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Lecture 2:

A review of quantum measurement theory illustrated by the
description of QND photon counting in Cavity QED
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A review of measurement theory:
standard, POVM and generalized

measurements



Standard measurement

pi = Tr!"i ; pi =1
i
#

!$!i =
"i!"i

pi

The probability pi for finding the result i on a system in the state ! before
measurement and the state !i in which the system is projected by the measurement
are given by:

Besides these standard measurements (also called projective measurements), one
can define also generalized or POVM measurements (for  Positive Operator Valued
Measure). See next pages.

The number of projectors is equal to the Hilbert space dimension (2 for a qubit)
and the measurement is repeatable: After a first measurement, one finds again the
same result, as a direct consequence of the orthogonality of the projectors "i.

A standard (von Neumann) measurement is determined by giving the ensemble of
projectors on a basis of eingenstates of an observable G (represented by a
hermitian operator), for which a measuring apparatus (or meter) has been defined: .

G ai = gi ai ; ai aj = !ij

"i = ai ai ; "i = I
i
# ; "i" j = !ij"i



 POVM measurement

The POVM process is a statistical measurement since its yields a result belonging
to a set of values, with a probability distribution. The measurement is not
repeatable (with mutually exclusive results). One can find different results
successively when resuming the measurement.

The number of Ei operators can be arbitrary, either smaller or larger than the
Hilbert space dimension. The POVM is defined by the rules giving the probabilities
pi for finding the result i and the state after measurement, which generalize
standard measurement rules:

pi = Tr !Ei{ } ; pi =1
i
"

!#!i =
Ei! Ei

pi

A POVM is defined by an ensemble of positive hermitian operators Ei (having non-
negative expectation values in all states) realizing a partition of unity:

Ei = I
i
!

Since the Ei are not normalized projectors, one has in general:

EiEj ! 0 if i ! j ; Ei
2 ! Ei



POVM realized as a standard measurement
on an auxiliary system

A POVM on a system S in a Hilbert space (A) can always be reduced to a projective
measurement in an auxiliary system belonging to another space (B), to which S is
entangled by a unitary transformation. Let us associate to each element i of the
POVM a vector |bi> of B, the |bi>’s forming an orthonormal basis (space B has a
dimension at least equal to the number of POVM elements) and let us consider a
unitary operation acting in the following way on a state |#>A |0>B, tensor product of
an arbitrary state of A with a  «!reference!» state |0>B of B:

!
A
0

B
" Ei ! A

i
# bi B

Let us then perform a standard measurement of an observable of B admitting the
|bi>’s as eigenstates. The result i is obtained with the probability of the POVM and
the system S is projected according to the POVM rule. We have realized in this
way the desired POVM. Two element-POVM’s can thus be realized by coupling S to a
qubit, then measuring the qubit, as discussed in next pages.

This operation conserves scalar products and is thus a restriction of a unitary
transformation in (A+B). Applied to a statistical mixture of (A), it writes by
linearity:

!A " 0
B B

0 # Ei!A Ej "
i, j
$ bi BB

bj



Generalized measurement
A generalized measurement M is defined by considering a set of (non
necessarily Hermitian) operators Mi of a system A fulfilling the
normalization condition:

Mi
†Mi = I

i
!

The result i of the measurement M occurs with the probability:
pi =Tr Mi!Mi

†{ }
and the system after measurement is projected onto the state:

! proj (i ) =
Mi!Mi

†

pi
The generalized measurement M can be realized by coupling A to an
auxiliary system B by the unitary defined as:

UM !(A) " 0(B) = Mi !
(A) " ui

(B)

i
#

where the |ui
(B)> form an orthonormal set of states of B. A standard

measurement of B admitting the |ui
(B)> as eigenstates realizes the

generalized measurement on A. The POVMs are obviously a special case of
generalized measurements with Mi = Mi

† = $Ei.

The Mi are called
«!Kraus operators!»



Photo-detection as generalized measurement

This generalized measurement is a destructive process which always leaves
the field in vacuum. Note that this is not a standard measurement which
should leave the field in the eigenstate |n> after the result n has been
found (see later). A standard measurement must be non-destructive
(Quantum Non-demolition).

Consider a detector able to resolve photon
numbers by absorbing the photons of a field
mode and yielding a photo-current proportional
to n. It corresponds to a generalized
measurement with the Mn operators defined as:

Mn = 0 n

which obviously satisfy the closure relationship %Mn
†Mn=I. Performing the

generalized measurement yields the result n with probability:

p(n) = Tr Mn!Mn
†{ } = n ! n

photons

electrons

Photo-cathode

Collecting electrode

and the fields ends (for any number n of photons) in the final state:

! proj = Mn!Mn
† / p(n) = 0 0
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 Detecting a non-resonant atom by Ramsey
interferometry realizes a binary POVM of

the field in a Cavity QED experiment



A reminder about Ramsey Interferometer
Let us consider the Ramsey
interferometer with the two cavities
R1 et R2 sandwiching the cavity C
containing the field to be measured.
The atom with two levels g and e
(qubit in states j=0 and j=1
respectively), prepared in e, is
submitted to classical &/2 pulses in R1
and R2, the second having a 'r phase
difference with the first. The
probabilities to detect the atom in g
(j=0)  and e (j=1)  when C is empty
are:

Pj = cos
2 ! r " j#( )

2
; j = 0,1 (7 "1)

The Pj probabilities oscillate ideally between 0 and 1 with opposite phases when 'r
is swept (Ramsey fringes).

! r

Pg ,Pe

0 2!



A 2-element field POVM realized with an
atom qubit dispersively coupled to the cavity

We have defined the phase-shift per photon (0, proportional to teff, effective cavity crossing
time taking into account the spatial variation of the coupling. The fringe phase shift allows us
to measure the photon number in a non-destructive way (QND method). Each atomic detection
realizes a two-element POVM (see next page).

! r

Pe

n = 0

n =1
n = 2

For a given  phase 'r,  the
probability for finding the

atom in e (or g) takes
different n-dependent

values

If C is non-resonant with the atomic transition
(detuning )) and contains n photons, the atomic
dipole undergoes in C a phase-shift *(n), function
of n, linear in n at lowest order (see lecture 1). The
fringes are shifted and the Pj probabilities
become:

4)

4)

Pj n( ) = cos2
! r +"(n)# j$( )

2
; "(n) = %0n +O(n

2 ) ; %0 =
&0
2teff
2'

(0 (tuned by changing )) can
reach the value &



Repeated measurement of a single photon

Thermal field at 0.8 K
fluctuates between 0

 and 1 photon (nt=0.05)

R1 R2

e/g?

Set the interferometer at
the top of a P(e) fringe for
n=1, with a '0=& phase shift

per photon
n=0

n=1



Measuring atomic clock delay (n=0 or 1)

1. Starting the clock:1. Starting the clock:
microwave pulse in Rmicrowave pulse in R11

no photons

no photons

1 photon
1 photon

Atomic Atomic state (state (ee//gg) ) correlated correlated to photon to photon numbernumber ( (11//00))

 
2. Clock2. Clock’’s delay:s delay:
Light-shift due to cavity fieldLight-shift due to cavity field
3. Detecting the delay:3. Detecting the delay:
Second pulse in RSecond pulse in R22 followed by followed by
atomic state detectionatomic state detection

Phase-shift per photon Phase-shift per photon !!0 0 = &= &

Light shifts

g + e

g ! e

R1 R2
n=0/1
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Birth, life and death of a photon

time (s)

e

g

0,90 0,95 1,00 1,05 1,10 1,15 1,20

 quantum
jump

Hundreds of atoms
see the same

photon

This is also a quantum gate:
role of Ramsey interferometer in

quantum information



QND measurement of arbitrary photon
numbers: progressive collapse of field state

A small coherent state with Poissonian uncertainty and
0 + n + 7 is initially injected in the cavity and its photon

number is progressively pinned-down by QND atoms

n

P(n)

Experiment illustrates on light quanta the three postulates
of measurement: state collapse, statistics of results,

repeatability.

A coherent field
(Glauber state)

has uncertain photon
number:
)n)( !1/2

Heisenberg relation)n
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Information obtained by detecting 1 atom
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11
2233

44
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66

detectiondetection
directiondirection

Detecting the Ramsey signal with phase 'r amounts to
chosing a detection direction of the qubit Bloch vector
in the equatorial plane of the Bloch sphere. The phase-
shift per photon  (0 =&/4  is set to distinguish photon
numbers (from 0 to 7), each one corresponding to a
different direction of the Bloch vector.

A priori no information on n

Measuring the atom projects the field density
operator by modulating the  "(n) probability with a

sine-term whose phase is given by the Ramsey fringe
(Bayes law).

R2
pulse



A

ai

B

bj

p(ai ,bj ) = p(ai | bj )p(bj ) = p(bj | ai )p(ai )
!"!

p(bj | ai ) = p(ai | bj )
p(bj )
p(ai )

= p(ai | bj )
p(bj )

p(ai | bj )p(bj )
j
#

p(ai ,bj ) ! p(ai )p(bj ) correlations
p(ai ) p(bj )

Relation between reciprocal conditional probabilities



Bayes law or projection postulate?
The conditional probability to detect the atom in state j (0 or 1) provided they are
n photons in C is:

p( j | n) = cos2
! r +" n( )# j$

2
%

&
'

(

)
*

The reciprocal conditional probability to have n photons in C provided that the atom
has been detected in j is given by Bayes law:

p(n | j) = p( j | n)!(n)
p( j)

=
p( j | n)!(n)
p( j | n)!(n)

n
"

=

cos2
# r +$ n( )% j&

2
'

(
)

*

+
,!(n)

cos2
# r +$ n( )% j&

2
'

(
)

*

+
,!(n)

n
"

Within normalization, the inferred photon number probability is the a priori one
"(n) multiplied by the Ramsey fringe function. The same result is obtained by
applying the projection postulate to the qubit measurement. After crossing the
Ramsey interferometer, the field (initially in state %nCn|n>) and the qubit (initially in
e) end up in the entangled state:

Cn n ! j =1
n
" Ramsey# $## Cn sin

% r +&(n)
2n

" n ! j =1 +Cn cos
% r +&(n)

2
n ! j = 0

whose projection, conditioned to finding the result j, leads to Bayes formula for
the probability for finding n photons in C.
Bayes law and the projection rule yield identical results.



Let us define the two field operators, hermitian and positive:

These equations define a POVM  which realizes a partial measurement of the photon number
N. As we will now show, a sequence of such POVM’s realizes a standard projective
measurement of the photon number, which is of the QND type.

The dispersively coupled single atom
measurement is a two element POVM

Ej = cos
2 ! r +"(a

†a)# j$( )
2

(7 # 3)

which satisfy the closure relationship:

Ej = E0 +E1 = I
j
! (7 " 4)

The Ej form a two-element POVM realized by detecting the atom. If the field is initially
described by the density operator !, the probability for finding the result j is indeed:

Pj !( ) = !nnPj n( ) = !nn cos
2 " r +# n( ) $ j%( )

2
=Tr !Ej{ }

n
&

n
& (7 $ 5)

and after atomic detection, the field is projected in state:

! proj ( j) =
cos " r +#(n)$ j%

2
&

'(
)

*+
n !n,n ' n ' cos

" r +#(n ')$ j%
2

&

'(
)

*+

Pj !( )n,n '
, =

Ej! Ej

Tr !Ej{ }
(7 $ 6)



The QND POVM: essential formulae

Eg = cos
2 !r +"(N )

2
#

$
%

&

'
(

! proj =
Ej! Ej

Tr !Ej( )

Detecting the atom changes the
inferred photon number distribution

(more generally the field density
operator)

State before
measurement

Projected state

The 2 elements of the
POVM corresponding to
the two possible results

(e or g)

Ee = sin
2 !r +"(N )

2
#

$
%

&

'
(
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When realizing a sequence of
measurements, each yields a new state. The
sequence converges towards a well defined
photon number: progressive collapse leading

to a standard measurement.
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Quantum Non-Demolition measurement of
photon number in a cavity:

progressive collapse of the field state



Sequence of POVM’s realizing a QND
measurement of photon  number

To count up to nm photons, we can either chose '0=&/(nm+1) and use one detection
phase 'r (corresponding for example to the detection of -x) or chose '0=2&/(nm+1)
and use two detection phases (corresponding to the detection of -x and -y). Let us
consider here the first setting. After detecting p qubits in state j=0 and N-p in
state j=1, the inferred photon number distribution has become:

Two settings for
counting up to 7

photons

x

x

y

p(n | p;N ! p) " cos2 p # r + n#0
2

$

%
&

'

(
)sin2(N! p)

# r + n#0
2

$

%
&

'

(
)

= X p (u) 1! X(u)[ ]N! p with X(u) = cos2 u and u = # r + n#0( ) / 2

Xmax = cos
2 ! r + nmax!0

2
"

#
$

%

&
' =

p
N

( nmax =
2
!0

Arccos p
N

)

*
+

,

-
./

! r

!0

The derivative cancels for X=p/N and the photon number
nmax satisfies:

The distribution maximum is obtained by computing the
derivative of p(n|p;N-p) versus n. A simple calculation yields:

dp(n | p,N ! p)
dn

= A" p ! NX[ ] with A = !#0 sinu cosu X
p!1 1! X[ ]N! p!1



Sequence of POVM’s realizing a QND
measurement of photon  number (cont’d)

To estimate the width of the inferred photon number distribution  we compute its
second derivative at X=p/N:

and we get the Taylor expansion of the photon number distribution around its
maximum:

p(n | p,N ! p) = p(nmax | p,N ! p) 1! N"0
2

2
(n ! nmax )

2#

$
%

&

'
( ) p(nmax | p,N ! p) e

!
N"02
2 (n!nmax )2

It shows that the distribution is quasi-gaussian with a half-width:

!n " 1
#0 N

When information is extracted independently by the N qubits, their number must
be of the order of the square of the dimension of the relevant photon number
Hilbert space. More efficient strategies in which the POVM’s are adapted to the
results of previous measurement allow for a faster convergence.

d 2 p(n | p,N ! p)
dn2 X= p

N
"

#
$

%

&
'

= A( d
dn

p ! NX[ ] = !A( N
dX
du

du
dn

= A( N)0 sinu cosu = !N)0
2X p 1! X[ ]N! p = !N)02 p(nmax | p,N ! p)

A precise photon number is pinned down when .n < 1/2, or:

N >
4
!0
2 "

4 nm +1( )2

# 2



Progressive collapse as n is pinned down to one value
qui va gagner la course?

n =   7   6   5   4   3   2   1   0 n =   7   6   5   4  3   2   1    0

Bayes law in
action…

Which number will win the race?



Experimental results
At left: evolution of the inferred photon number distribution in
two sequences of ~100 POVM measurements on an initial coherent
state with an average of 3,7 photons. The first measurement
converges towards n=5 and the second towards n=7 (the
successive POVM’s correspond to 4 phases (r alternatively
chosen). Probability distributions inferences take into account
apparatus imperfections (see next lecture). Convergence occurs
after about 40 atoms have been detected, in rough agreement
with the estimate for N when nm=7.

At bottom: histogram of measurement results
reconstructed from 2000 trajectories; the Poisson law is
recovered.

The measurement randomly prepares Fock
states. Is it possible to modify the procedure
to drive the result towards a preselected Fock

state? Quantum feedback- see lecture 3.



n=2n=2
n=0n=0

n=1n=1

n=3n=3

n=4n=4 n=5n=5
n=6n=6

n=7n=7

phase
(R

Reconstructing "(n): an equivalent picture
Instead of computing the product of cosine functions converging towards a
delta function, one can equivalently perform a tomographic measurement of
N qubits having interacted with the field in a time short compared with the
cavity decoherence time.  Each sequence yields an expectation value of -x
and -y, hence a vector in the equatorial plane of the Bloch sphere
associated to an n value. By resuming the sequence a large number of times,
we reconsruct an histogram yielding the distribution of Bloch vector
directions, i.e. the distribution of photon numbers in the intial field.
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repeated measurement
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‘collapse’{ Quantum jumps (field damping)
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Expectation value of photon number along a
long POVM sequence: stochastic  trajectory

A trajectory corresponding to n=5

Quantum jumps towards vacuum
due to field damping

n
A

ve
ra

ge
 p

ho
to

n 
nu

m
be

r

Observation of stochastice field
trajectories, in good agreement
with Monte-Carlo calculations.Projecting

coherent state
on n=5

Repeated measurements
confirm n=5

From probability Pi(n) inferred after
each atom,  we deduce mean photon

number:

n = nPi (n)
n
! (6 "10)



Two trajectories following collapses into n=5 and 7

A fundamentally random process (step durations fluctuate
from one realization to the next one and only the statistics

can be computed)

Four trajectories following a projection in n=4

Other trajectories
It takes  some time for atoms to

recognize that a jump has occured.



A statistical analysis of trajectories:
field evolution versus time
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 Left: "(n) versus  time for an initial
coherent state with n=3.5. Full lines:
experiment, dotted lines: theory. The

blue bar at t~0 indicates the dead
time of the initial measurement.

 Right: Histograms "(n) at times
corresponding to the 3 vertical lines

of the left f. Blue curves; theory. The
photon distribution remains

Poissonnian as expected for a damped
coherent field.

We analyse an ensemble of trajectories starting from the same initial coherent state and
reconstruct "(n,t), the probability of finding  n photons at time t (not to be confused with
the probability Pi(N)(n) of the number of photons inferred after N atoms on one trajectory).
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At bottom: Evolution of average photon number

on ensemble of trajectories: the exponential law giving
the damping of the field average energy is recovered.

n(t) = n!(n,t)
n
" (6 #11)



Conclusion of second lecture

General reference: S.Haroche and J-M.Raimond: Exploring the Quantum: Atoms,
Cavities and Photons, Oxford University Press (2006).

We have reviewed some general results about the quantum measurement theory and
illustrated them by describing a photon counting experiment in cavity QED. We
have shown that coupling a cavity field mode oscillator to a single two-level atom in
the dispersive regime realizes a generalized measurement of the POVM kind which
extracts partial information from the field. By a succession of such POVM’s, a
complete quantum non demolition (QND) measurement of the photon number is
realized. This QND procedures allows us to observe directly the quantum jumps of
the field and to prepare, by random projection, highly non-classical states. This
experiment leads to the following questions:

•Can we reconstruct not only the photon number distribution but, more generally,
the full quantum state of the field?

•The field convergence in a QND measurement is a random process. Can we
interfere with this process by a feedback operation in order to drive the field on
demand towards a given Fock state and what could be the use of such a procedure?

•Can all this be done in other systems?


