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1. INTRODUCTION

1.1 Scientific profile

Nanoscale electronic circuits placed at low temperatures exhibit quantum effects which

are the basis of quantum electronics. My research takes its roots in this field, which has

connections with quantum information, strongly correlated systems, topological matter

and Cavity QED. Before describing my scientific achievements in this vast landscape,

it can be useful to describe briefly my career and scientific approach. I first did an

experimental thesis on Josephson superconducting circuits in the Quantronics group of

Saclay (1999-2002). Then, I did a technical retraining during six years of post-doctoral

studies (Basel (2002-2005), Orsay (2005-2007), Jussieu (2007–2008)) in order to become

a condensed matter theorist. During these years, I studied the theory of quantum dot

circuits and superconducting/ferromagnetic hybrid structures. In October 2008, I was

hired as a CNRS researcher in the Theory Group of Laboratoire Pierre Aigrain (LPA)

at the Ecole Normale Supérieure de Paris. Since then, I use my double education as a

theorist and as an experimentalist to perform theoretical works on Hybrid Nanocircuits

in strong connection with experimental researchers. I devote a significant part of my

time to a close collaboration with the experimental team Hybrid Quantum Circuits

(HQC) of Takis Kontos at the LPA. I am a co-director for several Phd theses in this

group. I follow closely the analysis and interpretation of the experimental data, as

well as the promotion of the results. I also participate to the choices for the future

experiments of this team. I sometimes work with other experimental groups. For

instance, in 2016, I have participated to the theoretical interpretation of data from the

group of E. Laird in Oxford. In parallel, I also work upstream of experiments, in order

to push further the fundamental understanding of hybrid nanostructures, as well as to

predict new effects and propose new experiments. In this framework, I have established

a close collaboration with the Laboratoire de Physique Théorique of University Paris VI

(B. Douçot). I also regularly collaborate with theory teams outside France (England,

Germany, Norway, Nederlands and Spain).
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1.2 Research highlights

Today, one of the most popular research goal in physics is the development of a quan-

tum computer, which would exploit quantum parallelism to perform tasks intractable

with nowadays’ computers. This requires first to build the basic unit of a quantum

computer, or quantum bit, which is a controllable quantum two level system. Super-

conducting microcircuits are very interesting in this context, because the rigidity of

the superconducting phase strongly reduces their accessible space of states. Along this

direction, my experimental PhD on Josephson circuits enabled the first realization of

a superconducting quantum bit with a coherence time of the order of a microsecond

[Vion et al, Science 2002 ]. During my post-docs, I moved to the field of quantum

transport and considered nanocircuits with a greater microscopic complexity, due to

the presence of non-superconducting elements, such as ferromagnetic electrodes. This

gives an access to the electronic spin degree of freedom, which could represent another

interesting possibility to encode quantum information, due to the potentially long co-

herence time of spins in nanostructures. I studied current noise and spin-dependent

transport in quantum dots with ferromagnetic contacts [Cottet et al, Phys. Rev. Lett

2004 ] and superconductor/ferromagnet hybrid circuits [Cottet et al, Phys. Rev. Lett

2008 ]. This led me to collaborate with the experimental team of C. Schönenberger in

Basel, for the realization of the first spin transistor [Sahoo et al., Nature Physics 2005 ]

which would be the simplest component of a gate-controlled nanospintronics.

Since my arrival at ENS-Paris, my research activity has focused on hybrid quantum

circuits. The combination of conductors with different dimensionalities or electronic

orders produces a wealth of new phenomena and functionalities. I have explored three

different possibilities along this direction. I have first pushed further the study of

purely metallic superconducting/ferromagnetic hybrid structures, which I began in

Basel. These devices enable one to obtain non-conventional superconducting correla-

tions, which present a fundamental interest but also a technical interest due to the

realization of new functionalities in superconducting circuits. I have collaborated with

Y. Nazarov (Delft) and W. Belzig (Constance) to establish a new framework for the

description of the interfaces between superconducting and ferromagnetic materials in

the diffusive regime [Cottet et al., Phys. Rev. B 2009 ]. This fills a technical gap which

was raising problems since several years for the description of hybrid structures. Using

these boundary conditions, I have proposed a geometry which could facilitate the study

of exotic superconducting correlations corresponding to Cooper pairs in a triplet with
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spin 1 state [Cottet, Phys. Rev. Lett. 2011 ].

I have also pursued my work on gate-controlled nanospintronics. The use of phase-

coherent nanoconductors, such as carbon nanotubes at low temperatures, enables one

to control electronic transport with electrostatic gates, thanks to quantum interference

effects. Hence, the combination of nanoconductors and ferromagnetic contacts leads to

many new spintronics functionnalities, based on the electric control of the spin degree

of freedom. I have considered new concepts not investigated with the spin transistor

developed in Basel, which was based on a carbon nanotube with two ferromagnetic

contacts magnetized in colinear directions. For instance, I have predicted a non-local

spin transistor effect, in a coherent nanoconductor with four contacts [Cottet et al.,

Phys. Rev. B 2009]. I have collaborated with the HQC group on the corresponding

experiment [Feuillet-Palma et al., PRB 2010 ]. I have also collaborated to the obser-

vation of a gate-controlled spin-precession effect in a biased-voltage quantum dot with

two ferromagnetic contacts magnetized in non-colinear directions [Crisan et al, Nature

Communications 2016 ].

Finally, I have now an intense activity on Cavity Quantum Electrodynamics (QED)

with hybrid nanocircuits, in close collaboration with the HQC group. Cavity QED ex-

periments which couple cavity photons to two level systems such as two level atoms

or superconducting quantum bits enable a fundamental study of the light-matter in-

teraction as well as the development of powerful quantum computing architectures. It

can be interesting to push further the light/matter hybridization by coupling cavity

photons to more complex hybrid nanocircuits. This represents a qualitatively new way

to investigate the electronic behavior of these nanocircuits. I have thus collaborated to

the first experiment reporting an observation of a single quantum dot circuit through a

microwave cavity [M.R. Delbecq, Phys. Rev. Lett. 2011 ]. I have established a general

Hamiltonian to describe this class of experiment [Cottet et al., Phys. Rev. B 2015 ].

I have pointed out that in the semiclassical limit, the microwave cavity can directly

measure the charge susceptibility of a nanocircuit, which can be affected by tunneling

to fermionic reservoirs [Cottet et al., Rapid. Comm. 2011 ]. This has been confirmed

thanks to the detailed interpretation of experimental data, which I have performed in

collaboration with the HQC group [Bruhat et al, Phys. Rev. X 2016 ]. The use of

hybrid circuits in the context of Cavity QED gives a photonic access to new degrees of

freedom, such as the electronic spin degree of freedom. For instance, one could obtain

a strong coupling between a single spin trapped in a double quantum dot and cav-
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ity photons, thanks to ferromagnetic contacts, [Cottet and Kontos, Phys. Rev. Lett.

2010 ]. I have collaborated to the first experimental realization of this device [Viennot

et al., Science 2015 ]. I have also proposed different experiments which would exploit

the nanocircuit/photon coupling in order to probe non-trivial electronic states in a

nanocircuit. For instance, I have proposed to use a microwave cavity to characterize

exotic condensed matter states such as split Cooper pairs [Cottet et al, Phys. Rev.

Lett. 2012 ] or Majorana bound states [Dartiailh et al., Phys. Rev. Lett. 2017, in

press ]. The experiments corresponding to these proposals are under development in

the HQC group, with my close support. Along the same direction, I have participated

to the recent observation of the freezing of charge dynamics in a Kondo dot, thanks to

a microwave cavity [Desjardin et al., Nature 2017 ].

1.3 Outline of the report

In chapter I, I summarize briefly my Phd thesis and my post-doc results. In the

next three chapters, I summarize the results that I have obtained at the LPA by

dividing them into three themes: superconducting/ferromagnetic hybrid structures,

gate-controlled nanospintronics, and Cavity QED with hybrid nanocircuits. I will

discuss in more details this last activity which is the most recent. I will finally present

a conclusion and perspectives.



2. EARLY RESEARCH RESULTS

2.1 Implementation of a quantum bit in a superconducting circuit

(PhD thesis)

Superconducting microcircuits are interesting systems in the context of quantum in-

formation science because, due to the rigidity of the superconducting phase, they can

be used to build reliably devices with a few accessible quantum states. For instance,

the Cooper pair box is a submicronic superconducting island, contacted to a supercon-

ducting reservoir through a Josephson junction. To describe the quantum state of this

circuit, it is sufficient to use the number n̂ of Cooper pairs in the island. Besides, if

Coulomb interactions in the island are sufficiently strong, only a few values of n̂ are

accessible in practice. The purpose of my thesis, performed in the Quantronics group

(CEA-Saclay), from 1999 to 2002, was to realize a prototype for the quantum bit, out

of a Cooper pair box. More precisely, I had to build the two states |0〉 and |1〉 of the

quantum bit out of a few charge states of the superconducting island in the Cooper

pair box. For that purpose, I performed a theoretical evaluation of decoherence ef-

Fig. 2.1: Artist view of the Quantronium circuit

fects in the Cooper pair box, in order to design a circuit with a long enough coherence

time[1, 2, 3]. Meanwhile, I tested experimentally several readout strategies for the state

of the Cooper pair box, based on charge or current measurements[1, 2, 3]. The most

promising circuit, the Quantronium, was proposed theoretically in Ref.[3]. The first
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experimental realization of this circuit showed coherent oscillations between the states

|0〉 and |1〉 during a time of 0.5 microseconds[4]. This coherence time was sufficient

to envision the development of a quantum processor. Hence, my thesis encouraged

the development of other types of quantum bits. An important concept introduced in

the framework of this thesis is the concept of ”sweet spot” for charge noise[3]. The

transition frequency ω01 of the Quantronium depends on the gate voltage Vg of its

superconducting island. However, charge fluctuators in the vicinity of the island in-

duce fluctuactions of Vg. As a result ω01 fluctuates, which causes decoherence of the

Quantronium state. This effect can be significantly minimized by operating the device

at its sweet spot where ∂ω01/∂Vg = 0. Later, this concept was used in other single elec-

tron devices such as the singlet-triplet spin quantum bit in a double quantum dot[6].

Thanks to this thesis, I could learn the experimental techniques of e-beam nanolithog-

raphy, metallic evaporation, cryogenics, low-noise measurements and radiofrequencies.

I could also learn the theoretical description of quantum superconducting circuits.

2.2 Current noise and spin-dependent transport in nanocircuits

(post-docs)

Spin transport is widely exploited in industrial spintronics devices based on ferromag-

netic materials[5]. By extension, it is very interesting to investigate the possibilities

offered by the spin degree of freedom in quantum electronics. For my theoretical re-

training, I thus studied mainly current noise and spin-dependent transport in quantum

dots and quantum point contacts.

2.2.1 Positive current cross-correlations in a quantum dot circuit

I considered the problem of the sign of cross-correlations between the electrical currents

in different branches of an electronic nanocircuit. A similar quantity had been thor-

oughly investigated in quantum optics to characterize photon sources[7]. In this case, it

is more easy to obtain positive cross-correlations due to the bosonic nature of photons.

In contrast, negative cross-correlations were expected for electronic currents, due to the

fermionic nature of electrons[8, 9, 10]. I first studied the case of a quantum dot with

a single electronic orbital, contacted to three fermionic reservoirs, by using a master

equation description[11]. Surprisingly, I found that if the reservoirs are ferromagnetic,

Coulomb interactions in the dot can produce positive current cross-correlations. This
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(a) (b)

Fig. 2.2: Observation of positive cross-correlations in a semiconducting quantum dot circuit

with three terminals, taken from Y. Zhang et al, Phys. Rev. Lett. 2007. (a) Picture

of the sample (b) Cross correlations S12 between the currents I1 and I2 versus

the gate voltage Vbc and the bias voltage V0. The red and blue shades correspond

to positive and negative cross-correlations respectively. Positive cross-correlations

are obtained in the Coulomb blockade areas, where V0 is too small to overcome

interaction effects in the dot.

is due to the fact that the electrons can tunnel through the circuit only in short time

windows where the dot is not blocked by a minority spin. This ”dynamical channel

blockade” leads to a bunching of tunneling events through the dot. This effect can also

be obtained without lifting spin-degeneracy if a quantum dot with two orbital levels is

used, provided the two orbitals have different couplings to the fermionic reservoirs[12].

This last possibility was realized experimentally in the group of Charles Marcus in

Harvard[13], as illustrated by Fig. 2.2.

2.2.2 Electronic transport in mesoscopic circuits with spin-active interfaces

I pointed out in several works the importance of the concept of spin-dependent scat-

tering phases at the interface between a ferromagnetic material and a non-magnetic

material (or SDIPS, for ”Spin-Dependence of Interfacial Phase Shifts”). I showed that

the SDIPS can modify significantly the behavior of many different types of hybrid

circuits. For instance, it can induce an effective Zeeman field in a diffusive supercon-

ducting layer tunnel-contacted to a ferromagnet[14]. It can also dephase the spatial

oscillations of superconducting correlations which propagate in a diffusive ferromagnet

tunnel-contacted to a superconductor[15]. This last result enabled a quantitative in-

terpretation of several pioneering experiments in this field[18, 19], which were not fully

understood formerly. For this study, I used the quasiclassical theory of superconduc-

tivity (Eilenberger equations and Usadel equations).
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I also studied the effects of the SDIPS on superconducting/ferromagnetic quantum

point contacts, by using the Landauer-Büttiker scattering approach. I showed that

the SDIPS can produce unusual subgap resonances or an apparent gap reduction in

the conductance of these contacts[20]. This was questioning the interpretation of such

measurements. I showed that in this context, noise measurement could be useful[21].

Finally, superconductivity is not a necessary ingredient to observe physical conse-

quences of the SDIPS. Indeed, the SDIPS can also cause an effective Zeeman field in a

coherent nanoconductor. Figure 2.3 represents a quantum dot made out of a portion

with length ` of a single-channel nanoconductor, delimited by two ferromagnetic con-

tacts. I first considered this situation in a non-interacting scattering picture. The phase

E
F

ferromagnet

ϕσϕσ
σ

σδ(E)

δ(E)
∆o

2E
z

eff

space

energy

F F

Fig. 2.3: (a) Quantum dot formed by a portion with length ` of nanoconductor (here a carbon

nanotube) delimited by two ferromagnetic reservoirs (in green). The dot levels have

an effective Zeeman spin splitting 2Eeffz = (ϕ↑ − ϕ↓) ~vF /` because electrons with

spin σ have a spin dependent reflection phase ϕσ on the ferromagnetic reservoirs.

The separation between the different spin pairs of orbital levels is ∆o = π~vF /`

shift acquired by an electron which crosses once the dot is δ(E) = `(kF +(E−EF )/vF ),

where EF , kF and vF are the Fermi energy, wavevector and velocity inside the nanocon-

ductor and E is the electron energy treated at first order. The electron can be reflected

on the ferromagnetic contacts with spin-dependent reflection phases ϕσ with σ ∈ {↑, ↓},

because the Stoner exchange fields inside the ferromagnets provide a spin-dependent

confinement potential for electrons in the dot. Hence, the dot orbital energies are given

by the resonant condition

2δ(E) + 2ϕσ = 2πn (2.1)

with n ∈ N (see Fig.2.3a). As a result, the dot orbitals are subject to an effective

Zeeman spin splitting[22]

2Eeff
z = (ϕ↑ − ϕ↓) ~vF/` (2.2)

The effective Zeeman field of Eq.(2.2) scales with `−1 because it is an interference effect

between the two contacts. Due to this factor, Eeff
z can reach values of the order of
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several Teslas for short quantum dots. This value is much larger than stray fields from

standard ferromagnets, which are independent of ` and reach typically a few 100 mT.

Furthermore, the effective field of Eq.(2.2) presents the advantage of being local, which

can be useful for building complex devices, as we will see later. Note that from Eq.(2.1),

the energy separation between the different spin doublets is

∆o = π~vF/` (2.3)

In a second step, I studied the case of a quantum dot with Coulomb blockade contacted

to ferromagnetic contacts[23], thanks to a technique which consists in truncating the

equations of motions for the dot Green’s functions, following Ref.[24]. I used this

approach to interpret data obtained in the group of C. Schönenberger in Basel, for a spin

valve based on a carbon nanotube with two ferromagnetic contacts[25]. A spin-valve is

characterized by its magnetoresistance, which is the difference between its conductance

for ferromagnetic contacts magnetized in parallel and antiparallel directions. The giant

magnetoresistance obtained in this experiment suggests the existence of a contact-

induced effective Zeeman field of the order of 2 tesla. Due to this field, a local spin

transistor was obtained. In other worlds, the magnetoresistance of the quantum dot

could be controlled with the gate voltage of the dot. Note that in the interacting case,

contact-induced effective field effects were also investigated with other Hamiltonian

techniques[26, 27, 28, 29]. Effective fields will be at the heart of a later discuss in this

report on the spin/photon coupling in hybrid quantum dot circuits (section 5.7)
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3. SUPERCONDUCTING/FERROMAGNETIC HYBRID CIRCUITS

3.1 Introduction

Can two antagonistic electronic orders coexist in a hybrid structure? This problem

is epitomized by superconducting/ferromagnetic hybrid circuits. A conventional BCS

superconductor hosts Cooper pairs made out of two electrons in a spin singlet state.

In contrast, a ferromagnet tends to favors the alignment of spins along its magneti-

zation vector. However, superconducting and ferromagnetic correlations can coexist

in a superconductor/ferromagnet bilayer, due to a modification in the nature of these

correlations[16]. Indeed, triplet correlations between opposite spins (triplet with spin

0) or between equal spins (triplet with spin 1) can appear in the hybrid structure.

These correlations are cousins of those predicted in the bulk FFLO state[17], or of

those expected in some exotic compounds like SrRuO4. The production and control of

such correlations in artificial nanostructures has thus a fundamental interest. This can

also have a technical interest. For instance, triplet correlations with spin 0 enable one

to obtain π Josephson junctions which produce permanent currents in a superconduct-

ing loop, in the absence of any external magnetic field. Such π Josephson junctions

could therefore be interesting components to build new Josephson circuits.

3.2 Spin-dependent boundary conditions for diffusive hybrid circuits

The spatial propagation of superconducting correlations in a metal with diffusion im-

purities can be described with the Usadel equation[30]

}D
−→
∇~r

(
Ǧ(~r)

−→
∇~rǦ(~r)

)
= −iε[τ3, Ǧ(~r)] (3.1)

The Usadel equation is a diffusion equation for the isotropic Green’s function Ǧ(~r)

which characterizes superconducting correlations at coordinate ~r. Above, I give this

equation for the case of a normal metal, for simplicity. I note D the diffusion constant

of the metal, and ε the quasiparticle energy. From the Usadel equation, inside each

materialm, the superconducting correlations evolve on a scale which I will note ξm. The
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Usadel equation can be derived by using approximations suitable for the diffusive limit

where electrons are scattered by diffusion impurities. However, the Usadel equations

are not sufficient to describe the behavior of a hybrid structure, because one also needs

to describe the interfaces between the different materials. This task can be done by

using boundary conditions which relate the values ǦL and ǦR of Ǧ(~r) at the two sides

of the interface. These boundary conditions are not trivial to obtain because on the

scale of the interface, the approximations performed to obtain the Usadel equations

are not valid. This is why, until recently, the only available boundary conditions

where spin-degenerate boundary conditions[42]. I have thus worked upstream of the

Usadel description to obtain boundary conditions valid in the case of materials with a

weak spin-polarization[43]. For instance, in the limit of a weakly transparent junction

between two materials L and R with a weak spin-polarization, the boundary conditions

write, at side R of the junction,

A

ρR
ǦR(~r)

−→
∇~rǦR(~r) = gT [ǦR, ǦL] + gMR[ǦR, {σ̂Z , ǦL}]− igφ[σ̂Z , ǦL] (3.2)

with ρR the resistivity of materialR, A the junction area, and σ̂Z the Pauli spin operator

along the magnetization direction of the junction. Above, gT is the conductance of

the junction. The conductance-like parameters gMR and gφ characterize the spin-

polarization of tunneling amplitudes and the SDIPS (see section 2.2.2) associated to

the potential barrier between the L and R materials (assuming that this barrier has a

width which is much smaller than ξL and ξR). More precisely, if one writes

tn,σ =
√
Tn(1 + σPn)eiϕn,σ (3.3)

the transmission amplitude of the barrier between L and R for the transverse propa-

gation channel n and spin σ, one has

gT = 2
∑
n

Tn (3.4)

gMR =
∑
n

TnPn (3.5)

and

gφ = −2
∑
n

Tn(ϕn,↑ − ϕn,↓) (3.6)

Note that there is a striking similarity between Eqs.(2.2) and (3.6). In fact, the gφ term

can induce an effective Zeeman field in a nearby normal metal[31] or superconducting

layer[33, 34]. This effect is a generalization of the effect discussed in section 2.2.2 for
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a single channel nanoconductor. The above work brought an important microscopic

justification to the numerous references which had formerly postulated such boundary

conditions[31, 32, 33, 34, 35, 36, 37, 38, 38, 40]. Very recently, I have collaborated to the

generalization of these boundary conditions to the case or arbitrary spin polarizations,

together with M. Eschrig at the Royal Holloway of the University of London[44]. The

spin-dependent boundary conditions for the Usadel equations are now a widely used

tool.

3.3 Triplet superconducting correlations in a normal metal

Triplet superconducting correlations with spin 0 have been clearly observed since

about 15 years[18, 45]. However, the observation of triplet correlations with spin 1

is more recent and indirect, through the measurement of Josephson supercurrents for

instance[46, 47, 48, 49]. In the work presented in this section, I have proposed a new

geometry which would enable one to study more directly triplet correlations with spin

one[51]. This consists in using a normal metal wire contacted to a superconductor and

a ferromagnetic insulators with non-colinear magnetic domains (see Figure 3.1a). The

superconductor tends to induce singlet superconducting correlations in the nanowire

while the two magnetic domains of the ferromagnetic insulators provoke effective Zee-

man fields in the normal metal. The resulting spin-precession effect converts the singlet

superconducting correlations into triplet correlations. These effects can be described

by using the spin-dependent boundary conditions discussed in the previous section[43].

Superconducting correlations between opposite spins and equal spins concentrate at dif-

ferent energies in the electronic spectrum of the normal metal wire (see Figure 3.1b).

More precisely, triplet with spin one correlations focus at zero energies whereas singlet

and triplet with spin zero correlations appear at finite energies corresponding to ±Eeff
s ,

with Eeff
s the amplitude of the effective Zeeman field induced inside the nanowire by

the ferromagnetic insulator. Therefore, the two types of correlations can be discrim-

inated by performing a tunnel measurement of the density of states in the nanowire,

with tunnel contacts or a STM. Note that in the experiments performed so far, the

triplet correlations are induced inside a ferromagnet, whose internal exchange field is

too strong to allow for the simultaneous observation of the low energy and finite energy

DOS peaks. Indeed, one has Eeff
s much larger than the gap of the superconductor, so

that the high energy peaks are not observable. The simultaneous observation of the

two features would be very useful to discriminate zero energy peaks due to spurious
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effects from zero energy peaks caused by genuine triplet with spin one correlations.

Furthermore, the measurement of the density of states would enable a much deeper

test of the understanding of superconducting correlations than the Josephson current

which is an energy-integrated quantity.

(a) (b)

  

Fig. 3.1: (a) Normal metal wire (NM) contacted to two magnetic domains in a ferromagnetic

insulator (FI) and to a superconductor (S). The magnetizations ~mL(R) in the two

magnetic domains are represented as green arrows. This geometry is compatible with

spatially resolved DOS measurements, using a STM or several distributed tunnel

contacts. (b) Difference δN between the DOS in the wire, and its normal state

value N0, versus the energy ε and the position x along the nanowire. The energy

is reduced by the value ∆ of the superconducting gap of S.



4. GATE CONTROLLED NANOSPINTRONICS

4.1 Introduction

The control of charge currents with electrostatic gates in electronic transistors has been

a technological revolution. The spin transistor was proposed theoretically by Datta

and Das in 1990 as a spintronics analogue of the conventional transistor, in which spin

transport would be controlled with a gate voltage. One interest of this component

is that it would allow for a further miniaturization of electronic devices, similarly to

the miniaturization of data storage enabled by Magnetic Random Access Memories.

The original proposal by Datta and Das suggested to obtain the spin transistor effect

by using spin-orbit coupling in a nanowire[50]. However, as I reported in Section

2.2.2, spin-orbit coupling is not a necessary ingredient in the framework of quantum

transport. Indeed, phase coherent nanoconductors with ferromagnetic contacts offer

a natural coupling between the orbital phase of electrons and their spin, due to the

existence of spin-dependent quantum interferences in the nanoconductors. Since the

orbital phase of electrons can be controlled with local electric fields provided by the

electrostatic gates of the nanoconductor, it is possible to build devices where spin

transport in a nanoconductor is controlled electrically. This was shown during my

post doc in Basel, using a carbon nanotube with two contacts magnetized in colinear

directions. However, this represents only one possibility offered by phase-coherent

nanospintronics. Since my arrival at LPA, I have collaborated with the HQC group on

two transport experiments which aim at exploring other possibilities of this field[25, 22].

A further perspective is the spin/photon coupling demonstrated in Ref.[87], which will

be discussed in section 5.7.

4.2 Multiterminal circuits

Spin-dependent quantum interference effects allow to build a spin transistor based on a

carbon nanotube, as already discussed in section 2.2.2. Using more than two contacts

could offer extra functionnalities in the context of a future nanospintronics. Hence,
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Fig. 4.1: Artist view of a non-local spin transport experiment in a carbon nanotube with two

ferromagnetic contacts (2 and 3) and two normal metal contacts (1 and 4). The

electric current is measured between contacts 1 and 2 and contacts 3 and 4 are left

floating.

I have studied this situation theoretically, by using the Landaüer-Büttiker scattering

formalism[52]. I have made predictions on several non-local measurement schemes,

where an electric current is imposed between a source and a drain (1 and 2 in Fig.

4.1), and two other contacts are left floating outside the classical current trajectory (3

and 4 in Fig.4.1). I have found that, at low temperatures, the conductance between

the source and drain depend on the magnetic configuration of the floating contacts.

This is due to the weak number of channels in the nanoconductor and the coherent

transport regime. This effect is particularly spectacular because it would not happen

with multichannel diffusive conductors considered usually for non-local spin transport

experiments. These predictions have been confirmed experimentally by the HQC team,

using devices based on a carbon nanotube on top of which two normal metal contacts

and two ferromagnetic contacts have been evaporated (thesis of Chéryl Feuillet-Palma,

2006-2010). The signals in this experiment confirm that the orbital phase and the spin

of electrons can be both conserved when electrons travel in the nanotube below the

metallic contacts[53].

4.3 Gate-modulated spin-precession

So far, experimental studies on spin transport in quantum dots had used only ferro-

magnetic contacts with colinear magnetizations. However, the non-colinear case is also

very interesting because it can enable a deeper investigation of the spin dynamics in the

dot. The first experimental study of a spin valve made out of a carbon nanotube and
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two non-colinear ferromagnetic contacts has been realized during the thesis of Dora

Crisan (2010-2013). I have participated to the theoretical interpretation of the results

of this experiment. The data suggest the existence of a spin precession of electrons in

the dot, due to the spin-polarized current which goes through the dot in the presence

of a bias voltage. This effect is again gate-controllable[54].



20 4. Gate controlled nanospintronics



5. CAVITY QED WITH HYBRID NANOCIRCUITS

5.1 Introduction

Cavity QED enables the study of the interaction between light and matter at the most

elementary level, by using a two level system which interacts with a single photon

trapped in a microwave cavity. This type of experiment has been realized for instance

with Rydberg atoms coupled to a photonic cavity made out of high finesse supercon-

ducting mirrors[55]. Since the Rydberg atoms are naturally weakly coupled to external

decoherence sources, it has been possible to realize different types of quantum manipu-

lation of the atom/photon system. More recently, it was possible to transfer this type

of experiments to superconducting chips[56]. In this case, the atoms are replaced by

superconducting quantum bits and the photonic cavities are microwave cavities which

can be realized for instance by using a piece of superconducting coplanar waveguide in-

terrupted by two capacitances. One interest of this Circuit QED is that the properties

of the superconducting quantum bit are not set by nature like those of an atom, but

they can be chosen with the quantum bit design and accurately tuned with magnetic

fluxes or gate voltages.

Since my arrival at LPA, I have made several theory proposals in order to push

further Circuit QED, by replacing the superconducting quantum bits by other types

of hybrid nanocircuits based on quantum dots, for instance. This possibility, called

”Mesoscopic QED”, was already envisioned in 2004, in a pioneering theory paper by L.

Childress et al.[57]. The nanocircuits can be made out of different types of nanocon-

ductors such as carbon nanotubes, semiconducting nanowires, or nanostructures in

two-dimensional electron gases, contacted to different types of metallic reservoirs such

as normal metals, superconductors, or ferromagnets. The cavity photons thus inter-

act with systems which are much more complex than a two level system. This gives

access to situations which are new in the context of Cavity QED. This also offers the

possibility to study electronic transport in nanocircuits and more generally condensed

matter problems under a new perspective. Indeed, the dc current which flows through

a nanocircuit and the microwave response of the cavity give access to different infor-
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mation. In practice, it is possible to measure simultaneously these two quantities. I

have collaborated to the first experiment of this kind, realized by the HQC team with a

quantum dot delimited by two normal metal contacts[58]. This work has paved the way

(a)

(b) (c)
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Fig. 5.1: Example of hybrid circuit QED device (a) Optical micrograph of a coplanar wave-

guide microwave resonator. The left inset shows a zoom on the coplanar waveguide,

which is a central conductor surrounded by two ground planes. The right inset shows

one of the capacitances which interrupts the waveguide to form a microwave cavity.

The microwave incident, transmitted and reflected amplitudes bi, bt and br are im-

posed/monitored in the cavity ports which correspond to the pieces of waveguide on

the other side of these capacitances. The squares are bonding pads which are isolated

from the cavity ground plane and carry DC voltage or current (b) In this particular

sample, an extra superconducting pad was placed next to the resonator line, providing

a large coupling capacitance Cac between the cavity central conductor (c.c.c.) and

one of the sample gates (c) Scanning electron micrograph of the nanocircuit coupled

to the cavity, here a single wall carbon nanotube (SWNT) connected to source and

drains (S and D) reservoirs as well as three top gates g1, g2 and gT .

to a vast class of experiments which combine microwave cavities and hybrid nanocir-

cuits. Note that other types of experiments study quantum dots coupled to optical

cavities[59, 60]. I will not consider this possibility here because in these experiments,

the quantum dots are isolated and thus do not form an electronic circuit.

5.2 Physical implementation of the nanocircuit-photon coupling

The combination of hybrid nanocircuits with coplanar microwave cavities pushes fur-

ther the on-chip design initially introduced in the context of Circuit QED experi-

ments to control and readout the state of a superconducting quantum bit[56]. Many



5.3. Theoretical description of the nanocircuit-photon coupling 23

different types of nanoconductors have already been embedded in coplanar cavities,

such as lateral quantum dots defined on GaAs/AlGaAs heterostructures[61, 62] or

Si/SiGe heterostructures[63, 64], quasi-one dimensional conductors such as carbon

nanotubes[58, 65], InAs nanowires[66, 67, 68], or InSb nanowires[69], but also graphene

quantum dots[70] and atomic contacts[71]. Different types of metallic contacts can be

used, such as normal metals, superconductors [72] and ferromagnets with collinear[73]

or non-collinear magnetizations[54, 74]. Therefore, a large variety of geometries and

situations can be studied. Figure 5.1 shows an example of Mesoscopic QED sample.

There, the hybrid nanocircuit is a double quantum dot fabricated out of a carbon

nanotube on top of which source (S), drain (D), and top gates (g1, g2 and gT ) have

been evaporated (Fig.5.1c). The double dot is coupled capacitively to the cavity cen-

tral conductor (c.c.c.), through the capacity Cac, near a cavity electric field antinode

(Fig.5.1b). The cavity central conductor is interrupted by on-chip capacitances such

as the one visible in the right inset of Fig.5.1a. Openings are fabricated across the

cavity ground plane to allow for an electric connection of the source, drain and gate

electrodes of the double dot at bonding pads visible as squares in Fig.5.1a.

5.3 Theoretical description of the nanocircuit-photon coupling

5.3.1 Comparison between the different types of cavity QED experiments

The description of the electron/photon coupling requires to take into account various

specificities of nanocircuits[75]. First, since these nanocircuits are much bigger than

an atom, one has to take into account that there exists strong spatial variations of

the cavity electric field on the scale of the nanocircuit. These field variations can

be increased on purpose, for instance by coupling only one dot in a double quantum

dot to the cavity central resonator, through a capacitive connection (see Fig.5.2c for

instance). Another source of field variations is field screening inside the metallic reser-

voirs of the nanocircuit. These field inhomogeneities are reminiscent from those which

occur in a superconducting quantum bit. Second, one has to take into account the

existence of discrete orbital states, which exist in a confined portion of nanoconductor

such as a quantum dot. This individual orbital degree of freedom is reminiscent from

the orbital degree of freedom in an atom. It has no equivalent in superconducting

quantum bits where only macroscopic collective variables such as the total charge of a

superconducting island are relevant, due to the rigidity of the superconducting phase.
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Fig. 5.2: Schematic representation of the different types of cavity QED experiments (a) Cavity

QED experiment with an atom (b) Circuit QED experiment with a charge supercon-

ducting quantum bit (c) Mesoscopic QED experiment with a hybrid nanocircuit.

Cavity conductors are represented in blue and dc electrostatic gates in black. The

photonic field is presented in pink, with inhomogeneities in dark pink. Electronic

charges occupying orbitals of the flying atom in panel a, or tunneling between quasi-

localized orbitals of the nanocircuit in panels c, are represented in fuchsia. Plasmonic

screening charges on the metallic elements are represented in yellow.

Finally, one has to take into account collective plasmonic modes which exist in the

metallic reservoirs. These modes are only implicitly taken into account in the usual

description of superconducting Circuit QED, through current conservation. In the case

of nanocircuits, this task is a priori not trivial since fermionic reservoirs host simul-

taneously plasmonic modes and individual fermionic quasiparticle modes which cause

quantum transport effects in the nanocircuit. These quasiparticle modes are coupled

to the localized discrete electronic orbitals inside the nanoconductors through tunnel

junctions.

5.3.2 Minimal coupling Hamiltonian

In order to take into account both quasiparticle tunneling and plasmonic screening in a

minimal way, one can assume that the plasmonic screening charges in fermionic reser-

voirs have a frequency which is much higher than all the other relevant frequencies in

the device. In this case, they simply renormalize the cavity field and carry displacement

currents enslaved to tunneling events. This is why, in Ref.[75], performed in collabora-

tion with T. Kontos and B. Douçot, we have not described explicitly plasmons. Instead,

we have taken into account their effect through effective boundary conditions which

modify the spatial profile of the photonic field and the Coulomb interactions in the
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nanocircuit. We refer the interested readers to Ref.[75] for the detailed quantization

procedure of the system electromagnetic field. We obtain

Ĥtot = Ĥ0 + ω0â
†â (5.1)

with

Ĥ0 =

∫
d3rψ̂†(r)hρ(~r)ψ̂(~r) + ĤCoul (5.2)

+

∫
d3r
(

∆(~r)e2Φ(~r,â,â†)ψ̂†↑(~r)ψ̂
†
↓(~r) +H.c.

)
(5.3)

and

hρ(~r) =
1

2m

(
−i~
−→
∇~r + e

−→
Â (~r)

)2

− eV (−→r ) , (5.4)

Above, one has ψ̂†(~r) = (ψ̂†↑(~r), ψ̂
†
↓(~r)), with ψ̂†σ(~r) the field operator associated to the

creation of electronic quasiparticles with spin σ in the nanocircuit. The term h̃ρ(~r) is

the single particle Hamiltonian which includes the light-matter interaction through the

photonic vector potential term

−→
Â (~r) = ~A(~r)i(â− â†) , (5.5)

The potential V (−→r ) takes into account the confinement of conduction electrons in the

nanocircuit, i.e. the effect of the materials crystalline background, treated in the mean

field approach, and the capacitor fields due to the dc electrostatic gates. The term in

∆(~r) of Eq.(5.2) is a pairing term which describes superconducting correlations in the

nanocircuit. This term must include a phase factor Φ(~r, â, â†) which depends on the

photonic creation and annihilation operators â† and â, in order to ensure the gauge

invariance of the Hamiltonian.

5.3.3 Photonic pseudo-potential picture

Different types of light-matter interactions appear in Hamiltonian (5.1). Indeed, Eq.(5.4)

contains a linear term in
−→
∇~r.
−→
Â (~r) and a non linear term in Â2. It also contains the

exponential of the phase factor Φ(~r, â, â†) which is non-linear. The effect of the non-

linear terms is not negligible, in principle (see Appendix B of Ref.[75] for details).

Therefore, in this section, we introduce a unitary transformation of the Hamiltonian

Ĥtot which greatly simplifies the form of the light-matter interaction. Note that anal-

ogous transformations have been used in atomic Cavity QED for cavity fields with a

limited spatial variation, such as the Power–Zienau–Woolley transformation[76]. How-

ever, these transformations are not directly applicable in our case since strong spatial

variations of the photonic fields can occur due to local ac gates and screening effects.
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For simplicity, we consider nanocircuits with standard dimensions and without

loops, so that one can disregard magnetic effects induced by the photons. This means

that one can use ~∇~r ∧
−→
Â ' 0 on the scale of the whole nanocircuit. This assumption is

valid for all the Mesoscopic QED devices studied experimentally so far, except Ref.[71].

This case will be discussed elsewhere. When ~∇~r ∧
−→
Â ' 0, it is possible to define a

photonic pseudo potential V⊥(−→r ) such that

~∇~r.V⊥(−→r ) ' ω0
~A(~r) (5.6)

and

Φ̂(~r) = e(â− â†)V⊥(−→r )/ω0 (5.7)

Then, one can apply to Hamiltonian (5.1) the unitary transformation H̃tot = U †ĤtotU

with

U = exp

(
e(â− â†)

ω0

V̂
)

(5.8)

and

V̂ = −e
∫
d3rV⊥(−→r )ψ̂†(~r)ψ̂(~r) (5.9)

This leads to [75]

H̃tot = H ′0 + V̂(â+ â†) + ω0â
†â (5.10)

with

H ′0 =

∫
d3rψ̂†(r)h′ρ(~r)ψ̂(~r) + ĤCoul

+ (V̂2/ω0) +

∫
d3r
(

∆(~r)ψ̂†↑(~r)ψ̂
†
↓(~r) +H.c.

)
(5.11)

h′ρ(~r) = − ~2

2m
∆~r − eV (−→r ) , (5.12)

and

V̂ = −e
∫
d3rV⊥(−→r )ψ̂†(~r)ψ̂(~r) (5.13)

This above description which is particularly simple since it only involves only a linear

coupling between the individual electronic states in the nanocircuit and a scalar pho-

tonic potential V⊥(−→r ). Interestingly, the above Hamiltonian bridges between Cavity

QED and Circuit QED. Indeed, the usual dipolar electric approximation of Cavity QED

corresponds to a photonic potential which evolves linearly in space i.e. V⊥(−→r ) =
−→
Ê 0.
−→r ,

whereas Circuit QED corresponds to a constant photonic potential inside each node of

the circuit model.
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5.4 Anderson-like Hamiltonian for Mesoscopic QED

Since tunneling physics is at the heart of quantum transport, it is useful to reexpress

Hamiltonian (5.10) to describe tunneling explicitly. For this purpose, one needs to

decompose the field operator ψ̂†(~r) associated to quasiparticles modes of the black

circuit on the ensemble of the creation operators ĉ†n for electrons in an orbital n with

energy εn of a given circuit element (reservoir, dot,...). At lowest order in tunneling,

one can use ψ̂†(~r) = ϕ∗nĉ
†
n[77]. Then, Hamiltonian (5.10) directly gives

Ĥtot = Ĥ0 + ĥint(â+ â†) + ω0â
†â (5.14)

with

Ĥ0 =
∑
n

εnĉ
†
nĉn +

∑
n6=n′

(tn,n′ ĉ†n′ ĉn +H.c.) (5.15)

ĥint =
∑
n

gnĉ
†
nĉn +

∑
n,n′

(γn,n′ ĉ†n′ ĉn +H.c.) . (5.16)

gn = −e
∫
dr3 |ϕn(~r)|2 V⊥(~r) . (5.17)

and

γn′,n = −e
∫
dr3ϕ∗n(~r)ϕn′(~r)V⊥(~r) (5.18)

Above, Ĥ0 is the Anderson-like Hamiltonian of the nanocircuit, with tn,n′ the tunnel

coupling between orbitals n and n′, which is finite only if n and n′ correspond to two

orbitals in two different circuit elements coupled through a tunnel junction. The term

ĥint(â + â†) describes the nanocircuit-photon interaction. Cavity photons can have

two different effects. First, they can shift the energy of orbital n due to the term

in gn. In this report, I will mainly discuss the effects of the gn elements which are

expected to be dominant in most mesoscopic QED devices and have been sufficient to

interpret experiments, so far. However, in principle, cavity photons can also induce

direct transition terms between two different orbitals of the nanocircuit, due to the

term in γn′,n. Nevertheless, from Eq.(5.18), the terms γn′,n are expected to be weak

because ϕn(~r) and ϕn′(~r) have a small matrix element in general. I will discuss a

situation where the γn′,n term becomes relevant in section 5.9.

5.5 Theoretical description of the cavity signals in the semiclassical

linear limit

The cavity signals can be expressed in a simple way in the semiclassical limit where

the number of photons in the cavity is sufficiently large (> 10) to disregard quantum
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fluctuations of the cavity field. To describe most experiments performed so far, one can

furthermore describe the nanocircuit/photon coupling with a linear response approach,

which requires that this photon number is also not too large (typically, n < 500).

Following the discussion in section 5.4, one can finally assume that the light-matter

interaction is well approximated by

ĥint =
∑

ngnĉ
†
nĉn (5.19)

The cavity microwave response is measured by using input and output ports which

correspond to the pieces of waveguide connected capacitively to the cavity, on both

sides of the cavity central conductor (see Fig.5.1a). In the semiclassical limit, the

incident, transmitted and reflected photon fluxes in these ports can be characterized

by complex amplitudes bin, bt and br. We assume that the cavity is excited through the

left port in Fig.5.1, which will be considered as the input port. The transmission bt/bin

of the cavity can be obtained experimentally by measuring the microwave amplitude

bt going out through the output port, which can be the right port in Fig.5.1. With the

above assumptions, the cavity microwave transmission can be expressed as[72]

bt
bin

=
2
√

ΛLΛR

ωRF − ω0 + iΛ0 − Ξ(ωRF )
(5.20)

Above, ΛL(R) corresponds to the contribution of the left(right) port to the cavity

linewidth Λ0, which implies ΛL + ΛR ≤ Λ0. The global charge susceptibility Ξ(ωRF ) of

the nanocircuit is defined as

Ξ(ωRF ) =
∑

n,n′gngn′χn,n′(ωRF ) (5.21)

with

χn,n′(t− t′) = −iθ(t− t′)
〈

[ĉ†n(t)ĉn(t), ĉ†n′(t
′)ĉn′(t′)]

〉
ĥint=0

(5.22)

Above, 〈〉ĥint=0 denotes the statistical averaging with gn = 0 for any n.

In practice, the experimental signals which are directly measured are the phase shift

∆ϕ and amplitude shift ∆A of the transmission bt/bin, caused by the presence of the

nanoconductor. One can write

bt
bin

= (A0 + ∆A)ei(ϕ0+∆ϕ) (5.23)

However, it is often convenient to discuss the cavity frequency shift ∆ω0 (dispersive

signal) and cavity linewidth shift Λ0 (dissipation signal) caused by the presence of the

nanocircuit. From Eq.(5.23), in the limit ωRF = ω0 and |∆ω0| , |∆Λ0| � |ω0| , |Λ0|



5.6. Double quantum dot with normal metal reservoirs 29

which is often used experimentally, the signals ∆A and ∆ϕ are directly related to the

cavity parameters’ shifts, i.e.

∆ϕ =
∆ω0

Λ0

= Re[Ξ(ω0)]
1

Λ0

(5.24)

and

∆A = −∆Λ0A0

Λ0

= − Im[Ξ(ω0)]
A0

Λ0

(5.25)

so that ∆ϕ and ∆A correspond to the dispersive and dissipative parts of the cavity

response ∆ω0 and ∆Λ0, respectively. Beyond this limit, the experimental data can be

modeled by combining Eqs.(5.20) and (5.23).

Depending on the regime of parameters fulfilled by the nanocircuit, and in particular

the order of magnitude of the tunnel rates between the dots and reservoirs, different

calculation techniques can be used to calculate Ξ(ω0). I will discuss several possibilities

in the next sections. In this report, I will only consider cases where the summation on

indices n and n′ in Eq.(5.21) can be restricted to internal sites of the nanoconductor.

This requires that the coupling between the cavity and the nanoconductor sites is

much larger than the coupling between the cavity and the reservoirs. This is not a

priori obvious since the nanoconductor is much smaller than the reservoirs and thus

tends to have a smaller capacitance towards the cavity resonator. However, this feature

can be compensated by using for instance ac top gates which reinforce the coupling

between the nanoconductor and the cavity. A careful work has been done in the HQC

group to reach this situation[74, 72, 78]. In this limit, Ξ(ω0) corresponds to the charge

susceptibility of the nanoconductor at frequency ω0. In the opposite limit, it has

been observed experimentally that the cavity signals essentially show replicas of the

conductance signal[58].

5.6 Double quantum dot with normal metal reservoirs

The case of a double quantum dot embedded in a microwave cavity has received most

experimental attention so far (see for instance Refs.[61, 79, 66, 81, 82, 62]). I will note

L and R the two dots in a double dot. The intrinsic level separation ∆o (see Eq.2.3)

between the orbitals of one dot is usually very large in comparison with the cavity

frequency. Therefore, it is sufficient to consider a single orbital with energy εL(R) in

dot L(R). These two orbitals are coupled with a hopping constant t through a tunnel

barrier (see Fig.5.3b). It is possible to tune the gate voltages V L
g and V R

g of the two

dots such that there is a single electron in the double dot due to Coulomb blockade.
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Fig. 5.3: (a) Schematic representation of a double dot made in a carbon nanotube, and de-

limited by two normal metal contacts and a central barrier with a hoping constant

t. The energy of the dot orbitals can be tuned with the gate voltages V
L(R)
g and the

right reservoir is biased with a voltage Vb . The cavity conductors are represented

in blue (b) Energy diagram of the double dot. The energy detuning between the

left and right dot orbitals is ε. The microwave cavity is represented schematically

by mirrors in blue (c) Effective bloch sphere representing the internal state of the

double dot. The unperturbed dot Hamiltonian Ĥ0 corresponds to the magenta field

with modulus ωDQD, which is the sum of the blue and black fields which represent 2t

and ε respectively. The coupling to the cavity is represented by the red field (d) dc

current through a carbon-nanotube double quantum dot versus the gate voltages V L
g

and V R
g for a finite bias voltage Vb = 250µV . (e) Corresponding cavity signal ∆ϕ

(f) Theoretical predictions for ∆ϕ, obtained with Eq.(5.31) and a master equation

calculation of n+ and n− at zeroth order in gt.
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In the absence of magnetic field or ferromagnetic materials, the spin degree of freedom

can be disregarded to describe this situation since the two spin species play the same

role and are not present simultaneously in the double dot. Therefore, the only internal

degree of freedom relevant to describe the internal dynamics of the double dot in this

limit is the left/right charge degree of freedom. In this framework, the double dot

Hamiltonian writes

Ĥ0 =
ε

2
(ĉ†LĉL − ĉ

†
RĉR) + tĉ†LĉR + t∗ĉ†RĉL + ĤCoul (5.26)

where ĤCoul forbids the double occupation of the double dot, ĉ†L(R) is the creation

operator for an electron in dot L(R) and ε = εR − εL the dot orbital detuning. Using

the basis of bonding and antibonding states of the double dot, one gets

Ĥ0 '
ωDQD

2
(ĉ†−ĉ− − ĉ

†
+ĉ+) + ĤCoul (5.27)

with ωDQD =
√
ε2 + 4t2 the double dot transition frequency. Above, we have used the

creation operators

ĉ†+ = cos[θ/2]ĉ†L + sin[θ/2]ĉ†R (5.28)

and

ĉ†− = − sin[θ/2]ĉ†L + cos[θ/2]ĉ†R (5.29)

for bonding and antibonding states, and the parameter θ = arctan[2t/ε]. In practice,

each dot is also contacted to a normal metal reservoir, which enables one to control

and measure the double dot charge (see Fig.5.3a). The orbital detuning ε can be

controlled with V L
g and V R

g . In most experiments performed so far, the samples have

been designed with asymmetric couplings gR 6= gL of the two dots to the cavity, in

order to modulate the parameter ε with the cavity electric field. This is obtained by

connecting only one of the dots to the cavity central resonator with an ac gate. This

gives a light-matter coupling term

ĥint = gLĉ
†
LĉL + gRĉ

†
RĉR (5.30)

In this case, using a master equation approach, valid for tunnel rates ΓL(R) to the left

and right reservoirs much smaller than the temperature kbT , one finds

Ξ(ωRF ) =
g2
t (n− − n+)

ωRF − ωDQD + iΓ∗2
(5.31)

with

gt =
gR − gL

2

2t√
4t2 + ε2

(5.32)
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Above, Γ∗2 is the decoherence rate of the double dot transition and n−/+ are the average

populations of the bonding/antibonding states. Physically, the charge susceptibility of

Eq.(5.31) is finite due to fact that the effective coupling gt between the double dot and

the cavity corresponds to a transverse coupling. This means that, in the Bloch sphere

representation of the double dot Hamiltonian (see Fig.5.3c), the coupling term (5.30)

corresponds to a field (in red) which has a component perpendicular to the double dot

unperturbed field with modulus ωDQD (in magenta). Therefore, the double dot and

cavity can exchange photons, which leads to Eq.(5.31).

Equation (5.31) corresponds to a well known result of cavity and circuit QED in

the dispersive regime ωRF −ωDQD � Γ∗2 where Γ∗2 can be disregarded (see for instance

Refs.[56, 80]). In this limit, depending on whether the nanocircuit is in the state +

or −, the cavity shows a frequency pull ∆ω0 = ±g2
t /(ωRF − ωDQD). If gt is strong

enough, this can be used to read out the state of the double dot in a nondestructive

way. Indeed, for ωRF−ωDQD � Γ∗2, the susceptibility χ(ωRF ) accounts for second order

processes which do not change the state of the nanocircuit. This method is widely used

to read out the state of superconducting quantum bits[56].

In standard circuit QED experiments, no dc current transport occurs. In our case,

from Eq.(5.31), current transport in the double dot can modify the cavity signals by

modifying the populations n− and n+ of the bonding and antibonding states. More

precisely, the microwave cavity can be used to have a direct access to the population

imbalance n− − n+ caused by dc transport. Importantly, the dc current through the

double dot and the cavity signals are qualitatively different, since the current I though

the double dot is a more complex combination of n−, n+ and the double dot parameters.

Figure 5.3d and 5.3e presents experimental results obtained with a carbon nanotube

double quantum dot with a finite Coulomb interaction [87]. The transport configuration

can be tuned electrically through the double dot gate voltages V L
g and V R

g and source-

drain bias voltage Vb. As observed usually, the current I through the double dot is

finite inside some triangles in the V L
g − V R

g plane where the bonding or antibonding

states are located inside the transport window opened by the source-drain voltage Vb

(Fig.5.3d). Strikingly, the cavity signal ∆ϕ looks very different. It is maximum along

the line ε = 0 where ωDQD − ω0 is minimum (Figs.5.3e), and it takes a different value

along the transport triangles, because the populations of n− and n+ are modified by

transport. As shown in Fig.5.3f, we could reproduce this behavior by using Eq.(5.31),

with n− and n+ calculated with a master equation approach at lowest order in the light
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matter coupling (gt = 0) (see details in Ref.[87]). With this approach, we evaluate

gt(ε = 0)/2π = (gL− gR)/2π = 3.3 MHz and Γ∗2/2π = 345 MHz at ε = 0, which has to

be compared with Λ0 = 0.96 MHz (see below).

Note that in the above experiment, one has Λ0 < gt < Γ∗2. It is necessary to

reach the strong coupling regime gt > Γ∗2,Λ0 in order to perform an efficient coupling

and readout of the double dot charge state with the techniques of Circuit QED. This

regime has been reached very recently in the HQC group with my collaboration[84], as

well as in Princeton and Zurich [64, 85], in double dots based on a carbon nanotube,

a Si/SiGe heterostructure and a GaAs/AlGaAs heterostructure, respectively. Two

different recipes can be used to obtain the strong coupling regime: one can either

increase gt [85] or decrease Γ∗2 [64, 84]. However, I will not discuss these experiments in

details here. In the next sections, I will rather show that other degrees of freedom than

the L/R charge degree of freedom of a double quantum dot can also give interesting

results in the context of Mesoscopic QED.

5.7 Coherent coupling between a single spin and cavity photons

The use of electronic spins confined in nanoconductors is a priori very appealing in the

context of quantum information, because spins are less sensitive to decoherence effects

than charge degrees of freedom. However, this goes together with a huge technical chal-

lenge because the natural magnetic coupling between spins and photons is extremely

weak (a few 10Hz). In order to solve this problem, I have developed theoretically,

together with T. Kontos, a new type of spin quantum bit based on a double quan-

tum dot with two ferromagnetic contacts magnetized in non-colinear directions[86]

(see Fig.5.4a). A similar device had been formerly considered theoretically in the

context of the study of spin-dependent transport[91]. Here, we consider the limit of

vanishing tunnel rates so that each ferromagnetic contact essentially produces in the

nearby quantum dot an effective Zeeman field similar to the one of Eq.(2.2). Thanks

to Coulomb blockade, one can tune the dc gates of the device such that the double dot

contains only one electron. The occupation of the two dots by this electron depends

on the value of the orbital level detuning ε between the two dots. Therefore, due to

the non-colinearity of the effective Zeeman fields in the two dots, one can vary the

direction of the global effective field seen by this electron by changing ε. Since ε can be

modulated by the cavity electric field, a transverse spin/photon coupling is obtained.

This coupling should in principle enable one to use the techniques of Circuit QED to
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Fig. 5.4: Response of a microwave cavity coupled to a double quantum dot with non colinear
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The cavity dissipation of panel (b) displays various resonances which dependent on

the orbital detuning ε of the double dot and the applied magnetic field B. This signal

is reproduced theoretically in panel (c) (see text). The green dotted line corresponds

to a sweet line with respect to charge noise.

readout the state of a single spin or couple two distant spins through the exchange of

virtual cavity photons[80]. Another interest of this geometry is that the spin/photon

coupling can be switched off by using a large value of ε such that the electron is trapped

in a single dot and does not feel anymore the non-colinearity of the contacts magneti-

zations. This should enable one to reduce the spin decoherence caused by the coupling

to the cavity outside of the spin manipulation periods. Therefore, the setup of Fig.5.4a

could also be used as a quantum memory, in principle.

The first implementation of this device has been realized during the theses of

Jérémie Viennot (2010-2014), and Matthieu Dartiailh (beginning : 2013), with my

support for data modelling[74]. When the microwave transmission amplitude of the

cavity is measured versus ε and the external magnetic field B applied to the double

dot, three resonant lines appear (see Fig.5.4b). Various features suggest that the spin

degree of freedom is an important ingredient in this pattern. First, the resonances

split and strongly move with the external magnetic field B, with a maximum of con-

trast/coherence for a finite value of B. Second, the black point of Fig.5.4b corresponds

to a coupling gs = 1.3 MHz and a double dot decoherence rate Γ∗2/2π = 2.5 MHz. This
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last number is about 200 times smaller than the charge decoherence rate determined

for a similar carbon nanotube device (see section 5.6). This device is almost in the

strong coupling regime.

To understand better the contribution of the spin degree of freedom in the cavity

signals, one can calculated the charge susceptibility of the device with a generalization

of Eq.(5.31). This gives

Ξ(ωRF ) '
∑
ij

g2
ij(nj − ni)

ωRF − ωij + iΓij
(5.33)

Above, ωij is an internal transition frequency of the nanoconductor between states i

and j, Γij is the decoherence rate associated to this transition, and ni is the average

occupation of state i. This expression is valid for Γij � kBT and all transitions

frequencies of the device well separated. To calculate the frequencies ωij and the

couplings gij, we have used a double dot Hamiltonian which takes into account the

existence of the left/right and spin degree of freedoms of the double dot, but also the

K/K’ local orbital degree in each dot (or valley degree of freedom), which is due to the

fact that electrons can rotate clockwise or anticlockwise around the carbon nanotube.

The linewidth of the resonances can be modeled by taking into account the effect of

charge noise which is due to charge fluctuators moving in the vicinity of the double

dot, similarly to what happens for the Quantronium circuit of section 2.1. Charge

noise induces fluctuations of the transitions frequencies ωij which cause a dephasing

effect. Using Eq.(5.33), we have obtained Fig.5.4c, which reproduces well the behavior

of Fig.5.4b. The two strongest resonances mainly correspond to spin transitions with a

conserved K/K’ index. These two resonances are slightly split due to a small lifting of

the K/K’ degeneracy. The third weaker resonance mainly corresponds to a transition

where both the spin and the K/K’ index are reversed. In Fig.5.4c, this transition is

less visible than the two others because the K/K’ degree of freedom is only weakly

coupled to cavity photons. In practice, the coupling of K/K’ to the cavity can be due

to microscopic disorder in the carbon nanotube structure[89, 88]. This third resonance

is interesting in the light of a recent theory proposal which suggests to couple the valley

degree of freedom of a Si dot to a microwave cavity [90]. Remarkably, the coherence

(or, visually, the contrast) of the three transitions is maximum along the green dashed

line in Fig.5.4c. This is because the derivative of the transition frequencies ωij with

respect to ε vanishes along this line, so that the effect of charge noise is minimal. In

other terms, this line represents a sweet line for charge noise, in full analogy with the

sweet spot of the Quantronium circuit of section 2.1. This behavior also occurs in the
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data, which confirms that charge noise is an important source of decoherence in our

device. It should be possible to increase the performances of this device by reducing the

spin-charge hybridization to decrease decoherence due to charge noise. It is expected

that decoherence will decrease more quickly than gs with ε, so that the strong coupling

regime is accessible with this geometry, in principle[86].

Interestingly, there exists alternative theory proposals to couple the spin degree

of freedom of a quantum dot circuit to a coplanar microwave cavity. One may use

spin-orbit coupling or inhomogeneous stray fields to couple a single electron spin state

to cavity photons[92, 93, 94, 95, 96, 86]. Alternatively, one could use two or three

electron states in a multi-quantum dot circuit with proper spin-symmetry breaking

ingredients, so that the spin/photon coupling occurs without any individual spin pre-

cession effect[98, 99, 97, 100, 101, 102, 103, 104]. Note that on the experimental level,

the strong spin-photon coupling has also been obtained recently in a quantum dot

coupled to an optical microcavity in a semiconductor nanopillar[105]. More precisely,

a single hole spin in the quantum dot is coupled to the polarization of the cavity pho-

tons. In our case, the polarization is not a relevant quantity due to the geometry of

our cavities which imposes the directions of the cavity electric and magnetic fields.

5.8 Single quantum dot contacted to fermionic reservoirs

So far, I have discussed experiments, where the cavity signals are dominated by reso-

nances between the cavity mode and internal transitions of a double dot. This effect is

described by Eq. (5.33) which also holds for a superconducting qubit in a miccrowave

cavity. To exploit fully the specificities of nanocircuits, it is interesting to bring dot-

reservoirs tunnel transitions in resonance with the cavity. This can lead to a large

variety of effects. For instance, a single quantum dot coupled to both a superconduct-

ing reservoir and a normal metal reservoir with a bias voltage can emit cavity photons.

This effect is due to inelastic tunnel processes between the dot and a BCS peak in the

density of states of the superconducting contact. During her thesis (2013-2016), Laure

Bruhat has observed this effect[72]. Figure 5.5a shows the amplitude of the cavity

microwave transmission, measured versus the source drain voltage Vb applied on the

normal metal contact and the dot gate voltage Vg. The main red line corresponds to

the resonance between the dot level and the Fermi level in the normal metal reser-

voir, as sketched in panel 1, and the paler red lines to the resonances between the dot

level and the BCS peaks in the density of states of the superconducting reservoir, as
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Fig. 5.5: (a) Microwave transmission amplitude measured for a cavity coupled to a supercon-

ductor/quantum dot/normal metal bijonction. The white shade corresponds to the

reference amplitude A0 = 6.1 mV and the blue and red shades to ∆A > 0 and

∆A < 0 respectively (b) Similar quantity, calculated with Eq.(5.34). Bottom panels:

Scheme of the bijonction in different configurations: in (1), the dot level is resonant

with the Fermi level of the normal metal, in (2), the dot level is resonant with a

BCS peak of the superconductor, and in (3), the dot level has an energy higher than

a BCS peak by ω0, which enables inelastic tunneling with the emission of a photon.

sketched in panel 2. The blue area between these two types of resonances correspond

to the photon emission area, where one has inelastic tunneling between the BCS peaks

and the dot level, as sketched in panel 3. We could reproduce theoretically these data

by calculating the charge susceptibility of the dot with a Keldysh Green’s function for-

malism which takes into account tunneling to the fermionic reservoirs. More precisely,

the charge susceptibility of the dot can be expressed as[72]

Ξ(ω0) = −iT r[
∫ dω

2π
C(ω)Gr(ω)Σ<(ω) (Gr(ω))†] (5.34)

with

C(ω) = T̂
(
Gr(ω + ωRF ) + Gr(ω − ωRF )†

)
T̂ (5.35)

Above, Gr(ω) is the retarded Greens’ function of the dot, which depends on the tunnel

rates between the dot and the reservoirs. This Greens’ function has a 2*2 matrix

structure (I will not give details here for brevity), in order to take into account the

coupling between electron and hole excitations in a superconducting circuit. The lesser

self energy Σ<(ω) takes into account the filling of the reservoir levels, represented in

the panels 1, 2 and 3 of Fig.5.5. The matrix T̂ = diag(gd,−gd) accounts for the fact

the energy of electrons and holes in the dot are shifted by ±gd(â†+ â), accordingly with
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Eq.(5.19). Equation (5.34) gives the theoretical result in Fig. 5.5b. The agreement

between the data is quantitative, as shown by the use of the common colorscale for

panels a and b.

It is interesting to note that the charge susceptibility expression of Eq.(5.34) is

in fact valid for many geometries in the linear response regime. For instance, it can

be generalized straightforwardly to the case where non-colinearly magnetized ferro-

magnetic contacts are used, or to the case of a multi quantum dot circuit, by using

the relevant structure for the Green’s function Gr and the self-energy Σ<(ω). In the

case of a device with several quantum dots, Eq.(5.34) enables one to recover dot-dot

transitions described by equations similar to Eq.(5.33), on top of transitions between

quantum dots and fermionic reservoirs. This equation can thus have a broad range of

applications. I give an example of this fact in the next section.

Note that it is also possible to obtain photon emission by coupling a double quantum

dot with normal metal contacts to a microwave cavity. In this case, the transition

between the bounding and antibonding states of the cavity can emit photons if the

double dot is voltage biased[106, 107]. This effect can even lead to a lasing effect if the

double dot/cavity coupling is large enough[108]. In this last case, the linear description

of the cavity response in terms of the double dot charge susceptibility, which is shown

in Eq.(5.20), breaks down since lasing is a strongly non-linear effect. In this case, the

cavity and double dot state occupations have to be calculated self-consistently (see for

instance Ref.[112]).

5.9 Majorana nanocircuits

Majorana quasiparticles are among the most intriguing fermionic excitations predicted

in condensed matter physics[110]. By definition, the fermionic creation operator m̂† of

a Majorana quasiparticle is self adjoint, i.e. m̂† = m̂. This property offers possibilities

of non-abelian statistics[111] and topologically protected quantum computation[113]

in condensed matter systems. It has been found that different types of hybrid elec-

tronic circuits could enclose Majorana quasiparticles. In particular, hybrid structures

combining a semiconducting nanowire in contact with a superconductor raise a lot

of attention[114, 115, 116, 117, 118, 119, 120]. It has been predicted that in some

situations, a single pair of overlapping Majorana bound states (m̂L, m̂R) could ap-

pear in a semiconducting nanowire with spin-orbit coupling. These bound states have

a spatial overlap which can be switched off with an external magnetic field or a gate
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(c) (see main text) (e) Bloch schere representation of the device in the subspace of

the Majorana pair. The fields corresponding to the Majorana free Hamiltonian in

magenta and the coupling to the cavity in red are colinear.

voltage, in order to obtain two isolated Majorana bound states at zero energy[121, 122].

Recently, pairs of conductance peaks, with an energy splitting 2ε which oscillates

and decays with the magnetic field, were observed, in striking agreement with these

predictions[118, 119]. However, so far, mainly dc conductance measurements have been

used, which reveal essentially the DOS of the nanowire[114, 115, 116, 117, 118, 119, 120].

This gives only a very indirect access to the property m̂†L(R) = m̂L(R). A microwave

cavity could represent an interesting tool to test more directly this property since the

self-adjoint property m̂†L(R) = m̂L(R) affects the structure of the light-matter coupling.

We have considered theoretically this possibility during the Phd thesis of Matthieu

Dartiailh (see Ref.[109]). More precisely, we have calculated the microwave response

of a cavity coupled to a spin-orbit nanowire with a superconducting contact and two

normal metal tunnel probes (Figure 5.6a). In practice, it is possible to measure si-

multaneously the cavity linewidth shift ∆Λ0, and the DOS of the nanowire by using

the tunnel probes. We have used the Keldysh theory to calculate these two quantities,

and in particular Eq.(5.34) to calculate ∆Λ0, by using a coarse grained description of
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the nanowire into discrete sites. This requires to use a Green’s function Gr(ω) similar

to that of section 5.8, with an extra-dimension corresponding to the site index. This

leads to the results of Figures 5.6b and c, which I discuss below.

In the simplest situation, when a nanowire portion is driven to its topological phase,

two Majorana bound states appear at the ends of the nanowire portion. The coupling

2ε between the two Majorana bound states tends to zero when the magnetic field

increases, because this reduces their spatial overlap. As a result, one obtains in the

DOS of the nanowire a pair of resonances at ε and −ε, which merge at zero energy

(ε = EF ) for high magnetic fields, when the Majorana states do not overlap anymore

(see Figure 5.6b). For an ordinary pair of fermionic states, one would generally get

a cavity resonance for ω0 = 2ε, along the red dotted line in Fig.5.6c. However, no

transition is visible in the calculated cavity signals at ω0 = 2ε. This can be understood

by considering the fermionic anticommutation rule {m̂†L(R), m̂L(R)} = 1 together with

the self adjoint property m̂†L(R) = m̂L(R), which give m̂2
L = 1 and m̂2

R = 1. This

means that in the Majorana subspace, the nanowire unperturbed Hamiltonian and the

coupling to the cavity have necessarily the same structure, i.e.

Ĥ0 = 2iεm̂Lm̂R (5.36)

ĥint = 2iβm̂Lm̂R (5.37)

The β coefficient depends on the overlap of the two Majorana wavefunctions, since it

corresponds to the type of coupling elements shown in Eq.(5.18). In a Bloch sphere

representation, the vectors corresponding to the two above Hamiltonian components

are colinear (see Figure 5.6e). This has to be compared with the case of the double

dot (Fig.5.3c) where a transverse light/matter coupling exists. In the present case,

since [Ĥ0, ĥint] = 0 in the Majorana subspace, the transition inside the Majorana pair

is coupled only longitudinally to the cavity photons (no transverse coupling). This

is why the transition inside the Majorana subspace at ω0 = 2ε cannot exist in the

cavity microwave response. Importantly, one should check experimentally that this

selection rule is robust to changes in the system parameters like the applied magnetic

field or the nanowire gate voltage, since it arises only from the fundamental property

m̂†L(R) = m̂L(R) . One has to involve other system states to observe the Majorana pair

with the microwave cavity. In particular, if one takes into account the fermionic states

in the normal metal probes contacted to the nanowire, or a residual zero energy DOS

in the superconductor, a step occurs in the ∆Λ0 signal at ω0 = ε, along the magenta



5.10. The Cooper pair splitter 41

dashed line in Fig.5.6c. This feature is due to photo-assisted tunneling between the

Majorana pair and the residual zero-energy DOS in the imperfect superconducting

reservoir. Its visibility depends on the value of the coefficient β in Eq.(5.37), which has

to be finite. This effect can be used to check that the low-energy doublet is well coupled

to cavity photons, i.e. β 6= 0 in Eq.(5.37). Then, the simultaneous presence[absence] of

the step at ω0 = ε[2ε] would represent a good indication that the low energy doublet

of Fig.5.6b indeed corresponds to self-adjoint states.

5.10 The Cooper pair splitter

The spatial separation of spin-entangled electrons of a Cooper pair extracted from

a superconductor is an interesting goal in the context of quantum computation and

communication[123, 124, 125, 126, 127]. In principle, a Cooper pair beam splitter (CPS)

based on a double quantum dot connected to a central superconducting contact and

two outer normal metal (N) contacts could facilitate this process[128] (see Fig.5.7). The

spatial splitting of Cooper pairs has been demonstrated experimentally from an analysis

of the CPS average currents, current noise, and current cross-correlations, in devices

made out of a carbon nanotube[129, 130, 131, 132, 133, 134] or a semiconducting InAs

quantum wire[135]. However, new tools appear to be necessary to investigate further

the Cooper pair splitting dynamics, and in particular its coherence, which has not been

demonstrated experimentally so far in the N/dot/S/dot/N geometry. This coherence

has two intimately related aspects: the coherence of Cooper pair injection and the

conservation of spin entanglement. The first aspect is due to the fact that Cooper

pair injection into the CPS is a crossed Andreev process, which produces a coherent

coupling between the initial and final states of the Cooper pair in the superconducting

contact and the double dot (see for instances Refs.[136, 137]). In this context, coupling

the CPS to a microwave cavity would be very interesting because it would enable one to

perform the spectroscopy of the CPS and identify anticrossings in the CPS spectrum,

which are due to the coherence of the injection process[138]. Detecting the conservation

of spin entanglement represents an even greater challenge. In principle, in the presence

of a real or artificial spin-orbit coupling, microwaves can produce transitions between

the spin singlet and spin triplet states of the CPS, which reveal interferences due

to the coherent superposition of spins states in the singlet. Therefore, a microwave

cavity could represent an interesting tool to test the spin entanglement of split Cooper

pairs[139].
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S

N N

Fig. 5.7: Scheme of the Cooper pair splitter embedded in a microwave cavity. The Cooper

pair splitter is made out of a double quantum dot (circles) coupled to a central

blue superconducting contact (S) connected to ground, and two outer yellow normal

metal contacts (N) biased with a voltage V . This circuit is placed inside a photonic

cavity. The Cooper pairs spread over the orbitals of the dots, sketched in blue and

green. The low energy level structure of the system allows photon emission which

can be amplified by using for instance a lasing effect obtained for a finite V .



6. CONCLUSION AND PERSPECTIVES

Combining materials with different dimensionalities or electronic orders is interesting

to obtain new phenomena. In this report, I have thus discussed the behavior of dif-

ferent hybrid quantum circuits. In chapter 3, I have discussed the case of metallic

superconducting/ferromagnetic hybrid circuits, in which exotic superconducting corre-

lations can be obtained. In chapter 4, I have discussed the case of hybrid nanocircuits

which combine carbon nanotubes and ferromagnetic contacts. In this case, quantum

interferences in the carbon nanotube enable one to control electrically spin transport.

The hybridization of the quantum circuits can be pushed further by coupling them to a

microwave cavity. In the resulting Mesoscopic QED devices, electrons of the quantum

circuits are hybridized with cavity photons. As shown in chapter 5, this provides a

powerful tool to investigate the electronic properties and dynamics of hybrid nanocir-

cuits. In the semiclassical linear-coupling regime, a microwave cavity gives a direct

access to the charge susceptibility of the nanocircuit. This picture is sufficient to inter-

pret most of the experiment which have been performed so far. However, reaching the

few photons quantum regime is also very interesting. This can be envisioned thanks

to the different types of electronic degrees of freedom which have already been coupled

coherently or strongly to cavity photons. In particular, recent experiments involve the

charge[83, 84, 85] or spin[74] of a double dot. This should offer the opportunity to

perform experiments similar to those performed in Cavity or Circuit QED, with new

degrees of freedom. It is also possible to go beyond the paradigm of a two level system

coupled to a cavity mode, if the tunneling dynamics of electrons to dissipative reser-

voirs is involved. This is well illustrated by photon emission effects triggered by out-of

equilibrium electronic transport in a quantum dot circuit[72, 106, 107, 108]. Microwave

cavities also represent an interesting tool to study exotic electronic condensed matter

states such as split Cooper pairs[139, 138] or Majorana bound states[109]. Another

possibility not discussed in this report is the study of the Kondo effect in quantum

dots. I have recently collaborated with the HQC group to show that a microwave

cavity can be used to observe the freezing of the charge dynamics in a Kondo dot[78].



44 6. Conclusion and perspectives

Mesoscopic QED offers many more possibilities. This is why I intend to pursue my

efforts for the development of this field in the next years...



BIBLIOGRAPHY

[1] A hysteretic single Cooper pair transistor for single-shot reading of a charge-

qubit, A. Cottet, D. Vion, P. Joyez, D. Esteve, and M.H. Devoret, p. 73 in ”In-

ternational Workshop on Superconducting Nano-electronics Devices ” J. Pekola,

B. Ruggiero, and P. Silvestrini eds., Kluwer Academic, Plenum Publishers, New

York (2002).

[2] Superconducting electrometer for measuring the single Cooper pair box, A. Cot-

tet, A. Steinbach, P. Joyez, D.Vion, H. Pothier, and D. Esteve, M.E. Huber,

pp. 111 in: “Macroscopic Quantum Coherence and Quantum Computing”, D.V.

Averin, B. Ruggiero, P. Silvestrini eds., Kluwer Academic, Plenum Publishers,

New York (2001).

[3] A. Cottet, D. Vion, P. Joyez, A. Aassime, D. Esteve, and M.H. Devoret, 2002

Physica C 367, 197

[4] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and

M.H. Devoret, 2002, Science 296, 886

[5] Albert Fert, Rev. Mod. Phys. 80, 1517 (2008)

[6] J. Medford, J. Beil, J. M. Taylor, E. I. Rashba, H. Lu, A. C. Gossard, and C. M.

Marcus 2013 Phys. Rev. Lett. 111 050501

[7] Hanbury Brown R and Twiss R Q (1956) Nature 178 1046
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B. Plaçais, A. Cottet and T. Kontos 2010 Phys. Rev. B 81, 115414

[54] A.D. Crisan, S. Datta, J.J. Viennot, M.R. Delbecq, A.Cottet and T.Kontos 2016

Nature Communications 7, Article number: 10451

[55] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73, 565

[56] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R, Majer J, Kumar S, Girvin

S M, Schoelkopf R J, 2004 Nature 431, 162

[57] Childress L, Sørensen A S and Lukin M D 2004 Phys. Rev. A 69 042302.

[58] Delbecq M R, Schmitt V, Parmentier F D, Roch N, Viennot J J , Fève G, Huard
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2012 Phys. Rev. B 86 115303



50 Bibliography

[83] Mi X, Cady J V, Zajac D M, Stehlik J, Edge L F and Petta J R 2017 Science

355 156

[84] Bruhat L E, Cubaynes T, Viennot J J, Dartiailh M C, Desjardins M M, Cottet

A and Kontos T, arXiv:1612.05214

[85] Stockklauser A, Scarlino P, Koski J, Gasparinetti S, Kraglund Andersen C, Reichl

C, Wegscheider W, Ihn T, Ensslin K, Wallraff A arXiv:1701.03433

[86] Cottet A and Kontos T 2010 Phys. Rev. Lett. 105 160502

[87] Viennot J J, Delbecq M R, Dartiailh M C, Cottet A and Kontos T 2014 Phys.

Rev. B 89 165404
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