Strings 2004, Paris

Minimal Topological Strings

Open/closed duality from non-critical strings to AdS

Leonardo Rastelli

Basic Motivation

Large N gauge theory \longrightarrow string theory?

D-branes have given a clear spacetime picture, but time to go back seriously to the worldsheet: how to really "close the holes" ?

Ideal goal: understanding AdS/CFT from old-fashioned channel duality

We can learn from solvable models

Outline

- **1.** Introduction: open \rightarrow closed worldsheets
- Liouville D-branes and the Kontsevich model
 D. Gaiotto, L.R., hep-th/0312196
 D.Gaiotto, T. Takayanagi, L.R., work in progress
 - **3.** Strings in $AdS_3 \times S^3$ and matrix models

D. Gaiotto, L.R., work in progress

Open/closed duality and moduli spaces

 $\mathcal{M}_{g,h}^{open} \equiv \text{moduli space of open Riemann surfaces of genus } g$, with h holes $\dim(\mathcal{M}_{g,h}^{open}) = 6g - 6 + 3h$

 $\mathcal{M}_{g,p}^{closed} \equiv \text{moduli space of closed Riemann surfaces of genus } g$, with p punctures $\dim(\mathcal{M}_{g,p}^{closed}) = 6g - 6 + 2p$

Natural isomorphism Penner, Kontsevich

 $\mathcal{M}_{g,h}^{open} \cong \mathbf{R}_{+}^{h} \times \mathcal{M}_{g,p=h}^{closed}$

At least formally

$$\int [d \mathcal{M}_{\boldsymbol{g},h}^{open}] \int [\mathcal{D}X] [\mathcal{D}bc] e^{-S[X,bc]} \longrightarrow \int [d \mathcal{M}_{\boldsymbol{g},p=h}^{closed}] \langle \mathcal{W}_1 \dots \mathcal{W}_h \rangle,$$

we can replace each hole with a puncture.

In favorable cases, sum over holes $\sim \exp\left(\int d^2 z \mathcal{W}(z)\right)$, a smooth deformation of the closed string background.

Open/closed duality

Open string side

Open string field theory (OSFT) on N D-branes. Vacuum amplitude as a function of open string moduli $\{z_i\}, i = 1, ..., N$

$$\log \mathcal{Z}^{open}(g_o, N) = \sum_{g=0}^{\infty} \sum_{h=1}^{\infty} g_o^{-2+2g} (g_o^2 N)^h F_{g,h}^{open}(\{z_i\}).$$

Closed string side

Correlators of closed strings physical states $\{\mathcal{O}_k\}$, encoded in

$$\log \mathcal{Z}^{closed}(g_s, \{t_k\}) = \sum_{g=0}^{\infty} g_s^{2g-2} \langle \exp(\sum_k t_k \mathcal{O}_k) \rangle_g$$

Open/closed dictionary

$$b_0 \int d\rho \rho^{L_0} |\mathcal{B}_z\rangle \leftrightarrow \sum_k c_k(z) \mathcal{O}_k$$
$$\mathcal{Z}^{open}(g_o, \{z_i\}) = \mathcal{Z}^{closed} \left(g_s = g_o^2, t_k = \sum_i c_k(z_i)\right)$$

1

Examples

Large N transitions for topological strings,

e.g. topological A model on the conifold Gopakumar Vafa, Ooguri Vafa

D-branes in imaginary time Maloney Strominger Yin Gaiotto Itzhaki L.R. Bergman Razamat Lambert Liu Maldacena

$$\mathbf{t} \ b_0 \int d\rho \ \rho^{L_0} \ |\mathcal{B}\rangle_P \leftrightarrow \mathbf{t} \ \mathcal{W}(P)$$

Does AdS/CFT work this way? Same pattern: N can be kept finite, $t = g_{YM}^2 N$ is a geometric modulus.

SYM theory = full OSFT on N appropriate branes? Polyakov 't Hooft fatgraphs \equiv open string field Feynman diagrams. CFT \rightarrow AdS by gluing worldsheets Gopakumar

Non-critical strings ideal laboratory for these ideas.

Liouville CFT and open/closed duality

$$S_{Liouville} = \int d^2 z \,\partial\phi \bar{\partial}\phi + Q \,R \,\phi + \mu \,e^{2b\phi} \,, \qquad Q \equiv b + \frac{1}{b}$$

• $\{e^{2\alpha\phi}\}$ with $\alpha \in \mathbf{R}$, $\alpha < Q/2$: local closed string vertex operators, localized at $\phi \to -\infty$.

• ZZ branes: localized at $\phi = +\infty$, unstable Intepretation of "old-matrix model" for c = 1: exact OSFT on N ZZ branes \equiv quantum mechanics of N free fermions in inverted harmonic potential McGreevy Verlinde, Klebanov Maldacena Seiberg, Sen

• FZZT branes: "Neumann" branes dissolving at $\phi \sim \log(\mu_B)$

$$\partial \phi - \bar{\partial} \phi = \mu_B \, e^{b\phi}$$

Massless open "tachyon" on FZZT worldvolume $\mu_B \to \infty$ as a smooth "tachyon condensation" Of course, all of this is very reminiscent of AdS/CFT:

 $\phi = -\infty \leftrightarrow \text{AdS}$ boundary where local CFT operators are inserted

Two dressings $e^{2\alpha\phi}$, $e^{2(Q-\alpha)\phi} \leftrightarrow$ Two roots $\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\frac{d^2}{4} + m^2}$ Klebanov Witten

In this analogy, FZZT are perhaps more natural, since they sit in the right place.

Moreover, FZZT branes can be replaced by a sum of local closed string operators.

Quantum gravity interpretation

$$|\mathcal{B}\rangle_{\mu_B} \leftrightarrow \int_0^\infty e^{-\mu_B \, l} W(l) \sim \sum_{k=0}^\infty \frac{\mathcal{O}_k}{\mu_B^{\alpha_k}}$$

W(l) macroscopic loop operator Banks Douglas Seiberg Shenker, Ambjorn Makeenko ...

• What is then the worldvolume theory living on N FZZT branes?

Minimal Topological Strings

Noncritical bosonic string theories from (p,q) BPZ minimal models \oplus Liouville. Exactly solvable. Douglas Shenker, Brezin Kasakov, Gross Migdal

Models in the same row related by turning on deformations, $S = S_0 + t_n \mathcal{O}_n$, "times" t_n of the *p*-KP hierarchy Douglas

(p, 1) column: topological ancestors. Witten, Dijkgraaf Verlinde Verlinde, ... The matter CFT is non-minimal.

Alternative formulations: twisted $\mathcal{N} = 2$ MM coupled to topological gravity, B-model on CY $zw + y^p + x = 0$ Aganagic Dijkgraaf Klemm Marino Vafa (2,1) model: strings in d=-2

$$S = \frac{1}{2\pi} \int d^2 z \,\epsilon_{\alpha\beta} \partial \Theta^{\alpha} \bar{\partial} \Theta^{\beta} + S_{\phi}^{c=28} + S_{bc} \quad \alpha, \beta = 1, 2$$

 Θ^1 and Θ^2 real and Grassmann odd.

Closed string local operators

$$\mathcal{O}_{2k+1} = e^{\sqrt{2(1-k)\phi}} \mathcal{P}_k(\partial \Theta^{\alpha}) c\bar{c}$$

Canonical choice of $(\frac{k(k+1)}{2}, \frac{k(k+1)}{2})$ primaries \mathcal{P}_k from SL(2) invariance. Already in the correct "picture".

Look at FZZT branes

Consider

 $|\mathcal{B}\rangle_{z} = (\text{FZZT brane for Liouville with } \mu = 0, \ \mu_{B} = z) \otimes |\mathcal{B}_{Dirichlet}^{c=-2}\rangle$

1. Expansion in local operators

$$|\mathcal{B}\rangle_z \longrightarrow \sum_{k=0}^{\infty} \frac{\mathcal{O}_{2k+1}}{(2k+1)z^{2k+1}}$$

2. Boundary CFT is topological. Bosonization Distle

$$\beta = \partial \Theta^1 e^{b\phi} \quad \gamma = \partial \Theta^2 e^{-b\phi}$$

BCFT = (2,-1) $\beta \gamma$ system \oplus (2,-1) bc system

Scalar Supercharge

$$Q_S = \oint b(z)\gamma(z) = \oint b(z)e^{-\phi(z)}\partial\Theta^2(z),$$
$$Q_S^2 = \{Q_B, Q_S\} = 0.$$

Full OSFT on N such branes

$$S[\Psi] = -\frac{1}{g_o^2} \left(\frac{1}{2} \langle \Psi_{ij}, Q_B \Psi_{ji} \rangle + \frac{1}{3} \langle \Psi_{ij}, \Psi_{jk}, \Psi_{ki} \rangle \right)$$
$$\Psi_{ij} = X_{ij} T_{ij} + \dots = X_{ij} e^{b\phi} c_1 |0\rangle_{ij} + \dots$$

OSFT localizes to a cubic matrix integral, the Kontsevich model,

$$S[X, \mathbf{Z}] = -\frac{1}{g_o^2} \operatorname{Tr} \left[\frac{1}{2} \mathbf{Z} X^2 + \frac{1}{6} X^3 \right]$$

Eigenvalues $\{z_i\}$ of Z are the N boundary cosmological constants

Using open/closed duality, extract correlators of close strings $\{\mathcal{O}_{2k+1}\}$ from $\mathcal{Z}^{open}(g_o, \mathbf{z_i}) \equiv \text{partition function of Kontsevich integral.}$

$$\mathcal{Z}^{closed}\left(g_s = g_o^2, t_{2k+1} = g_s \sum \frac{1}{(2k+1)z_i^k}\right) = \mathcal{Z}^{open}(g_o, z_i)$$

Some lessons

- As expected, Genus g Kontsevich diagrams with h holes \leftrightarrow genus g closed correlators with h punctures
- Duality makes sense for finite N:
 OSFT on N branes ≅ subsector of the full theory.
 To span full closed string Hilbert space, need N → ∞
- OSFT holographic despite FZZT branes are "extended"!
- Open/closed duality can also be understood using "spacetime" Ward identities DVV, C. Johnson, Aganagic et al., Gaiotto and L.R.

A few generalizations

• All (p, 1) models follow similar pattern D. Gaiotto, L.R., Aganagic et al

Some OB models related to orbifolds of the bosonic models, simplest example:
Z₂ orbifold of c = -2 bosonic string {Θ_α → -Θ_α} ↔ pure supergravity.
D. Gaiotto, T. Takayanagi, L.R.

•Extension to c = 1 at the self-dual radius Ghoshal Mukhi Murthy: OSFT on N FZZT = SU(2) symmetric model, still holographic.

How general are these ideas?

Strings in $AdS_3 \times S^3$

IIB on $AdS_3 \times S^3 \times \mathcal{M}_4$ with NSNS flux, near horizon of Q_1 F1, $Q_5 = k$ NS5. (Here Euclidean AdS_3)

Exact matter CFT for $AdS_3 \times S^3$ Giveon Kutasov Seiberg

 $\widehat{SU}(2)_{k-2} \oplus \{\psi^+, \psi^-, \psi^3\} \oplus \widehat{SL}(2, R)_{k+2} \oplus \{\chi^+, \chi^-, \chi^3\}$ $\{\psi^a\}, \{\chi^a\} \text{ free fermions.}$

Usual choice of complex structure: $\psi^+\psi^-$, $\chi^+\chi^-$, $\psi^3\chi^3$.

Instead, pair symmetrically $AdS_3 \leftrightarrow S^3$ (SL(2, C) complex structure)

 $\eta_1 \equiv \chi_1 + i\psi_1 \quad \eta_2 \equiv \chi_2 + i\psi_2 \quad \eta_3 \equiv \chi_3 + \psi_3$ $\xi_1 \equiv \chi_1 - i\psi_1 \quad \xi_2 \equiv \chi_2 - i\psi_2 \quad \xi_3 \equiv \chi_3 - \psi_3$

Topological twist $T \to T - \frac{1}{2}\partial J$, $J \equiv \eta^a \xi_a$

makes (η^a, ξ^a) of spins (1,0) and $c_{tot} = 6 + 3(-2) = 0$.

B-twist gives precisely G/G topological model, with $G = SU(2)_{k-2}$!

Under the U(1), supercharge $G = G_+ + G_- + G_{---}$

Generators close in a Kazama algebra.

$$J_{tot}^{a} = j^{a} + k^{a} + i\epsilon a_{bc}\chi^{b}\eta^{c} = \{G_{+}, \eta^{a}\}.$$

(Different choice of twist explored by Y. Sugawara)

Physical states of G/G model = (subset of) chiral primaries in spacetime. "Short string" chiral primaries are of the form Kutasov Larsen Leigh

$$\mathcal{T}_{j} = \mathcal{V}_{j}^{SU(2)} \mathcal{V}_{j}^{AdS} \text{ (fermions)} \quad j = \frac{n}{2} - 1, \ n = 1, 2, \dots k - 1,$$

Each short string has an infinite tower of spectral flowed descendants, Maldacena Ooguri, Argurio Giveon Shomer

$$\mathcal{T}_{j}^{(w)} = t_{+}^{w} \mathcal{T}_{j}, \ w = 1, 2, 3... \qquad \Delta_{j}^{(w)} = j + w \frac{k}{2}.$$

Missing every k-th state. Related to singular behavior of boundary CFT? Seiberg Witten

Further twist $T \to T + \partial J_{tot}^3$ re-organizes the theory into (k, 1) bosonic string Aharony Ganor Sonneschein Yankielowicz

Wakimoto representation of AdS_3 CFT in terms of (ϕ, β, γ) , and of SU(2) in terms of $(\tilde{\phi}, \tilde{\beta}, \tilde{\gamma})$

Hamiltonian reduction $j^+ = \beta = \sqrt{\mu}$ reduces $AdS_3 \text{ CFT} \rightarrow \text{Liouville with } b = 1/\sqrt{k},$ similarly $SU(2) \text{ CFT} \rightarrow \text{matter CFT with } b = 1/\sqrt{k}.$

All in all, field content and screening charges of (k, 1) bosonic string. Interaction $\beta \overline{\beta} \exp(\frac{2\phi}{\sqrt{k}}) \rightarrow \mu \exp(2b\phi)$.

Liouville \equiv radial AdS direction!

Mapping local operators

- $\mathcal{T}_{i} \rightarrow \text{small phase space}$
- $\mathcal{T}_{i}^{w} \rightarrow \text{gravitational descendants}$

Missing states well-known to be absent in the matrix model. "Boundary operators" (holes with extra open puncture)? Martinec Moore Seiberg

Mapping branes

Tentative identification

 $|\mathrm{FZZT}(\mu_B)\rangle \otimes |\mathrm{matter}\rangle \leftrightarrow \mathrm{AdS}_2 \times S^2 \text{ brane} \qquad C \sim \mu_B$

$$\sinh\rho\sin\phi = C = q \,\frac{T_F}{T_D}\,,$$

in global AdS_3 .

"Permeable domain walls in boundary CFT" Bachas de Boer Dijkgraaf Ooguri. In our picture, expect again $|B\rangle \to \sum \mathcal{O}_k$.

Conclusions

- Exactly solvable models confirm general picture of open/closed duality described in the introduction
- A role for OSFT on infinitely many branes.
- A new class of topological string theories?
- Does AdS/CFT work similarly?