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We present a model for mechanically-induced pattern formation in growing
biological tissues and discuss its application to the development of leaf
venation networks. Drawing an analogy with phase transitions in solids, we
use a phase field method to describe the transition between two states of the
tissue, e.g. the differentiation of leaf veins, and consider a layered system
where mechanical stresses are generated by differential growth. We present
analytical and numerical results for one-dimensional systems, showing that
a combination of growth and irreversibility gives rise to hierarchical
patterns. Two-dimensional simulations suggest that such a mechanism
could account for the hierarchical, reticulate structure of leaf venation
networks, yet point to the need for a more detailed treatment of the
coupling between growth and mechanical stresses.

Keywords: mechanical instabilities; phase field; numerical modeling;
pattern dynamics

1. Introduction

A broad range of patterns in nature are induced by mechanical forces. While the
most well understood examples are found in physical phenomena, e.g. in solids,
fracture [1], wrinkling [2], delamination [3], or localized deformation [4], it is
increasingly becoming appreciated that mechanical forces are also essential in the
morphogenesis of living organisms. In the simplest case, biological tissues can
undergo mechanical instabilities as a result of inhomogeneous growth [5,6]. More
broadly, the importance of the mechanical and adhesion properties of cells in
morphogenesis [7] and the ability of mechanical forces to act as a signal in growing
tissues and organisms [8–10] suggest that the interplay between mechanical forces
and biochemical factors has a central role in development.

An illustration of these ideas can be found in recent investigations of the structure
of leaf venation networks [11]. The standard model for vein formation involves the
transport of the plant hormone auxin [12]: auxin circulates through the leaf, with the
leaf base acting as a sink; as the leaf develops, auxin flow becomes progressively
concentrated along preferential paths, which mark the location of future veins. This
model has received ample experimental support (see e.g. [13]), yet it fails to explain
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certain aspects of leaf venation, such as the presence of closed loops. Simulations of
auxin transport generally give rise to tree-like structures [14], a typical property of
diffusion-limited growth processes [15]. In contrast, it has been noted that the
reticulate structure of venation networks is very similar to that of crack patterns,
suggesting the possibility that the differentiation of leaf veins could be governed by
mechanical stresses [11]. The inner tissues of the leaf, where the veins form, are
subjected to compressive stresses by the epidermis, and one of the earliest signs of
vein differentiation is the elongation of vascular cells [16], which could release the
compressive stresses in their vicinity, providing a feedback between differentiation
and the mechanical state of the tissue.

In this article, we develop a theoretical approach to study the formation of
patterns induced by mechanical stresses in biological tissues. Of particular interest is
the fact that these tissues are growing as the patterns form. We show how growth can
be the driving force that causes the formation of new structures, and how the history
of their formation can be reflected in their organization. Let us emphasize that this
study mainly aims at demonstrating possible effects of mechanical stresses, and that
the approach developed here would have to be integrated with biochemical
mechanisms in a more complete model.

Stated in general terms, the patterning mechanism we consider is the following:
compressive stresses imparted on a tissue cause it to switch to a ‘collapsed’ state
occupying a smaller volume, whereby the compression is released. In the case of leaf
venation, this transition describes the differentiation of veins, and the collapsed state
refers to the elongated vascular cells. An analogy can be made with the behavior of
solid foams, which exhibit localized deformation upon compression [4]. Our model is
not explicitly constructed according to this analogy. Instead, we consider the initial
and collapsed states of the tissue as two phases of a continuous medium, which we
describe using a phase field method. However, the response of this two-phase
medium is analogous to that of a non-linear elastic material, and can be analyzed
with reference to the behavior of such materials.1

In what follows, we first present our model in a one-dimensional setting. We
define a minimal model, amenable to analytical treatment, that implements the
patterning mechanism described above. We consider a layered system, in which
the tissue is coupled to a rigid substrate, which could represent a stiffer tissue such as
the epidermis of plant leaves. Stresses are induced by a mismatch between the two
layers, which can occur as a result of differential growth. If the transition between the
two states of the tissue is reversible, regular patterns are obtained, in which domains
of collapsed and uncollapsed tissue alternate. If, instead, the transition to the
collapsed state is made irreversible to model tissue differentiation, hierarchical
patterns are obtained.

When turning to two-dimensional systems, the tensorial nature of mechanical
fields comes into play, and a much greater variety of behaviors are possible. Rather
than to attempt a systematic exploration, we present a few illustrative examples of
the patterns that can be obtained. In particular, we show that anisotropic collapse,
which could describe the elongation of vascular cells in plant leaves, produces
reticulate patterns comprised of interconnected stripes of collapsed tissue. Our
simulation results suggest that hierarchical, reticulate patterns might be obtained
when irreversibility is introduced. However, in the simple model presented here, these
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patterns are disrupted by strong residual stresses that develop in the vicinity of

growing collapsed regions. We suggest that a more satisfactory model would require

a more detailed description of the interplay between mechanical stresses and growth.

We also contrast our model with a similar approach presented in [17].

2. One-dimensional model

In this section, we present our modeling approach in the context of a one-

dimensional system. We consider a tissue that can exist in two states, an ‘initial’ state

and a ‘collapsed’ state that has a smaller volume. Transition to the collapsed state is

triggered by compressive stresses, and releases the compression. While, in general,

the two states of the tissue could differ in their stiffness (the collapse could be due to

the transition to a softer state), we assume that they only differ in their rest

configurations (the collapsed state has a smaller volume at rest). In the case of leaf

veins, the initial and collapsed states of the tissue represent the undifferentiated and

vascular tissues, respectively, and the change in rest configuration corresponds to the

elongation of vascular cells as they differentiate. The tissue is described as a

continuous medium, and its two states as two ‘phases’, using a phase field model.
The phase field approach, used here in the context of mechanically induced

pattern formation [17], was first introduced to describe the growth of a solid in a

liquid [18–21] (reviewed in [22,23]) and has later proved to be a powerful tool to

describe free boundary problems in fluid flows [24,25] and solid-solid phase

transitions in alloys [26,27]. This is especially the case in 3D, where interface tracking

methods are extremely difficult to implement [28,29]. Our model is similar to those

developed for fracture in [30–34] and for solid-solid phase transitions in [26,27],

which comprise phases having different mechanical properties.
A continuously varying auxiliary field � is introduced to indicate the local state of

the tissue, with the convention that �¼ 0 corresponds to the initial state, and �¼ 1 to

collapsed regions. The behavior of the system, i.e. both its deformations and the

transitions between the two states, is assumed to be governed by an energy functional

E{�, u}, where u is the displacement field. While this is natural for a physical system,

it may seem rather arbitrary for a biological one. However, we will see that the

resulting behavior is sufficiently general. The evolution of the system is assumed to

be quasi-static, i.e. at any given time it is in a state of equilibrium that minimizes E,

and satisfies the equilibrium equations

�E

�u
¼ 0 ð1Þ

�E

��
¼ 0: ð2Þ

For a one-dimensional system, the energy E is defined by

E ¼

Z
D

2
ð@x�Þ

2
þ eð�, �Þ þ f ð�Þ

� �
dx: ð3Þ
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The first term in the integral is a squared gradient term, which penalizes sharp

variations in the phase field. e is the density of elastic energy, which depends on the

phase and on the strain �¼ @xu. f (�) is a potential that, together with the coupling

between � and � through e, governs the behavior of the phase field. Assuming that

both phases (treated as linear elastic) have the same elastic modulus � and differ only

in their rest configuration, the energy defined by Equation (3) takes the form

E ¼

Z
D

2
ð@x�Þ

2
þ
�

2
�� �rð�Þð Þ

2
þ f ð�Þ

� �
dx, ð4Þ

where the rest configuration is given by

�rð�Þ ¼ hð�Þ�r1: ð5Þ

The function h (defined below) satisfies h(0)¼ 0 and h(1)¼ 1, and �r1 is the rest

configuration of the collapsed phase. The potential f is defined by

f ð�Þ ¼ �hð�Þ2 þ �hð�Þ: ð6Þ

h(�)¼ 3�2� 2�3 is chosen such that h0(0)¼ h0(1)¼ 0, so that uniform phases (�¼ 0 or

�¼ 1) are stationary states.
Qualitatively, it can seen be from Equation (4) that under sufficient compression,

the system will tend to switch to the collapsed state to lower its energy. The response

of the system can be described by examining its uniform states of equilibrium (where

� and � are uniform). In the range of parameters considered here,2 � has a unique

equilibrium value for every value of the strain �. Defining the critical strains

�c0 ¼
�

��r1
, ð7Þ

�c1 ¼
��2r1 þ 2�þ �

��r1
, ð8Þ

� is equal to 0 when �4�c0 (note that since we are considering compressive strains, �
and � are generally negative), varies gradually from 0 to 1 as � goes from �c0 to �c1,
and is equal to 1 when �5�c1 (for strong compressive strains). Since � is uniquely

determined by the strain �, so is the stress �¼�(�� �r(�)). Our two-phase model thus

behaves as a non-linear elastic material with a certain stress-strain response.
As shown in Figure 1a, this response is non-monotonic, and the phase transitions

in our model are equivalent to mechanical instabilities in an elastic material with a

non-monotonic stress-strain curve [35]. The states for which the slope is negative,

which correspond to values of the phase intermediate between 0 and 1, are unstable.

If the system is subjected to increasing strain, it deforms uniformly until �¼ �c0, then
phase-separates. When the two phases coexist, the stress has a fixed ‘plateau’ value

�p, as do the strains in the two phases (see Figure 1a). In a biological context, the

plateau stress can be understood as a ‘homeostatic stress’ restored by the formation

of a collapsed region. If the strain is further increased, the proportion of the

collapsed phase increases until the system is entirely collapsed, after which the strain

is uniform again. Note that states intermediate between the plateau stress and the
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instability threshold are metastable, and in actual physical systems, the distinction

between the two can be blurred by disorder [4]. This can be reproduced in our model

by adding a random prefactor r(x) to the terms e(�, �)þ f (�) in the expression of the

energy (Equation (3)). This creates local weak spots, so that the collapsed phase

nucleates before the critical stress for an ideal, homogeneous system (compare

Figures 1a and b).
As illustrated by the simple, piecewise linear stress-strain curve shown in

Figure 1a, our model provides a minimal description of a mechanism for the release

of mechanical stresses by localized deformation. There are just enough parameters to

allow independent adjustment of the properties that will determine its pattern-forming

behavior, i.e. the instability threshold, the amount of deformation associated with

the collapse, and the equilibrium stress at the interface between the two phases.
In what follows, we consider the system shown in Figure 2, in which a layer of

tissue described by the above model is coupled to a rigid substrate. If there is any

mismatch between the two layers, mechanical stresses are induced in the tissue. Such

a layered arrangement is commonly used to model various mechanical instabilities,

e.g. the fragmentation of thin films [36,37], and can be likened with the layered

structure of plant leaves [11], with the rigid substrate representing the epidermis.
The coupling between the two layers is described by a quadratic potential, which

included into the energy (Equation (4)) yields

E ¼

Z
D

2
ð@x�Þ

2
þ
�

2
�� �rð�Þð Þ

2
þf ð�Þ þ

k

2
ðu� 	xÞ2

� �
dx: ð9Þ

σp

Strain

S
tr

es
s

p0 c0 c1 p1

σc0

σc1

Strain

S
tr

es
s

(a) (b)

Figure 1. (a) Sketch of the stress-strain curve of the model. The dashed segment corresponds
to unstable states, which phase-separate. The dotted horizontal line indicates the plateau
stress observed when the two phases coexist. (b) Stress-strain response of a simulated
inhomogeneous system.

Figure 2. Diagram of the system. A layer of tissue (top) is coupled to a rigid substrate
(bottom).
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The parameter k represents the strength of the coupling, and 	 is a measure of the

mismatch between the two layers, defined by 2Ls¼ (1þ 	)2L, where the 2Ls and 2L

are the lengths of the substrate and of the tissue layer in an unstressed state.
To understand how the phase transition can be triggered, it is useful to compute

the strain field when the tissue is in its initial state (�¼ 0).3 The equation of

mechanical equilibrium (Equation (1)) yields

�@xxu� kðu� 	xÞ ¼ 0, ð10Þ

which is linear in u and admits solutions of the form

u ¼ 	xþ Aex=
 þ Be�x=
: ð11Þ

In this equation, 
 ¼
ffiffiffiffiffiffiffiffiffi
�=k

p
is a characteristic elastic length scale of the system, and A

and B are constants that are determined by the boundary conditions. Here, the edges

of the tissue are free of stresses, and @xu¼ 0 at x¼�Ls. Computing A and B

and deriving Equation (11) with respect to x, we find that the strain in the tissue is

given by

� ¼ 	 1�
coshðx=
Þ

coshðLs=
Þ

� �
: ð12Þ

If the system is large compared to the elastic length scale 
, the strain is close to

the strain imposed by the substrate everywhere except at the edges, and the

stresses exhibit a broad plateau. If the system size is comparable to or smaller

than the elastic length scale, the stresses have a more localized maximum at the

center of the system, and the value of this maximum increases with the size of the

system.
One way instabilities can be induced is by increasing the mismatch between the

two layers (this is analogous to the situation of a shrinking film on a substrate).

From the above, it appears that instabilities can also be induced by growth with the

mismatch between the two layers being fixed, that is a result of uniform growth. The

latter regime will always be considered when simulating patterning in growing

tissues.4

We now turn to a numerical analysis of the evolution of the system. So far, we

specified only its energy, which determines its states of equilibrium and their

stability. To determine the new state of equilibrium reached after an instability

occurs, its dynamics must be specified. A reasonable assumption is that mechanical

relaxation is much faster than the transition between the two states of the tissue, so

that at any time the system is at mechanical equilibrium:

0 ¼
�E

�u
¼ ��@x @xu� �rð�Þð Þ þ kðu� 	xÞ: ð13Þ

Dynamics need thus be specified only for the phase field. We assume the latter obeys

a relaxation equation of the form

@t� � �
�E

��
¼ DD�� @�e� @� f: ð14Þ
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At each time step of the overall evolution of the system, i.e. of its growth, this

relaxation equation is solved assuming the system is at mechanical equilibrium, until

an equilibrium is reached.5 And this state of equilibrium satisfies the equations:6

0 ¼ �@x @xu� �rð�Þð Þ � kðu� 	xÞ

0 ¼ DD�� @�e� @� f:

�
ð15Þ

Most of the time, no instability occurs, and the new state of equilibrium is very close

to the previous one. If an instability occurs, the phase field evolves to a new state

that contains a different number of collapsed regions. Figure 3 shows a typical

equilibrium configuration.
The results obtained in various conditions are shown in Figure 4. In the first

example (Figure 4a), the tissue has a fixed size and the mismatch between the two

layers is progressively increased. A limited number of collapsed regions are formed

and grow to occupy the entire tissue. In the second example (Figure 4b), the system

grows with the mismatch remaining constant (L¼ et/�L0 and Ls¼ et/�Ls0). In that

case, instabilities occur with time in an approximately self-similar cascade. Note that

in both of these examples, the existing collapsed zones readjust after each new

instability, and the system relaxes to a regular pattern that minimizes its energy. In

the process, existing collapsed zones may change size or position, which is possible

because the transition between the phases is reversible. In the case of a growing

system (Figure 4b), this means that the pattern does not retain any trace of the

history of its formation.
Now, if the transition to the collapsed state represents tissue differentiation, it

should be irreversible, precluding the above rearrangements. A simple way of

implementing irreversibility is to make the evolution of the phase field � irreversible.

Assuming that the transition must progress to a certain point before it becomes

x/L
10.50–0.5–1

0

–0.2

–0.4

–0.6

–0.8

–1

Figure 3. A simulated pattern with three collapsed zones. The solid line and the dashed line
represent the strain and the stress, respectively. The parameters of the model are �¼ 1,
�r1¼�1, �¼�0.25, �¼ 0.25, D¼ 4� 10�4, k¼ 16, L¼ 1, and 	¼�0.5. With these values, the
elastic length scale is 
¼ 0.25, the instability threshold is �c0¼�0.25 and the plateau stress is
�p¼ 0. Accordingly, the strains in the two phases when they coexist are equal to the rest strains
in their rest configurations, i.e. �p0¼ 0 and �p1¼�1.
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irreversible, we allow � to increase or decrease when it is smaller than a certain
threshold (1/2), and only to increase when it is larger.7 As shown in Figure 4c, this
yields hierarchical patterns, which reflect the history of the system. The collapsed
zones grow along with the system, so that earlier-formed zones are larger than more
recent ones.

So far, we assumed that the tissue was perfectly homogeneous, and it may be of
interest to examine how disorder, which is inherent in biological tissues, would affect
the outcome of the model. As described earlier, disorder can be incorporated as a
multiplicative noise term in the energy of the system. Instabilities then no longer
occur exactly at the locations where the stresses are largest. Figure 4d shows an
example of the resulting irregular patterns. Consistent with theoretical arguments
and experimental results concerning crack patterns [37,38], we find that the effect of
disorder depends crucially on how the distance between collapsed regions compares
with the elastic length scale 
. If this distance is much larger than 
, then the stresses
exhibit a broad plateau and the location of new collapsed zones is very variable,
being governed essentially by the weak spots due to disorder. On the other hand,

x/L

10.50–0.5–1

1(a) (b)

(c) (d)

0.8

0.6

0.4

0.2

0

η
/

r
1

x/L

10.50–0.5–1

6

5

4

3

2

1

0

lo
g 2

(L
/L

0
)

x/L

10.50–0.5–1

6

5

4

3

2

1

0

lo
g 2

(L
/L

0
)

x/L

10.50–0.5–1

6

5

4

3

2

1

0

lo
g 2

(L
/L

0
)

Figure 4. Patterns obtained in a one-dimensional system. These plots show the evolution of
the phase field, with the collapsed regions appearing in black. Model parameters are given in
Figure 3. (a) Increasing mismatch between the two layers, with the size of the tissue being fixed
(L¼ 1). (b)–(d) Growing system with a fixed mismatch (	¼�0.275). The initial size of the
tissue is L0¼ 0.25. (b) Reversible evolution. Note that the collapsed regions appear to shrink
only because the total size of the system increases. (c) Irreversible evolution. (d) Same as
(c) with disorder.

364 F. Corson et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
r
n
e
l
l
 
U
n
i
v
e
r
s
i
t
y
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
4
:
5
9
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
0



if the distance between the collapsed regions is comparable to or smaller than 
, then
the stresses have a more localized maximum and the location of new collapsed zones

is close to the location of this maximum. The latter regime is thus more favorable for

obtaining regular and reproducible patterns. It is worth noting that in growing plant

leaves, the distance between veins is of the same order as the thickness of the leaf [16]

(which sets the characteristic length scale for elastic coupling between veins).

3. Two-dimensional model

We now turn to the extension of the model to two-dimensional systems. In this

context, the one-dimensional patterns described in the previous section can be

interpreted as parallel stripes of localized deformation. The more general patterns

that we expect to describe would take the form of networks of stripes of different

orientations, corresponding to different principal directions of deformation. It is thus

clear that a scalar parameter is no longer sufficient to describe the collapsed state.

Since the difference between the two phases lies only in their rest configurations, we

choose here to identify the phase field � and �r, which in 2D is a tensor describing the

local rest configuration. Likewise, the mismatch between the two layers is now

described by a tensor g. The 2D analog of Equation (9) thus takes the form

E ¼

Z
D

2
jr�rj

2 þ



2
Trð�� �rÞ

2
þ �j�� �rj

2 þ f ð�rÞ þ kðu� gxÞ2
� �

dS: ð16Þ

While g may be anisotropic, we assume that the tissue has no preferential direction.

Accordingly, f can be expressed as a function of the invariants of �r, e.g. its trace and
its norm.

To obtain a behavior similar to that of the one-dimensional model, we consider

potentials that have a minimum for �r¼ 0 and a minimum of the same depth for

values of �r corresponding to a smaller natural volume (i.e. Tr�r50). Among all

possible potentials satisfying this constraint, we have chosen the following three

illustrative examples. In the first, the secondary minimum is reached for all

deformations having a given amplitude (norm), regardless of the shear. The second

one specifically favors uniaxial deformations. In contrast, the third one has a

secondary minimum for isotropic compression.
More specifically, the first potential is defined by

f ð�rÞ ¼ �ðj�rj � 1=2Þ2 þ ðj�rj � 1=2Þ4, ð17Þ

which has minima for �r¼ 0 and for j�rj ¼ 1 (see Figure 5a). The second and third

examples are defined as polynomials of the invariants of �r, i.e.

f ð�rÞ ¼
X

cijðTr �rÞ
i
j�rj

2j: ð18Þ

The two sets of coefficients used are c20¼ 0.4, c01¼ 0.2, c30¼ 0.7, c11¼ 0.5, c40¼ 0.4,

c21¼ 0.1, c02¼ 0.1, which corresponds to minima for uniaxial deformations (see

Figure 5b) and c20¼ 0.25, c01¼ 0.5, c30¼ 1, c11¼ 0, c40¼ 0.375, c21¼ 0, c02¼ 0.5,

which leads to a minimum for isotropic compression (see Figure 5c).8
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In contrast to the one-dimensional system shown in Figure 2, in which the edges
were free of stresses, most of the 2D simulations were done with periodic boundary
conditions, which allow the mechanical equilibrium equation to be efficiently solved
in Fourier space. In this case, the phase field is initially chosen to be random, to
break the symmetry of the system. The initial conditions (mismatch or size for a
growing system) are chosen such than an instability immediately develops,
preventing relaxation to a uniform state.

As in the one-dimensional case, we first consider reversible evolution in a non-
growing system (Figure 6). Here, the mismatch between the two layers is directly set
to its final value, and the system is allowed to relax to equilibrium. The first two

ε1

ε2

10–1

1

0

–1

ε1

ε2

10–1

1

0

–1

ε1

ε2

10–1

1

0

–1

(a) (b)

(c)

Figure 5. Gray scale plots of the different potentials f (�r) used. �1 and �2 are the eigenvalues of
�r. Darker regions correspond to lower values. (a) The potential defined by Equation (17)
favors compressive strains of a given amplitude, regardless of the shear. (b) The potential
defined by Equation (18) and the first set of coefficients given in the text favors uniaxial
compression. (c) The potential defined by Equation (18) and the second set of coefficients
favors isotropic compression.
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potentials (shown in Figures 5a and b), which allow or favor uniaxial compression,
yield very similar patterns of interconnected stripes, which could be likened to crack
networks in directional growth systems such as basalt columns [39]. In contrast, the
potential shown in Figure 5c, which favors isotropic compression, produces islands
of localized deformation arranged in an hexagonal lattice, which are similar to some
structures observed in solid-solid phase transitions [27]. The characteristic length of
the above patterns, as in 1D, is set by the elastic length scale 
 ¼

ffiffiffiffiffiffiffiffiffi
�=k

p
.

The difference between the two potentials that produce reticulate patterns
becomes more apparent when considering a growing system (and a reversible
evolution), which makes it possible to observe individual nucleation events leading to

(a) (b)

(c)

Figure 6. Typical patterns observed in a layered two-dimensional system with the different
potentials. Periodic boundary conditions were used and the initial state was randomly
perturbed. Gray levels correspond to the trace of the rest configuration �r, with darker areas
corresponding to collapsed regions. Potentials that allow or favor uniaxial compression (a)
and (b), corresponding to the potentials of Figures 5a and b, respectively) yield reticulate
patterns, while the potential that favors isotropic compression produces discontinuous
domains arranged in a hexagonal lattice (c), corresponding to the potential of Figure 5c).
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the formation of new collapsed regions. Indeed, in the case of the potential of
Figure 5a, new collapsed regions take the form of trijunctions that split an
uncollapsed region into three,9 while in the case of the potential of Figure 5b, they
occur as single stripes that divide an uncollapsed region across its longest
extension.10 This qualitative difference can be explained by the fact that the core
of a trijunction is compressed in both directions, a state that is disfavored by the
potential of Figure 5b.

Finally, we consider irreversible evolution in a growing system, which we found
to lead to hierarchical patterns in 1D. In that case, irreversibility was implemented by
forcing the evolution of the scalar phase field to be monotonic once a certain
threshold was exceeded. A straightforward extension to two dimensions would be to
apply the same rule to the trace of the rest configuration tensor �r. However, this
would allow the principal directions of the rest configuration in the collapsed phase
to vary (and simulations indicate that this can indeed occur). Instead, we wish the
establishment of these special directions to be definitive, as is the transition to the
collapsed state (think of the elongation of vascular cells in plant leaves). Accordingly,
we impose that, once the compression in some direction has exceeded a certain
threshold, it can no longer decrease.11

As in 1D, we consider a growing system with a fixed mismatch, and find that
hierarchical structures are obtained. As shown in Figure 7, the shape of the patterns
depends both on the potential used and on the shape of the growing domain (for the
earliest structures that are formed). However, we find that the simple model
presented here produces unexpected artifacts, such as regions of lower compression
within the collapsed zones, and open-ended collapsed regions that fail to reconnect
with previously formed structures.

As illustrated by Figure 8, these effects are caused by tensions that accumulate in
the collapsed structures as they grow. When the transition to the collapsed state is
reversible, the collapsed regions tend to an equilibrium width such that compressive
stresses are relaxed in their neighborhood (i.e. for an ideal, infinitely long and
straight stripe, the stress at the interface has a fixed value equivalent to the plateau
stress �p of the one-dimensional model). In contrast, in the irreversible case, the
width of each collapsed region grows along with the system and exceeds its
equilibrium width. Instead of just releasing the compression in their vicinity, these
growing collapsed regions give rise to tensile stresses. As can be seen in Figure 7,
these tensile stresses both destabilize the collapsed regions, and prevent the
progression of new collapsed regions towards them. It must be noted that such
tensile stresses are also generated in the 1D model. However, they do not have such
dramatic effects in that case, because new collapsed structures always form away
from existing ones.

4. Discussion

In this article, we explored a possible mechanism for biological patterning by
mechanical stresses. This mechanism, which involves the stress-mediated transition
of a tissue between two states, was shown to yield a response similar to that of a non-
linear elastic material, justifying an analogy with mechanical instabilities.
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The formation of patterns was driven by coupling the tissue to a rigid substrate,
which could represent a stiffer tissue such as the epidermis of plant leaves. As in the
mechanical instabilities of layered physical systems, such as the wrinkling of a film
bound to a substrate, this elastic coupling introduces a characteristic length scale that
governs the size of the patterns.

We first analyzed a one-dimensional system. In this case, the model involves a
small number of parameters, and it is possible to describe the equilibrium patterns
analytically. Numerical simulations showed that regular patterns, which are largely
independent of the history of the system, are obtained when the transition between
the two states of the tissue is reversible. In contrast, when this transition is made
irreversible to represent tissue differentiation, the history of the system is retained in

(a) (b)

(d)(c)

Figure 7. Patterns generated by irreversible evolution in growing systems with different
potentials and boundary conditions (periodic boundary conditions or circular domains).
(a) and (c) were obtained with the potential of Figure 5a, (b) and (d) with the potential of
Figure 5b. As expected, hierarchical structures are formed. However, they are disrupted by the
tensions that accumulate within and around the collapsed regions as they grow (see text and
Figure 8). Notice the lighter spots or stripes within the collapsed regions.
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its final state. In a growing system, new structures keep forming over time, yielding
hierarchical patterns. This is very similar to the development of leaf venation
networks, in which veins of different orders form successively over the course of leaf
growth [16].

In two dimensions, because of the tensorial nature of elastic fields, the potential
that characterizes the preferred states of the tissue can have many different forms.
While we did not carry out a systematic analysis, the different examples considered
suggest that reticulate patterns can readily be obtained when the potential allows or

(a) (b)

(c) (d)

Figure 8. (Color online). Effect of irreversibility on the mechanical state of the system and
pattern formation. All figures represent growing systems with periodic boundary conditions.
(a) and (b) were obtained with the potential of Figure 5a, (c) and (d) with the potential of
Figure 5b. Evolution was reversible in (a) and (c), irreversible in (b) and (d). Collapsed regions
(defined by thresholding the value of Tr(�r)) are shown in blue (online). Gray levels indicate
compressive stresses (lighter regions are more strongly compressed), and regions appearing in
black are under tension. In the reversible case, the stresses decrease near the collapsed regions,
yet generally remain compressive. In the irreversible case, this is also true for recently formed
structures. In contrast, the larger, older structures generate tensile stresses. These tensile
stresses hinder the progression of newly formed structures, yielding disconnected patterns.
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favors uniaxial deformations of the tissue. In contrast, islands of deformed tissue are
obtained with a potential that favors isotropic deformations. This suggests that a
mechanical model of leaf venation patterning could account for both wild-type
patterns and the disconnected vasculature observed in certain mutants [40].

A very similar model of leaf vein patterning was recently proposed in [17]. In that
approach, however, the different states of the tissue are characterized by a single
scalar order parameter. The transition to the collapsed state is associated with an
isotropic deformation, and the collapsed tissue is assumed to have a reduced shear
modulus to allow the formation of reticulate patterns. The elongation of vascular
cells is described as a change of their rest volume combined with a strong elastic
shear. One benefit of this approach is that it involves a much smaller number of
parameters. However, it is unclear that it gives a realistic description of the
mechanical state of vascular cells. While it comes at the cost of a greater complexity,
we find it more appropriate to describe the elongation of vascular cells as a change in
their rest shapes. This also makes it possible to address the effect of variations in
these rest shapes on the overall pattern. For instance, as mentioned above, our
results suggests that failure to elongate properly can lead to disconnected patterns
such as are observed in some mutants.

From the preceding results, we expected that the introduction of irreversibility in
a growing two-dimensional system would lead to hierarchical, reticulate patterns.
However, we found that strong tensile stresses develop in collapsed regions as they
grow beyond their initial, equilibrium size, and dramatically affect the evolution of
the system. This is a consequence of the very simple growth laws assumed in our
model. The rest configuration of the tissue changes when it switches between its two
states, but growth in each of the two states is uniform and proceeds at a constant
rate, allowing residual stresses to accumulate. In reality, the growth of biological
tissues depends on the mechanical stresses to which they are subjected [41,42], which
can be expected to limit the buildup of residual stresses. Incorporating this
dependence would be essential to further investigate biological patterning by
mechanical forces. Another perspective would be to integrate the mechanical
approach developed here with the biochemical factors of tissue differentiation. For
instance, the differentiation of vascular cells in plant leaves involves the expression
and polar localization of auxin carrier proteins [13], and it would be of interest to
investigate how these processes are connected with the elongation of vascular cells.
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Notes

1. Conversely, localized deformation in non-linear elastic materials can be interpreted as a
first-order phase transition.

2. The parameters are chosen such that the critical strains defined below satisfy �c15�c0.
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3. Similar calculations could be carried out for the states of equilibrium in which the two
phases coexist if the width of the interfaces is neglected.

4. If the two layers were instead assumed to grow at different rates, then the mismatch
would become arbitrarily large with time.

5. The equations of mechanical equilibrium (a set of linear equations) are solved at each step
of the relaxation. The relaxation is stopped when the rate of change of the phase field falls
below a certain threshold.

6. We are thus assuming that there are three well separated time scales �mech� �diff�
�growth, where �mech, �diff, and �growth are the characteristic time scales corresponding to
mechanical relaxation, cell differentiation, and growth, respectively.

7. Such an ad hoc rule would clearly be unsatisfactory to describe a physical system, but in
the case of biological systems, it can be seen as a necessary simplification of the complex
phenomena involved.

8. Note that the potential defined by Equation (17) cannot be written in this form.
9. A typical example in the case of an irreversible evolution can be seen in Figure 8a.
10. A typical example in the case of an irreversible evolution can be seen in Figure 8c.
11. To this end, we define a ‘maximum deformation tensor’ �m that keeps track of the

maximum past compression in any direction, i.e. the tensor �r(t)� �m(t
0) is positive for all

times t5t0. From this maximum deformation tensor, we define an ‘irreversible
deformation tensor’ �i. In a basis that diagonalizes �m, �i¼ diag( f(
1), f(
2)), where
�m¼ diag(
1, 
2). The function f is defined by f(x)¼ 0.9x if x5�0.5 and f(x)¼1 if
x4�0.5, so that compressions in excess of 0.5 are stored in �i. Irreversibility is
implemented by imposing that the tensor �r� �i is negative. The factor 0.9 in the
definition of f was introduced to prevent numerical instability.
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