Lie superalgebras


September 18 - September 29


Institut Henri Poincare


Michel Duflo (Université Paris 7-Denis Diderot, Paris)


No lecture notes exist. A list of references can be found at the end


Lecture 1 SUPERALGEBRAS



Lecture 2 LIE SUPERGROUPS



Lecture 3 CLASSICAL LIE SUPERALGEBRAS



Lecture 4 REPRESENTATIONS OF LIE SUPERALGEBRAS



References

F. A. Berezin, Introduction to Superanalysis.

Reidel Publishing Company, 1987.


I. N. Bernstein, Lecture on supersymmetry (1996)

http://www.math.ias.edu/drm/QFT/fall


L. Corwin, Y. Ne'eman and S. Sternberg, Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry)

Reviews of modern physics ,47 (1975) 573-603


P. Deligne and J. W. Morgan, Notes on supersymmetry(following Josph Bernstein) In Quantum fields and strings: A course for mathematicians, AMS 1999


B. DeWitt, Supermanifolds,

Cambridge University Press, 1984


L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie algebras and superalgebras.

Academic Press, 2000


V. G. Kac, Lie superalgebras,

Adv. Math. 26 (1977) 8-96


Yu. I. Manin, Gauge field theory and complex geometry,

Springer 1988


M. Scheunert, The theory of Lie superalgebras,

Lecture Notes in Mathematics 716 (1979)