths l0i are updated
according to Eq. (1). Actually, with periodic boundary conditions,
and for a large enough system, the assumption of a constant
pressure is equivalent to that of a constant overall growth rate,
which we have used for simplicity. Indeed, in that case, the
pressure potential energy is independent of the configuration
because the total area (

P
j2cellsSj) is fixed and can be ignored in the

minimization.
2.2. The difference in mechanical properties of veins

and ground tissue

Cells can actively control growth by the orientation of wall
fibers and by expansins (Cosgrove, 2005). While ground cells have
uniform, regular shapes, vein cells exhibit dramatic shape changes
(Nelson and Dengler, 1997; Scarpella et al., 2006, 2004; Wenzel
et al., 2007), which result from anisotropic growth and suggest
anisotropic mechanical behavior. Consistent with this observa-
tion, we assume different mechanical properties for ground cell
walls—uniform viscosity—and for vein walls—a higher viscosity
that depends on the orientation of the wall relative to the vein to
incorporate tissue anisotropy (walls between a vein cell and a
ground cell are treated as vein walls). This hypothesis is all the
more natural as mature vascular tissue is stiffer than the
surrounding tissue (Niklas, 1999). Note that differences in elastic
modulus (rather than viscosity) between ground and vein cells
lead to similar results (see Discussion).

The orientation dependence of vein wall behavior is described
by introducing a measure of the local orientation of the vascular
tissue, which is computed here as a function of the layout of the
veins (and could be related to the local orientation of the
elongated vein cells in actual leaves). Noting that such an
orientation cannot be defined unambiguously within vein junc-
tions, this measure must include information about the degree
of anisotropy of the tissue as well as about its orientation.
Mathematically, this can be done by representing the orientation
by a symmetric, rank-two tensorial field. An intuitive interpreta-
tion of such a field is provided by the geometrical representation
of its values in different locations by ellipses (see Fig. 2). The
unambiguous orientation that can be defined away from junctions
is indicated by elongated ellipses, the major axis of which is
aligned with the direction of the vascular tissue, while the
absence of a clear orientation in junctions is reflected by rounder
ellipses. In more mathematical terms, the orientation tensor is
defined such that its largest eigenvalue is always equal to one and
the corresponding eigenvector is aligned with the direction of the
tissue. The anisotropy is reflected by the ratio between the two
eigenvalues of the tensor: the smallest eigenvalue is close to zero
when the orientation is well defined, and becomes closer to one
inside junctions.

While all ground cell walls share the same viscosity ng (Fig. 1A),
the viscosity of each vein cell wall is a function of its direction and
of the local orientation (Fig. 1B), such that:
�
 n ’ lng (l42) for an edge that is far from a junction and
aligned with the local orientation.

�
 n ’ 2ng for an edge that is far from a junction and perpendi-

cular to the local orientation. On average, vein widths may thus
be expected to increase at a rate that is half the overall growth
rate of the system, which is roughly consistent with the vein
diameter distributions in leaves.

�
 n varies continuously between these extremes for intermediate

orientations.

�
 n ’ 2lng inside vein junctions. This value is such that junctions

grow at the same rate as the veins they connect.

The simulation results reported in what follows were obtained
with l ¼ 5, which is the smallest value that yields effective
reorganization. Larger values of l give comparable results.

2.3. Cell division

Cells divide when they reach a threshold area (S ¼ 1, defining
our unit area), through the insertion of a new wall that is initially
free of tension (li ¼ l0i ). The new wall runs through the centroid of
the cell in the direction of the smallest second moment of area.
This direction corresponds approximately to the smallest exten-
sion of the cell, similarly to proposed cell division criteria (Smith
et al., 2006). The identity of cells (ground/vein) is inherited during
divisions.

2.4. Areole division

The simulation begins with a small number of ground cells.
Veins are added progressively over time, by switching files of
ground cells to the vein state. The first two veins are placed
arbitrarily, forming a first areole (this is possible due to the
periodic boundary conditions). Subsequently, new veins are added
when an areole reaches a threshold area (Sa), dividing it into
smaller areoles. As a simplification, there are no freely ending
veins. The value Sa ¼ 100 was chosen based on an estimate of the
number of cells in areoles in developing Arabidopsis leaves (see
e.g. Scarpella et al., 2004). The time when the first veins are
created is such that the area of the first areole is of the order of
Sa=2, as if it were formed by the division of a larger areole.

The locations of new veins are determined according to
geometrical rules that are qualitatively consistent with the auxin
canalization hypothesis (Sachs, 1981), yet compatible with other
vein patterning models (e.g. the mechanical model of Couder
et al., 2002). When an areole is divided, several new veins
connecting the center of the areole to its boundary are added
successively. The locations of the new veins are chosen such that
they are more or less evenly distributed while keeping their
length to a minimum. More specifically, each new vein connects
the center C of the areole to the point along its boundary that
maximizes a function f, where f is inversely proportional to the
distance to the center and penalizes points that are close to
previously added veins. If Mi are the ends of previous veins (see
Fig. 1C), the value of f at a point M is given by

f ðMÞ ¼
PigðjMiM

��!
jÞ

jMC
�!
j

, (3)
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Fig. 1. Principle of the cell proliferation model. (A, B) Cells have viscoelastic walls

(represented as a spring in series with a dashpot) and grow under turgor pressure.

For simplicity, square cells are represented. All walls have the same elastic

modulus m. Ground cell walls (A) have viscosity ng. Vein cell walls (B)

perpendicular (resp. parallel) to the vein have viscosity 2ng (resp. lng with

l42). (C–E) Areole division rules. New veins are added when an areole reaches a

threshold area (see text for details). (C) Diagram defining the points used in Eq. (3).

(D,E) Ground cells and vein cells are shown as green and blue polygons,

respectively, while the black lines indicate the locations of cell walls. Newly

added veins are highlighted in red. (D) A roughly round areole is divided into three.

(E) An elongated areole is divided into two along its shortest extension (this is

similar to the cell division rule). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 2. Local orientation of the vascular tissue, which governs the anisotropic

mechanical behavior of vascular cells (see text). Note that this orientation is

defined according to the layout of the veins, and does not necessarily coincide with

the orientation of individual cells (which determines their division planes). It is

mathematically defined as a tensorial field, which can be represented by ellipses.

The unambiguous orientation that can be defined away from junctions is reflected

by elongated ellipses, while the absence of a clear orientation within junctions is

reflected by rounder ellipses.
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where g is a function satisfying gð0Þ ¼ 0 and gðxÞ ! 1 when
x!þ1. This procedure can be seen as a crude implementation
of the auxin canalization hypothesis as presented by Dimitrov and
Zucker (2006): f may be understood as an estimate of the auxin
flux, where g models the reduction in flux due to auxin depletion
from other veins; new veins connect a maximum of auxin flux to
the center of the areole. New veins are added until the maximum
of f along the boundary of the areole no longer exceeds a certain
threshold. With the threshold value used here, areoles are divided
into two or three according to their shape: elongated areoles are
typically divided into two along their shortest extension, while
areoles that have a rounder shape are divided into three (Fig. 1D
and E). New veins are continuously added until the system
reaches a certain size (L � 55:5), then growth alone continues
until it reaches its final size (L � 113), mimicking late stages of
leaf development (Rolland-Lagan et al., 2009).
3. Results

3.1. Evolution of the network

Fig. 3 shows a sequence illustrating several stages of a typical
run. As the system grows, a continuous reorganization of the vein
network is observed. Firstly, the veins, which initially have the
form of an irregular file of cells, tend to become straighter
between vein junctions, as do their boundaries. Secondly, the
network deforms progressively, giving rise to zigzagging vein
paths similar to those observed in actual young leaves (see e.g.
Fig. 3J in Scarpella et al., 2004).

These observations can be explained in light of the mechanical
properties of vein cells. To maintain tissue integrity, each vein
must stretch longitudinally at the same rate as the surrounding
tissue, and the higher viscosity results in increased longitudinal
tensions. On the one hand, these tensions tend to straighten out
veins and their boundaries. On the other hand, the average tension
along a vein is proportional to the number of walls oriented in the
longitudinal direction (the strain rates of these walls, and thus
their tensions, are approximatively uniform), and thus to the
width of the vein (the walls are evenly separated). The
reorganization leads to a state such that the tensions are balanced
at a given junction, imposing a relation between the widths of the
veins and the angles between them. This gives a rationale for the
balance of virtual forces introduced in Bohn et al. (2002) to
describe the geometry of junctions. The outcome of the evolution
is a netted hierarchical structure (Fig. 3C) that is visually similar to
the local structure of a mature leaf (Fig. 3D).
3.2. Geometry of the network

To allow a quantitative comparison, the simulation was run
repeatedly with randomized initial conditions, and the statistical
properties of the patterns obtained were analyzed. The hierarch-
ical structure of the networks is reflected by the distribution of
veins widths (Fig. 4B)—a wide distribution—and the relation
between the widths at junctions (Fig. 4C)—thin veins connect to
thick veins.

Now, the overall structure of the network is mostly a reflection
of the rules used to add new veins. More importantly, we find that
the local structure of the network that results from its reorganiza-
tion is in good agreement with measurements on mature leaves
(Bohn et al., 2002). The angles at junctions are broadly distributed
(Fig. 4D), varying continuously between values similar to those
observed in crack patterns (90� þ 90� þ 180�), found when a thin
vein connects to thick veins, and to those observed in two-
dimensional soap froths (120� þ 120� þ 120�), for veins having
comparable sizes (Fig. 4E). This is consistent with the force model:
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Fig. 3. (A–C) Development of venation patterns in the cell proliferation model (colors same as Fig. 1). See Supporting online material for a movie. For each image, we

indicate the size L of the periodic pattern and show an area 1:5L� 1:5L (the unit length is given by the threshold area S ¼ 1 for cell division). (A) State when the first veins

have been added (L ’ 8). (B) Later stage of growth (L ’ 25). Newly added veins appear as irregular rows of cells. Vein segments formed earlier are straighter and have

smoother boundaries. (C) End of the simulation (L ’ 113; individual cells are not shown). Notice how the angles between veins evolve with time. (D) Detail of the venation

network of a mature Pittosporum leaf ð14 mm� 14 mmÞ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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a very thin vein develops a small tension, so that the balance of
forces between the intermediate and larger vein tends to align
them, yielding the crack-like limit; three veins of the same
thickness have the same tension, so that force balance imposes
angles of 120� between them, which is the froth-like limit.

All of the above measures of network structure show good
quantitative agreement between our simulations and actual
leaves (Bohn et al., 2002), confirming that our model yields
patterns that are geometrically similar to actual leaf venation
networks, as regards in particular the geometry of vein junctions.
4. Discussion

We have described the reorganization of leaf venation net-
works on the basis of the biophysical properties of plant cells,
while vein differentiation is implemented summarily in the form
of geometrical rules. To demonstrate that the two can indeed be
separated in accounting for the local structure of the networks, we
performed additional simulations.

On the one hand, we switched off the difference in mechanical
properties between vein and ground cells. The resulting patterns
are irregular (Fig. 5A); the veins remain wavy with irregular
boundaries. This illustrates the importance of non-uniform
mechanical properties within the leaf. On the other hand, we
developed a simplified model in which vein segments are
represented as straight lines of constant width, dividing the leaf
into polygonal areoles (see Fig. 5B and C). Veins are added
according to the geometrical rules for areole division used above
and their widths increase at a constant rate. In a first version of
this simplified model, growth is uniform with no reorganization,
and the development of the network reduces to successive areole
division (Fig. 5B). The angle distribution is very different in this
case: most junctions contain a 180� angle (Fig. 5E). Note that this
does not preclude correlations between vein sizes and angles.
Such correlations were in fact observed by Laguna et al. (2008) in
their mechanical model of vein differentiation, and led them to
claim that their model could account for the geometry of vein
junctions. However, only a small fraction of vein junctions can be
expected to contribute to junction geometries other than a crack-
like one—and to these correlations—in a model that does not
include reorganization, in contrast with the broad angle
distributions observed in our model and in plant leaves.

In a second version of the simplified model, each vein segment
behaves as a viscoelastic rod. We use the same equations as for
the cell proliferation model (Eqs. (1)–(2)). This can be viewed as
the limit of the cell proliferation model where the viscosity of
ground cells is negligible. Fig. 5C shows a resulting pattern, which
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parameters used to describe the junction are the widths wL;S;I , the angles aLI;LS;IS , and the virtual forces ~FL;S;I having magnitudes proportional to the widths of the veins. (B)

Distribution of vein widths. Simulation (bold line) and data from Bohn et al. (2002) for leaves of Gloeospermum (dashed line; in that case, the unit length is 20mm, which is

of the order of one cell size). Due to numerical limitations, the distribution of vein widths in the simulations is not as broad as that in actual leaves, which extends beyond

the limits of the figure. (C) Correlation between the widths: average of wI=wL versus wS=wL . Simulation (bold line) and data from Bohn et al. (2002) for leaves of

Gloeospermum (dashed line). The two straight lines wI ¼ wS and wI þwS ¼ wL are limits imposed by the definition wI � wS and by the force balance ~FI þ
~FS þ

~FL ¼
~0. (D)

Distributions of the angles between veins in the simulations. (E) Correlations between the angles and widths: averages of aLI , aLS , aIS versus wS=wL . Simulation (bold lines)

and data from Bohn et al. (2002) for leaves of several species (other lines). The variation of aLI is a signature of the force model. The geometry of junctions was analyzed as in

Bohn et al. (2002); junctions between more than three veins (which are rare) or too close to another junction (separated by a distance smaller than the width of the

connecting segment) were discarded.
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is very similar to Fig. 3C. The reorganization manifests itself by a
broad distribution of the angles between veins (Fig. 5F), as in the
full model (Fig. 4D) and as is observed in mature leaves (Bohn
et al., 2002). We also investigated the effect of modifying the rules
for areole division (Fig. 5D): dividing all areoles into two (rather
than into two or three depending on their shape), while it
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Fig. 5. Importance of coordinated growth driven by mechanical stresses. (A) Cell proliferation model where ground and vein cells have the same mechanical properties,
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three. (F) Angles in the simplified model with reorganization shown in (C) are broadly distributed, as in the full model (Fig. 4D) and in leaves (Bohn et al., 2002). (G)

Correlations between veins widths and angles in the simplified model with reorganization shown in (C) (bold lines) and in the simplified model with altered division rules

shown in (D) (thin lines); same notations as in Fig. 4E.
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decreases the number of froth-like junctions does not substan-
tially change the correlations between vein angles and widths
(Fig. 5G). These results show that the local structure of the
network is determined by its reorganization, and essentially
independent of the mechanism of vein differentiation, confirming
that it is governed by the mechanics of growth, provided that the
rheological properties of vein and ground cells differ. Note that
differences in rheology do not affect the shape of future vein cells
instantaneously, but over the course of growth, which explains
why shape changes are not observed at the earliest stages of vein
patterning.

Let us finally discuss the generality of our cell proliferation
model applied to leaf venation. Consideration of the actual
cylindrical shape of veins would suggest that the tensions should
be proportional to the cross-section of the veins; this apparent
contradiction with the virtual force model (Bohn et al., 2002 found
the virtual forces to be proportional to vein diameter) could be
resolved if the mechanical behavior of veins is dominated by the
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bundle sheath (a layer of cells that surrounds the vein). The rest of
our results is mostly insensitive to the details of the model:
rheology of the walls, cell shapes and division rules. For instance,
if the elastic modulus of vein cells is higher, but their viscosity is
the same as those of ground cells, comparable elastic strains are
associated with comparable growth rates of the two cell types, but
would correspond to higher tensions in vein cells, as with the
differences in viscosity assumed here. In both cases, the net result
on the tissue level is that different tensions are needed to achieve
a given growth rate, which is the key to the proposed reorganiza-
tion mechanism. The same effect could also result from the
elongated shapes of vein cells, which increase the density of cell
walls in veins. However, the consequences of the shape of vein
cells on their mechanical behavior could be described properly
only within a three-dimensional model (which is why we did not
attempt to reproduce them; the growth of vein cells in our model
is in fact anisotropic but cell elongation is limited by transverse
cell divisions, while it is amplified in actual leaves by longitudinal
divisions). These effects are most probably combined in actual
leaves.

Robustness of the model is warranted by the small number of
relevant parameters: viscosity ratios and areole to cell threshold
area ratio. In addition, these parameters are largely constrained.
The ratio of areole threshold area to cell threshold area is readily
measurable in actual leaves. As we have noted, the viscosity of
vein cells in the transverse direction is related to the distribution
of vein widths, and we chose a value consistent with the observed
distribution. That this viscosity should be higher than that of
ground cells can be concluded from the fact that leaf veins
become more elongated with time, indicating that the growth of
vein diameters is slower than the overall growth of the leaf. On
the other hand, if it was much larger than one, vein diameters
would barely increase with time, and the hierarchical structure of
the network would be lost. As regards the longitudinal viscosity of
vascular cells, if it is decreased below the value used here (l ¼ 5),
veins become gradually more irregular and reorganization less
effective. Larger values yield comparable results. Overall, our
model is in agreement with statistical data on mature leaves, and
predicts a reorganization that is already visible at the early stages
of development (Kang and Dengler, 2004; Scarpella et al., 2004,
2006), in particular in the time-lapse images by Sawchuk et al.
(2007), e.g. Fig. 3(i), in which an initially straight vein that
develops a kink after a new vein has connected to it is clearly
visible. While it seems hardly feasible to probe the mechanical
behavior of individual differentiating vascular cells, we predict
that the application of mechanical forces to growing leaves should
influence the venation network, which suggests a indirect route to
investigate this behavior and obtain further experimental evi-
dence of its importance in leaf development.

While it was essential to our conclusions to show how
differentiation and growth could be separated, both aspects
would have to be reunited to give a more comprehensive account
of leaf venation morphogenesis. To do so, the geometrical rules
used in our model to describe the formation of veins would have
to be replaced by a suitable model of vein differentiation, whether
mechanical or biochemical. In this perspective, it must be noted
that existing biochemical models of vein differentiation are
usually formulated on the cellular scale, and could readily be
integrated with our approach. Also, we considered periodic
boundary conditions to investigate the local structure of leaf
venation networks, and a reticular network structure, but our
model would be equally applicable to the different network
structures that could be generated with other differentiation
rules, e.g. branched networks, or to an entire leaf. Finally, the
mechanisms of vein differentiation may provide a clue to
the origin of the anisotropy of vein cell behavior. This was
implemented geometrically in our model, by constructing a local
orientation from the shape of the veins, leaving open the question
of how actual cells might ‘‘perceive’’ the orientation of veins. One
could imagine that this response involves the polar transport of
auxin. Indeed, the localization of PIN (auxin efflux carrier)
proteins is one of the earliest signs of a preferential orientation
in differentiating vascular tissue (see e.g. Scarpella et al., 2006).
Overall, this points to the integration of cell-level molecular
processes with tissue-level coordinated growth as a promising
direction for future investigation of plant morphogenesis.
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