
Geometry, epistasis, and developmental patterning
Francis Corson and Eric Dean Siggia1

Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009.

Contributed by Eric Dean Siggia, February 6, 2012 (sent for review November 28, 2011)

Developmental signaling networks are composed of dozens of
components whose interactions are very difficult to quantify in
an embryo. Geometric reasoning enumerates a discrete hierarchy
of phenotypic models with a few composite variables whose para-
meters may be defined by in vivo data. Vulval development in
the nematode Caenorhabditis elegans is a classic model for the in-
tegration of two signaling pathways; induction by EGF and lateral
signaling through Notch. Existing data for the relative probabilities
of the three possible terminal cell types in diverse genetic back-
grounds as well as timed ablation of the inductive signal favor
one geometric model and suffice to fit most of its parameters. The
model is fully dynamic and encompasses both signaling and com-
mitment. It then predicts the correlated cell fate probabilities for a
cross between any two backgrounds/conditions. The two signaling
pathways are combined additively, without interactions, and epis-
tasis only arises from the nonlinear dynamical flow in the land-
scape defined by the geometric model. In this way, the model
quantitatively fits genetic experiments purporting to showmutual
pathway repression. The model quantifies the contributions of
extrinsic vs. intrinsic sources of noise in the penetrance of mutant
phenotypes in signaling hypomorphs and explains available
experiments with no additional parameters. Data for anchor cell
ablation fix the parameters needed to define Notch autocrine
signaling.

embryonic development ∣ modeling ∣ signaling dynamics

During development, a single cell gives rise to organized struc-
tures comprised of specialized cell types. The molecular

description of these transformations has focused on the transcrip-
tional networks controlling gene expression (1). However we still
cannot predict the time course of gene expression in a developing
embryo. The quantitative description of signaling is more proble-
matic because it is more enmeshed in cell biology and there are
many genes that modulate the behavior of the common pathway
components by position/aggregation/phosphorylation, depending
on the cellular context and organism (2). Evolutionary bricolage
(3) can alter many genetic linkages leaving the phenotype invar-
iant. For instance, somitogenesis in all vertebrates is well de-
scribed by the “clock and wavefront” model, yet there is little
overlap among the genes that actually oscillate in theWnt, Notch,
and FGF pathways when comparing fish, chick, and mouse (4).
Thus gene regulatory networks have to be worked out species by
species, and it will be problematic to transfer numerical para-
meters between systems.

Classical embryology developed a suite of concepts that broke
down the steps from signaling to cell differentiation and moti-
vated many experiments, even though they are difficult to assay
precisely. During development, cells or tissues become compe-
tent when they can sense signals that direct them toward a parti-
cular fate; they are specified or committed to a fate when the
signal can be removed with no change in outcome. Cells are de-
termined when they cannot be directed to alternative fates by
other signals. Differentiation ensues when specialized gene bat-
teries are induced along with characteristic morphology. None of
these concepts can be tested in a completely controlled way in
vivo, and the recent creation of induced pluripotent stem cells

(5) shows that even differentiation can be reversed. Yet they have
provided a useful guide to experiments.

These concepts admit a natural geometric representation,
which can be formalized in the language of dynamical systems,
also called the geometric theory of differential equations (Fig. 1).
When the molecular details are not accessible, a system’s effec-
tive behavior may be represented in terms of a small number of
aggregate variables, and qualitatively different behaviors enum-
erated according to the geometrical structure of trajectories or
topology. The fates that are accessible to a cell are associated with
attractors—the valleys in Waddington’s “epigenetic landscape”
(6)—to which neighboring trajectories converge. The set of
points that tend to a given attractor forms its basin of attraction,
and the state of commitment of a cell can be defined by its posi-
tion relative to the basins of different fates. Along the boundaries
between basins of attraction are saddle points, where the flow
splits between two attractors, marking a “decision point” between
different outcomes. Certain fates become accessible only at a par-
ticular time during development, so one should think of a land-
scape that changes over time. The external signals to which cells
respond during competence transiently shift the boundaries be-
tween attractors, biasing trajectories toward one fate or other.

The appeal of this type of mathematics for developmental biol-
ogy was recognized long ago (7) because the description is phe-
notypic and the mathematical concepts are formulated without
reference to parameters. However, the applications never went
beyond metaphor. The tools of dynamical systems theory have
been used to analyze the qualitative behavior of detailed gene
network models, but this assumes a correct model is available
to begin with. Our aim here is to show that we may get a better
grasp of developmental phenomena by stepping back from the
molecular scale and reasoning directly on the phenotype ex-
pressed in geometrical terms.

Even if the ultimate goal is a gene centric description, geo-
metric or phenotypic models are a useful intermediate step. They
organize rather clearly the minimal parameters necessary to rea-
lize the observed phenotypes and provide a context for the defi-
nition of epistasis. The conventional test for epistasis is whether
the effects of two alleles are additive. But if the data pertain to
protein binding, and epistasis is interpreted as cooperativity, then
the relevant comparison is between binding energies. Thus the
logarithm of the protein abundance or affinity should be taken
before checking for additivity. It is the context that dictates that
log of expression is the relevant data transformation. In the case
of development, where the data are a function of space and time,
the analogous transformation is not so obvious. The geometric
description builds in the correct qualitative structure of the initial
and final states and naturally provides for internal variables in
terms of which signaling pathways combine linearly. Epistasis
appears when the dynamics projects these variables onto discrete
fates. Thus as our example of protein affinity shows, epistasis can
be a matter of variable choice.
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Choosing variables that allow pathway contributions to be
simply added makes the model predictive because a new interac-
tion parameter is not needed every time a genetic cross is made.
The single alleles have to be fit, because they are otherwise
numerically undefined, but then all combinations of alleles are
predicted.

As a classic example of cell fate patterning, the nematode vulva
(8) is an instructive model for the application of geometric meth-
ods. The vulva of Caenorhabditis elegans forms from a row of
vulval precursor cells (VPCs), which are competent to adopt
three possible fates. In normal development, the VPCs adopt an
invariant pattern of fates (as seen in the lineage or division pat-
tern), which is specified by two signaling pathways: inductive EGF
signaling from the neighboring anchor cell (AC) and lateral
Notch signaling among VPCs (Fig. 2). When development is
perturbed, other patterns of the three fates are obtained, often
with variable results for genetically identical animals. Thus
experimental outcomes are described as probabilities. The me-
chanism by which EGF and Notch specify VPC fates has been

subject to debate. In the “morphogen” or “graded” model (9),
different levels of EGF specify the different fates, 1°, 2°, 3°,
at increasing distance from the anchor cell. In the “sequential”
model (10, 11), the anchor cell induces the 1° fate in the closest
VPC, which in turn induces the 2° fate in its neighbors through
Notch. There is experimental evidence supporting both mechan-
isms and both are present in the quantitative model we develop
here; they are not dichotomous.

In the following sections, we first formulate a geometric repre-
sentation of vulval fate specification. Possible topologies are
enumerated and discriminated on the basis of experimental ob-
servations. The favored topology is then translated into a minimal
quantitative model, defining equations for the dynamics of indi-
vidual VPCs along with the coupling between cells. Variability
among animals is an intrinsic part of the model, and in contrast
to genetic inference in most contexts, partially penetrant pheno-
types are most informative, because they highlight the boundaries
between fates. We show graphically how each parameter in the
model is fit to a specific experiment, and can then “postdict”
several experiments not used in the fit, particularly those invol-
ving correlated variability in fates (“extrinsic noise”). Genetic
experiments ostensibly showing pathway interactions can be
quantitatively fit with our model which lacks explicit interaction
parameters. We predict nonintuitive outcomes for crosses be-
tween various hypo- and hypermorphs of the two pathways plus
ablations in diverse backgrounds. Our modeling approach ex-
tends to any context where a multiway cell decision is controlled
by two signaling pathways.

Results: Model Formulation
Experiments define the competence period for vulval induction
and the conditions under which the precursor cells can be
switched among their three possible terminal fates by signals
(SI Appendix, Methods: Model and numerical simulation). We
can therefore generalize our binary decision model from Fig. 1
to a situation with three possible outcomes. Because the fate
adopted by each VPC depends on the activities of two signaling
pathways, it is natural to describe its effective dynamics in a two-
dimensional space (Fig. 3). Different topologies can be enumer-
ated by how the basins of attraction of the three fates fit together
in the plane and only one of these is plausible for the vulva
(Fig. 3C). With the model’s topology fixed from qualitative as-
pects of the experiments, we formulate a minimal quantitative
model, which parameterizes the flow governing each precursor
cell according to the levels of the two signaling pathways.

Individual VPCs.The state of each cell is described by a two-dimen-
sional vector ~r ¼ x ~ex þ y ~ey, and its dynamics is parameterized as

A B C

D E F

Fig. 1. A geometric view of cell fate specification. (A) Prior to competence,
the cell occupies a precursor state symbolized by the blue ball in the bottom
of the well. (B) During the competence period, there are several states acces-
sible to the cell indicated by separate wells. (C) The transition between wells
is governed by signals, represented by the red arrow, that deform the land-
scape and favor a particular state. The geometric viewpoint treats the signal
transduction machinery as a black box, and reduces the signal to a single
parameter. (D–F) The same configurations as in A–C shown as a flow field
in the plane. Fixed points are shown as solid circles throughout, the saddles
defining the division point between the two states are shown as crosses, and
the basins of attraction for each fate are shown as colored regions.

Fig. 2. Vulval development in C. elegans (8, 27). The vulva forms from a row
of six VPCs, P3.p–P8.p (P3.p fuses with the epidermis in 50% of animals,
ref. 32, and is omitted here). The VPCs are competent to adopt three possible
fates, inner vulval or primary (1°), outer vulval or secondary (2°), and nonvul-
val or tertiary (3°), which are identified by characteristic cell lineages (the
orientation of terminal divisions is indicated by letters: L, longitudinal;
T, transverse; U, undivided; S, fused with the epidermal syncytium; underlined
cells are adhered to the cuticle). In WT, inductive EGF signaling from the AC
(red arrows) and lateral Notch signaling among VPCs (green arrows) specify
an invariant pattern of fates, 32123. VPC response to external signals begins
in the L2 larval stage (cell cycle G1) and extends shortly after the first round
of division. In the model, this competence period is defined to be the time
interval ½0; 1� (dashed line).

Fig. 3. Possible topologies for a decision between three fates. (A) The three
basins of attraction are ordered from left to right as suggested by the
response to a graded morphogen. This topology is essentially the graded
model (9) and is ruled out by the equal proportions of 1° and 2° fated cells
in P6.p for ablation times prior to 0.6 in SI Appendix, Fig. S5. (B) Two conse-
cutive decisions (i.e., between 3° and vulva at saddle A and 1° vs. 2° at saddle
B); this requires parameter tuning and is thereby excluded. (C) All transitions
between two fates are permissible, there is a central source (open circle) and
saddles between each pair of fates. This topology is our candidate for vulval
patterning.
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follows:

~f ð ~rÞ ¼ 2 ~r þ c2½−2xy ~ex þ ðy2 − x2Þ ~ey� [1]

d ~r
dt

¼ 1

τ
½ ~σ1ð ~f þ ~mÞ − ~r� þ ~ηðtÞ [2]

~σ1ð ~f Þ ¼ tanhð‖ ~f‖Þ
~f

‖ ~f‖
[3]

~m ¼ ~m0 þ l1 ~m1 þ l2 ~m2 [4]

hηiðtÞηjðt 0Þi ¼ 2Dδijδðt − t 0Þ: [5]

The polynomial vector field ~f ð ~rÞ, which derives from a threefold-
symmetric cubic potential, is the simplest flow that diverges
away from the origin into three “valleys.” In the definition of the
dynamics (Eq. 2), it is mapped through a saturating sigmoidal
function and combined with a convergent radial flow, so that tra-
jectories are bounded (‖ ~r‖ < 1) and each valley terminates in a
stable fixed point (Fig. 4A). The constant term ~m then biases this
symmetric flow according to the external signals received by the
cell, with the time constant τ setting the maximum response rate.
In the absence of external signals, ~m0 biases the flow toward the
default 3° fate (Fig. 4B). In keeping with our minimalist approach,
the responses to EGF and Notch signaling are represented by
the vectors ~m1 and ~m2 (Fig. 4 C–F). Signaling strength is para-
meterized by l1 and l2, which vary between zero and one in WT.
For instance, the reduction in EGF signal from the anchor cell
in a hypomorphic allele will multiply l1 in all cells by a number
specific to that allele. In these variables, there is no explicit path-
way coupling, contributions from the two pathways simply add.
Finally, the simplest yet natural way to introduce variability in

outcomes is a random noise term (Langevin noise), ~ηðtÞ, which
is parameterized by a coefficient of diffusion in phase space, D.

One may object that the interpretation of a signal surely de-
pends on the state of the cell (i.e., the ~mi are functions of ~r),
and the mutual repression between the EGF and Notch pathways
(12, 13) is one instance of this. However, as already anticipated,
we do not need such parameters to fit the available data, includ-
ing data purporting to show mutual repression between the two
pathways. The latter effect is implicitly subsumed by the bistabil-
ity between fates 1 and 2.

Interacting Cells. We simulate five cells centered on P6.p (Fig. 2),
thus our full model has 10 variables, two for each cell. The EGF
signal is fixed in time and decays exponentially with distance from
the AC (SI Appendix, Inductive signal gradient),

l1 ¼ fγ2; γ; 1; γ; γ2g: [6]

On the other hand, the lateral signal emitted by each VPC de-
pends on its current state. The lateral signal is defined by a func-
tion L2ð ~rÞ, which varies as a sigmoid from zero to one when ~r
crosses a threshold line that runs diagonally through the 3°, 1°
domains:

L2ð ~rÞ ¼ σ2ðn0 þ ~n1 · ~rÞ [7]

σ2ðuÞ ¼
1þ tanh 2u

2
: [8]

To relate the signal, L2, produced by a cell and its neighbors to
Notch signaling, l2, in that cell, we introduce a ratio α to para-
meterize the relative importance of autocrine and paracrine sig-
naling (14) (Notch ligands or Deltas include both transmembrane
and diffusible ligands; ref. 15). Thus for P6.p,

l2ðP6.pÞ ¼ L2ðP5.pÞ þ αL2ðP6.pÞ þ L2ðP7.pÞ: [9]

Time Course. Model simulations proceed as follows (see SI
Appendix, Simulation procedure for details). The VPCs are initi-
ally all equivalent and the equations are initialized from a Gaus-
sian distribution consistent with the noise level in the model. The
dynamics are then computed as described above for a period of
time representing competence (defined in arbitrary units to be
the interval from t ¼ 0 to t ¼ 1). Following competence, the fates
of the cells are scored according to their locations relative to the
basins of attraction in the absence of signaling (Fig. 4B).

We have found by fitting data that default parameters are ade-
quate, specifically c2 ¼ 1, ~m0;1;2 point toward the fixed points, 3°,
1°, 2°, and ‖ ~n1‖ ¼ 3. A natural simplification would have ~n1 in
Eq. 7 aligned with ~m1, expressing that EGF induces lateral sig-
naling, but the data impose a slightly different orientation. We are
thus left with nine parameters (m0 ¼ ‖ ~m0‖, m1 ¼ ‖ ~m1‖, m2 ¼
‖ ~m2‖, τ, D, γ, α, n0, ∠ ~n1 ¼ orientation of ~n1), plus an additional
value of l1 or l2 for each pathway allele. This choice defines a
minimal model where all parameters are directly tied to some
property of the flow and thus a phenotype. Signaling, commit-
ment, and determination appear in the model as in experiment,
as a continuous progression though with substantial variability be-
tween animals. Further discussion of the model’s relevance and
limitations is reserved for Discussion.

Results: Fit to Data
Our fits minimize the mean-square difference between model
and data, normalized by the expected variance based on the num-
ber of data points (SI Appendix, Methods: Fit to data). We also
impose weak biases on parameters which are not normalized
to [0, 1], that favor values of order one in dimensionless units.

Fig. 4. Flow fields from the model. (A) In the absence of any bias ( ~m ¼ ~0 in
Eq. 2), the flow is symmetric, diverging away from a central source (open cir-
cle). The colored arrows mark the default directions of the ~mi (Eq. 4). (B–F)
Dynamics of a VPC under fixed levels of the two signals (autocrine signaling is
not included here). (B) In the absence of ligands (l1 ¼ l2 ¼ 0), the flow is
biased by ~m0 toward the default 3° fate and the initial condition (white disk)
is in the basin of 3°. This flow is seen by VPCs after competence and defines
their fates. (C) A small level of EGF (l1 ≈ 0.2; red arrow) biases the flow toward
the 1° fate. (D) At stronger levels of EGF (here, l1 ¼ 0.5), the other fixed points
disappear. So given sufficient time, this level of EGF will force any cell to go to
the 1° fate regardless of its previous state of specification. (E) Weak levels of
Notch signaling (l2 ≈ 0.2; green arrow) bias the flow toward 2°. (F) At stron-
ger levels of Notch (here, l2 ≈ 0.5) the other fixed points disappear and any
cell will eventually reach 2°.
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The use of priors is justified by standard Bayesian inference—i.e.,
a preference for typical parameters rather than more specific
ones that yield the same quality fit. Thus the fits would favor
a substantial value of the noise (diffusion constant) even if zero
noise placed the initial conditions precisely on the boundaries be-
tween fates and thereby accounted for the partially penetrant
phenotypes. The zero noise fit would very tightly constrain the
deterministic part of the flow and Bayesian methods would deem
this improbable. Thus Bayesian methods naturally implement a
requirement of evolution that tightly constrained parameters im-
pose a higher mutational load and thus are disfavored.

SI Appendix, Table S1 states the numerical data we fit to and a
summary is provided in Table 1 along with the parameters most
directly determined by each experiment (see SI Appendix,
Constraints on parameters). Fig. 5 shows the WT dynamics corre-
sponding to a typical parameter set (see also Movie S1). Condi-
tions generating unique fate assignments (e.g., WT for a half dose
of EGF or Notch; refs. 16 and 17) just give inequalities on para-
meters. Most information comes from alleles that give variable
outcomes, which serve to fix the initial conditions relative to
the saddle points in the flow as in Fig. 4 C and E. Typically
we do not know numerically (relative to WT) the signaling

strength in the mutants, so that has to be fit too, but parameters
in the base model are obtained also.

Overexpression of EGF to a level that induces on average four
VPCs (18) is instructive in this regard (Fig. 6). Because P5/7.p
yield a mix of 1°/2° fates, we infer that the enhanced inductive
signal from the AC balances the lateral signal from P6.p. P4/8.p
yield a fraction of all three fates, which implies a relation on EGF
signaling at those positions as well as the orientation of the
threshold for Delta expression, ~n1 in Eq. 7 (from the induction
of 2° by P5/7.p).

AC ablations (19) probe the time course of induction (Fig. 7A
and SI Appendix, Fig. S5). Because we only know the ablation
times relative to developmental stages, we model them by termi-
nating the inductive signal at a uniformly spaced series of points
in the interval [0.2, 0.8] (where the induction period is defined as
[0, 1] in model units; see SI Appendix, Table S1). This choice is not
a serious approximation because trends in the data as the ablation
time increases match those in the model (SI Appendix, Fig. S9).

Fig. 5. Our model fit displayed for WT parameters. Because the inductive
signal is symmetric around P6.p, we show just P4-6.p. (A) The trajectories
of P4-6.p are represented by blue, green, and red, respectively (according
to their WT fates) and overlaid on the zero ligand flow field which applies
at the end of the competence period and determines fates (see Fig. 4B). The
cell trajectories begin from a common point and are averaged over the noise,
except at the final time. The green and red arrows denote the fixed vectors
~m1;2 in Eq. 4 and the dashed line is where Delta expression is half maximum.
(B) The fractional induction of the three cell fates 1°/2°/3° is shown as red/
green/blue curves as a function of time for each cell during the competence
period. The upper crosses represent the AC ablation times. The solid (respec-
tively dashed] black curves show the levels of Delta expressed (respectively
received) by each cell. The red and green diamonds correspond to those
in A and indicate 50% induction.

Table 1. Summary of experiments being fit and the constraints they
impose on model parameters

Experiment Outcome Parameters

Wild-type outcomes under reduced signaling
Wild-type 32123
EGFR in P6.p only WT
Single copy EGF/Notch WT m1, m2

Phenotypes under reduced Notch/excess EGF
No Notch, WT EGF 33133 γ
Notch null (2 ACs) 31113 γ
EGF overexpression induction ca. 4 m1∕m2, ∠ ~n1

Ectopic EGF 1°/2° fates

Phenotypes following anchor cell ablation
At successive times 33333 to WT τ, D, α, n0

Detailed in SI Appendix, Table S1 and Constraints on parameters

Fig. 6. EGF overexpression (SI Appendix, Table S1, line 7). Inductive signaling
was increased by a factor of approximately seven relative to WT (arrow not
to scale). Pattern frequencies for model and experiment are given in SI
Appendix, Table S5.

Fig. 7. Anchor cell ablation vs. EGF hypomorph: dynamic vs. static reduction
in EGF signaling compared for the same vulval induction of P6.p, 58% [cor-
responding to the hypomorphic allele lin-3(e1417), SI Appendix, Table S4].
(A) The anchor cell was ablated at time 0.4 (intermediate between the early
L3 and DU divided stages, SI Appendix, Table S1). The trajectories areWTuntil
the kink, most evident in the red line for P6.p, after which they continue to
move upward under the influence of the autocrine Notch signal and thus
become partly 2°. (B) Our fit to the lin-3(e1417) allele multiplies l1 by 0.24
in all cells. In contrast with the ablation experiment in A, P6.p is never ex-
posed to autocrine Notch signaling and does not become 2°. Whenever
P6.p is induced, P5/7.p can adopt the 2° fate, but because of the later onset
of lateral signaling, this is less frequent than in the ablation experiment.
Pattern frequencies for model and experiments are given in SI Appendix,
Table S5.
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To attempt greater precision here would be illusory because the
fate of EGF protein after AC ablation is unknown. Whatever de-
cay rates influence the EGF time course after ablation will be the
same in other genetic backgrounds we consider, and thus we can
predict the consequences of ablation in any defined background
with no additional parameters. Induction levels of P5/7.p follow-
ing ablation fix the threshold for lateral signaling (n0 in Eq. 7).
The mixed 1°/2° fates adopted by P6.p at intermediate times rely
on the diffusing Delta fraction and autocrine signaling to drive
cells into the 2° domain, fixing the autocrine-to-paracrine ratio
α. The variability of outcomes determines the numerical noiseD.

We have confirmed the association between parameters and
experiments by Monte Carlo sampling of parameter space while
imposing various subsets of the data. Because we have relatively
few parameters and they are mostly tied individually to pheno-
types, we are able to converge the fits using standard Leven-
berg–Marquardt gradient descent. The number of data points
for partial phenotypes—excluding experiments with WTor trivial
outcomes—is 40, so the typical minimum Chi-squared (see SI
Appendix, Likelihood of experimental data) of approximately 20
is well within statistical errors. Repeating the fit with different
initial parameter sets confirms the existence of a unique global
optimum.

Our standard parameter set is given in SI Appendix, Table S3
with most uncertainties under 20%. Monte Carlo parameter sam-
pling shows that most residual variation resides inm1 andm2 and
could be resolved if we knew the numerical degree of under/over-
expression in several of our signaling pathway mutants.

Results: Predictions
We have been parsimonious in selecting the fitting data so as to
delineate what is strictly necessary to determine parameters. As a
consequence, several existing datasets are available for predic-
tion. We first consider conditions that reduce inductive signaling,
then the results of crosses. Epistasis is a natural test of the model,
which has no explicit pathway coupling. There are many experi-
ments on vulva whose interpretation involved gene interactions,
because weak genetic effects are often revealed by expressing
them in a sensitized background.

Signaling Hypomorphs. EGF signaling is required for vulval induc-
tion and a trivial 33333 pattern is obtained in its absence—e.g.,
when the AC is ablated at an early stage (20). The phenotypes
that result from partially reduced signaling are more informative,
particularly when compared with AC ablation (Fig. 7 and SI
Appendix, Figs. S5 vs. S6). If we chose the ablation time to match
the 58% induction level of P6.p for a particular lin-3 hypomorph
(SI Appendix, Table S4), we find 2° fates in P6.p only for ablation
and never in the hypomorph. Furthermore P5/7.p are less in-
duced in the hypomorph than in ablation, because P6.p signals
earlier in ablation experiments, when P5/7.p are closer to the
2° fate and more susceptible to induction. Our predicted range
of P5/7.p induction (6� 6%) agrees with the weak but nonzero
induction (15%; SI Appendix, Fig. S7) observed.

Extrinsic vs. Intrinsic Noise.Under conditions of partial penetrance
we can compute the probabilities of the full VPC patterns and
ascertain whether cell fates are spatially correlated. We expect
that extrinsic noise, where variation in P6.p affects both P5/7.p,
will generate correlation, whereas intrinsic noise such as in EGF
overexpression experiments, where P6.p is robustly induced to a
1° fate, will lead to uncorrelated fates. This prediction is indeed
realized in SI Appendix, Table S5 and shows that the model cor-
rectly predicts data for high and low levels of extrinsic noise.

Epistasis from Fate Projection. One apparent source of epistasis
in our model is the threshold effect that results from the assign-
ment to a discrete fate after the simple addition of two signals.

For maximum effect, consider two hypomorphs of EGF and
Notch each marginally WT (i.e., the single mutant is WT, but if
slightly enhanced would give a phenotype). When combined, the
cross exhibits a substantially reduced induction of P5/7.p to 2°
(Fig. 8). We consider this prediction relatively robust because this
“projection” effect depends mainly on the geometry of the do-
mains and is insensitive to the orientations of the ~mi. This figure
also illustrates that the weak EGF signal received by P5/7.p under
WTconditions enhances the patterning robustness by placing the
presumptive 2° cells poised between the 3° and 1° domains from
where the distance to the 2° basin is as short as possible and the
induction of P5/7.p as large as possible (SI Appendix, Fig. S8).

Epistasis from Saddle Flows. A sensitized background was used by
Zand et al. (21) to examine the effect of low EGF on the induc-
tion of 2° fates. A mild gain-of-function Notch mutation results in
weak constitutive activity of the pathway, potentiating the induc-
tion of the 2° fate. This mutant lacks an AC. Weak EGF signaling
is induced uniformly across the VPCs by a temperature sensitive
lin-15 mutant, that in the absence of an AC would yield no induc-
tion. In the double mutant, induction of the 2° fate is greatly en-
hanced, from which the authors conclude that low EGF acts as a
“pro-2°” signal (whereas high EGF is as always pro-1°).

Our model has no such property: EGF pushes cells in a fixed
direction (specified by the vector ~m1). Strikingly, it can neverthe-
less reproduce the observed effect (Fig. 9). For this ~m1 was
slightly rotated from its default direction (while still fitting our
training data), so we cannot claim this result as a true prediction,
but we can challenge its published interpretation. As can be seen
in Fig. 9E, the flow in the sensitized background sends the initial
conditions to just below the saddle between the 3° and 2° fates,
with a small fraction of cells driven across the boundary by noise.

Fig. 8. The cross of two marginally WT hypomorphs in EGF (l1 ≈ 0.5 × WT)
and Notch (l2 ≈ 0.5 × WT) yields a substantial reduction in P5/7.p induction.
(A and B) are the EGF and Notch hypomorphs with the red/green arrows
showing the changed strength in the two pathways. The white arrow in
A and B highlights that EGF signaling normally keeps P5/7.p dynamics poised
between the 1° and 3° fates. This effect enhances the efficacy of Notch
signaling in WT, as contrasted with the longer path to the 2º fate in the cross
(C). D shows the fractional induction of P5/7.p is robust to Monte Carlo sam-
pling of parameter space.
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A small change in the flow field induced by low EGF (pointing
toward the 1° fate) then suffices to direct most of the initial con-
ditions to the other side of the saddle and thus to the 2° fate.

Contrary to intuition, we find that a signal that pushes cells
in one direction can displace outcomes in a different direction.
We can understand this form of epistasis as a generic effect of the
flow in the vicinity of saddle points (Fig. 10B), and it also occurs,
with the roles of Notch and EGF interchanged, when an EGF
hypomorph is crossed with a weak Notch hypomorph (SI
Appendix, Epistasis from saddle flows). This phenomenon will con-
found the interpretation of experiments in sensitized back-
grounds, which by definition are tuned to marginal outcomes,
and correspond geometrically to flows into saddle points.

Putative Epistasis Between Notch and EGF Pathways. Sensitized back-
grounds have also been used to study the mutual inhibition be-
tween the EGF and Notch pathways. For instance, the Notch
pathway up-regulates the transcription of the LIP-1 MAPK phos-

phatase that inhibits the EGF pathway in presumptive 2° cells
(13, 22). However lip-1(lf) has no phenotype, so the genetic strat-
egy in ref. 22 was to cross this allele into a background with
ectopic EGF [e.g., lin-15(rf)] and observe epistasis. We can quan-
titatively replicate their results by an additive contribution to l1
[for lin-15(rf)] followed by a multiplicative change corresponding
to lip-1(lf), reflecting the order of the two genes in the pathway
(SI Appendix, Table S6).

Mapping Genetic Effects onto Model Parameters. Another form of
coupling between EGF and Notch is the down-regulation of
Notch receptors in presumptive 1° cells, which was shown to be
required for lateral signaling: P5/7.p otherwise adopt the default
3° fate (12). Unlike the Notch-induced down-regulation of EGF
signaling, our model transparently incorporates this effect, with
no changes, if the emitted signal L2 is interpreted as the “effec-
tive signal” that reaches neighboring cells, rather than the ligand
level expressed by P6.p and then adsorbed by that cell. Manipula-
tions that decrease Notch internalization would then be parame-
terized by moving the threshold for lateral signaling (dashed line
in Fig. 5A) further into the 1° basin. Thus multiple genetic effects
can map onto the same model parameter.

Likewise, it has been suggested that the EGF receptor seques-
ters ligand, preventing ectopic induction, so the shape of the
gradient may change in EGF receptor (EGFR) mutants (23).
This effect can be expressed through our parameter γ (Eq. 6)
which can be related to a kinetic model for the diffusion and
sequestration of ligand (SI Appendix, Shape of the EGF gradient).
To explain the observed induction of 2° fate in isolated cells also
requires assumptions about how Notch ligand diffuses and sticks
(SI Appendix, Isolated cells).

Model Suggests Informative Experiments. Although we have con-
centrated here on a few significant predictions, the model does
supply the phenotype under any combination of mutations affect-
ing EGF/Notch signaling, AC ablation, temperature-induced
changes in expression, etc. We summarize here a few interesting
experiments suggested by the model with further details in the
SI Appendix. AC ablations are predicted to have qualitatively
different consequences in EGF and Notch mutants. EGF muta-
tions affect mostly the timing of induction, whereas Notch muta-
tions displace the intermediate phenotypes toward different
proportions of 1°/2° fates (SI Appendix, Anchor cell ablation in
mutants). In some mutant backgrounds, cells are predicted to
transition through the basin of attraction of an intermediate fate
on their way to their eventual fate. We find that these intermedi-
ate fates could be uncovered by suitably timed temperature-
induced changes in expression (SI Appendix, Temperature steps).

In some experiments, a fraction of cells adopt hybrid fates, with
the two daughters giving rise to lineages characteristic of different
fates. Geometrically, hybrid lineages can naturally be interpreted
as precursor cells ending near a boundary, such that their daugh-
ters can take divergent paths because of noise. Thus we expect
that more hybrid fates will occur in experiments where cells
are clustered near a boundary, rather than spread out across
it. This expectation is realized in an extension of our model that
treats separately the daughters of VPCs, and we find reasonable
agreement with experimental data for cases with clustered out-
comes, particularly for isolated cells induced to mixed 1°/2° fates
(SI Appendix, Hybrid fates). We predict too few hybrid fates when
outcomes are spread out, however, suggesting other factors con-
tribute to their occurrence.

When cells land near the boundary between two fates, our
model also makes quantitative predictions for the increased time
necessary for cells to express a given level of fate marker in com-
parison to WT. The effect can be easily parameterized in terms of
the curvature around the ridge separating two basins in the
fate plane.

Fig. 9. Epistasis between lin-12(d) and lin-15(ts). (A) A lin-12(d) mutant
has no AC and its lateral signal level is described by an additive term in l2
(approximately 0.2), fit to yield an average induction index of 0.4 as in ex-
periments (21) (the rare outcomes in the green region). Without an AC,
all VPCs behave similarly. (B) We fit the lin-15(ts) state in ref. 21 by a uniform
l1 (approximately 0.1). When added to the EGF signal from the AC there is no
ectopic induction. (C) In the absence of an AC (as in the double mutant), the
weak EGF signal from lin-15(ts) shows no induction. (D) In the double mutant,
most cells are induced to a 2° fate. (E and F) Close-ups of the flow seen by the
cells in A and D, showing its changing orientation.

A B

Fig. 10. Two forms of epistasis. (A) Epistasis from the projection of contin-
uous dynamics onto discrete fates. The plane is divided into three sectors cor-
responding to three fates (see Fig. 5A), and two signals push the cells to the
right (red arrow) or up (blue arrow). Levels of signal that are, separately,
insufficient to drive the cells to a different domain (as shown here) can
together induce a different fate (magenta arrow). (B) Epistasis from the flow.
In the vicinity of a saddle, a small push in one direction (horizontal arrows)
can deflect trajectories in another direction (vertical).
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Note that the connection between reporters and cell fate may
be lost in mutants; e.g., in an EGF hypomorph when P6.p is in-
duced to 1°, the cells remain close to the 1°/2° boundary and do
not express Delta—a plausible 1° fate marker (Fig. 7B). Consis-
tent with this expectation, expression of another 1° fate reporter
in L3 is very strongly reduced in a mutant with reduced EGFR
levels but WT fates (24).

Discussion
Development is a dynamical process with competing fates, and
it is often hard to visualize the consequences of genetic pertur-
bations. Our phenotypic model effectively codifies the genotype
to phenotype map because the influence of each gene is gen-
erally limited to one parameter. Geometric reasoning provides
a compact, nonredundant parameterization of signaling and
fate specification.

Experience with other problems suggests that, to effectively
parameterize dynamics, the critical points (saddles, sources, and
sinks) have to be correct (25). Qualitative features of the data
determine the flow topology (Fig. 3), which is then parameterized
in a minimal way. Our procedure is no different in principle than
parameterizing gene expression with a Michaelis–Menten–Hill
function for activation or repression. Phenotypic models seem
well suited for problems of signaling where protein trafficking,
clustering, endocytosis, and other aspects of cell biology can have
a substantive effect, but are hard to quantify.

Within a geometric framework, it is very natural that epistasis
is obtained by projecting a linear model (contributions from the
signaling pathways are added as vectors) onto discrete fates. Path-
ways “interact” because they operate on a strongly nonlinear
mapping described by the geometry of fate domains (Fig. 10A).
But there are no additional parameters required to predict the
cross between any pair of alleles (or AC ablation for an allele)
once the single alleles are parameterized, giving the model con-
siderable predictive power.

Our fits in Fig. 9 demonstrated that a geneticist’s “marginal
allele” that poises the cell between two fates is mathematically
a flow that passes near a saddle point. This geometry is another
source of epistasis because any small change that displaces the
cells normal to flow into the saddle will have a large effect on
cell fate (Fig. 10B). Our model provides a quantitative way to
treat sensitized backgrounds in the context of a robust model
for the WT. Genetic experiments purporting to show EGF/Notch
interactions are explained by the multistability of the flow.

Nevertheless, there is biochemical evidence for mutual path-
way inhibition, and one might ask how this would affect model
fits. Down-regulation of Notch in presumptive 1° cells (12) can
be implemented (with no extra parameters) by letting their sen-
sitivity to lateral signaling decrease when they start to signal
(cross the dashed line in Fig. 5A). This modified model fits ex-
periments equally well, with largely unchanged parameter values.
Other layers of regulation include the temporal gating of lateral
signaling by heterochronic genes (26) and of 2° fate commitment
by the cell cycle (27). These are not included in our model, but
lateral signaling and the specification of 2° fates in the model be-
gin some time into the induction period (Fig. 5B), so that tem-
poral gating is likely to be redundant with the time course of
specification in most conditions.

Our philosophy of starting with a simplified but global model
for developmental patterning meshes well with basic biology. Sig-
naling, commitment, and determination are discrete terms applied
to a continuous process. It is unnatural to imagine one model for
signaling and another for commitment and determination—the
same genes are involved—and the regulation of competence by ex-
ternal signals would fit naturally within our description. A unified
model also makes it very simple to incorporate noise, which is a
prominent feature of any interesting mutant and of course affects
the average trajectories as well as the probabilities of the final

states. The existence of a predictive dynamic model should encou-
rage experiments tomeasure crosses among the available alleles as
well as temporal signaling perturbations in mutant backgrounds.
Variability in the timing of fate determination is a strong conse-
quence of the flow geometry and should also be measured.

The AC ablations (19) and the EGF overexpression experi-
ment where P4/8.p were induced to all three fates (18) were
crucial to our fits because the data were sensitive to the transition
regions in the flow field. Thus we were able to predict the ob-
served fates in an EGF hypomorph. The correlations between
fates (extrinsic noise) were a previously neglected aspect of avail-
able datasets that our model correctly predicted (SI Appendix,
Table S5; note that we used only single cell fate probabilities in
our fits). As previously anticipated (18), the ablation data strongly
constrain the diffusible Delta fraction and thus determine the in-
duction of isolated VPCs . However our model also makes clear
what additional assumptions about the transport and adsorption
of diffusible Delta are needed to explain isolated VPC induction
and suggests that hybrid 1°/2° fates will be prevalent in such cells,
as observed. Further experiments, such as temperature shifts and
ablations in mutants, are predicted to yield unexpected outcomes,
making for stringent tests of our description of fate specification.

Using existing data, our model has correctly reproduced
experiments on lip-1(lf) (22) and a lin-12(d);lin-15(ts) cross (21)
that were interpreted as evidence for pathway interaction. Our
model does not support a “battle” (28) metaphor to describe
EGF–Notch interactions. There are no dueling parameters in
our model and we can explain experiments showing pathway in-
teraction by the addition of vectors and the dynamical projection
in the fate plane. In fact, our results suggest that the inductive
signaling seen by presumptive 2° cells makes them less sensitive
to fluctuations in lateral signaling—contrary to the intuition that
it must be countered for robust patterning (13, 29). Thus the mu-
tual inhibition between EGF/Notch enhances the stability of spe-
cified fates more than the decision between fates itself.

Remaining uncertainties in model parameters concern the nu-
merical magnitude of signal response strengths. To examine
crosses between EGF/Notch mutants (e.g., Fig. 8), we have there-
fore defined hyper/hypomorphs as marginally WT, rather than by
numerical values of l1; l2 which are not yet available experimen-
tally—i.e., we cross phenotypes. If it becomes possible to numeri-
cally define signaling alleles relative to WT, alleles yielding ap-
proximately 50% induction will give the tightest constraints on
parameters because one is fitting to the steepest region of the
sigmoidal curve relating fate to parameters.

The vulva has motivated numerous other modeling studies.
Among these are rule-based models (30), which describe speci-
fication as sequence of events and can incorporate some variabil-
ity in event ordering, but by their discrete nature cannot account
for the quantitative effects underlying partially penetrant pheno-
types. The quantitative models presented in refs. 18 and 29 are
more suitable points of comparison. Both model only signaling,
they are not multistable and define territories in the EGF/Notch
activity space to assign fates. They would therefore display epis-
tasis from the projection onto fates. They use deterministic dif-
ferential equations based onMichaelis–Menten kinetics, and they
do not quantitatively fit or predict data involving partial pene-
trance. Though a model that required a parameter specified to
better than factor of two might be rejected on fitness grounds,
it does not follow that exploring a range of 100 or 105 (18, 31)
in parameters is biologically meaningful and should be a basis for
model selection as is commonly done.

Our model describes the experiments and time window we are
interested in and not much more. There are no parameters that
up-regulate receptors at the beginning of competence or shut
down pathways after the first VPC division. We can say nothing
about the differentiation that ensues near the fixed points, which
clearly requires additional dimensions. However the fixed points
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are merely compact ways of creating the simplest parameteriza-
tions for the boundaries between them and enumerating the var-
ious flow topologies. We are inclined to believe predictions based
on these features of the model.
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