ICAP Summer School, Paris, 2012

Three lectures on quantum gases

Wolfgang Ketterle, MIT

Cold fermions

Reference for most of this talk:

W. Ketterle and M. W. Zwierlein:

Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School of Physics "Enrico Fermi", Course CLXIV, Varenna, 20 -30 June 2006, edited by M. Inguscio, W. Ketterle, and C. Salomon (IOS Press, Amsterdam) 2008, pp. 95-287; e-print, arXiv: 0801.2500; Rivista del Nuovo Cimento **31**, 247-422 (2008).

LI Na cooling movie

At absolute zero temperature ...

Bosons

Particles with an even number of protons, neutrons and electrons

Bose-Einstein condensation ⇒ atoms as waves ⇒ superfluidity

Fermions

Particles with an odd number of protons, neutrons and electrons

Fermi sea:

- \Rightarrow Atoms are not coherent
- \Rightarrow No superfluidity

Fermions in a box $P_F = t (6\pi^2 n)^{1/3}$ $E_F = P_F^2/2m \qquad n = \left(\frac{E_F}{2m}\right)^{3/2} \frac{1}{6\pi^2 t^3}$

Fermions in an HO $E_{F} = (GN)^{1/3} t_{N}$ $\int E_{F} = (GN)^{1/3} t_{N}$ $\int V_{2} = \int V(T) = \int \frac{1}{6\pi^{2} t^{3}} \int \frac{1}{6\pi^{2} t^{5$

Freezing out of collisions

No interactions if range of potential is < λ_{dB} Elastic collisions suppressed below T_{pwave}

Elastic cross section for K-40 (Jin group, PRL 1999)

Pairs of fermions

Particles with an even number of protons, neutrons and electrons

Two kinds of fermions

Fermi sea: \Rightarrow Atoms are not coherent \Rightarrow No superfluidity

At absolute zero temperature ...

Pairs of fermions

Particles with an even number of protons, neutrons and electrons

Bose-Einstein condensation ⇒ atoms as waves ⇒ superfluidity

Two kinds of fermions

Particles with an odd number of protons, neutrons and electrons

Fermi sea:

- \Rightarrow Atoms are not coherent
- \Rightarrow No superfluidity

Weak attractive interactions

Cooper pairs larger than interatomic distance momentum correlations \Rightarrow BCS superfluidity

Two kinds of fermions

Particles with an odd number of protons, neutrons and electrons

Fermi sea:

- \Rightarrow Atoms are not coherent
- \Rightarrow No superfluidity

Disclaimer: Drawing is schematic and does not distinguish nuclear and electron spin.

Two atoms

... form a stable molecule

Atoms attract each other

Atoms repel each other

Atoms attract each other

Atoms repel each other Atoms attract each other

resubacit loss and a (JFEG)

Observation of a Feshbach resonance

S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, WK, Nature **392** (1998).

Bose Einstein condensate of molecules

BCS Superconductor

cular BEC

BCS superfluid

Magnetic field

BCS superfluid

cular BEC

Crossover superfluid

BCS superfluid

cular BEC

How do atoms pair?

Two-body bound states in 1D, 2D, and 3D

1D, 2D: bound state for arbitrarily small attractive well3D: Well depth has be larger than threshold

Connection to the density of states

$$\frac{\hbar^2}{m} (\nabla^2 - k^2)\psi = V\psi$$

In momentum space

$$\psi_{\mathbf{k}}(\mathbf{q}) = -\frac{m}{\hbar^2} \frac{1}{q^2 + k^2} \int \frac{d^n q'}{(2\pi)^n} V(\mathbf{q} - \mathbf{q}') \psi_{\mathbf{k}}(\mathbf{q}')$$

Connection to the density of states

$$\frac{\hbar^2}{m} (\nabla^2 - k^2)\psi = V\psi$$

In momentum space

$$\psi_{\mathbf{k}}(\mathbf{q}) = -\frac{m}{\hbar^2} \frac{1}{q^2 + k^2} \int \frac{d^n q'}{(2\pi)^n} V(\mathbf{q} - \mathbf{q}') \psi_{\mathbf{k}}(\mathbf{q}')$$

Short range potential: $V(q)=V_0$ for q<1/R

$$\psi_{\mathbf{k}}(\mathbf{q}) = -\frac{mV_0}{\hbar^2} \frac{1}{q^2 + k^2} \int_{q' < \frac{1}{R}} \frac{d^n q'}{(2\pi)^n} \psi_{\mathbf{k}}(\mathbf{q}')$$

Integrate over q, divide by common factor $\int_{q<rac{1}{R}}rac{d^nq}{(2\pi)^n}\psi_{\mathbf{k}}(\mathbf{q})$.

$$-\frac{1}{V_0} = \frac{m}{\hbar^2} \int_{q<\frac{1}{R}} \frac{d^n q}{(2\pi)^n} \frac{1}{q^2 + k^2} = \frac{1}{\Omega} \int_{\epsilon< E_R} d\epsilon \frac{\rho_n(\epsilon)}{2\epsilon + |E|}$$

Bound state for arbitrarily small V₀ only if integral diverges for $E \rightarrow 0$

$$-\frac{1}{V_0} = \frac{m}{\hbar^2} \int_{q<\frac{1}{R}} \frac{d^n q}{(2\pi)^n} \frac{1}{q^2 + k^2} = \frac{1}{\Omega} \int_{\epsilon< E_R} d\epsilon \frac{\rho_n(\epsilon)}{2\epsilon + |E|}$$

Bound state for arbitrarily small V_0 only if integral diverges for $E \rightarrow 0$

In 2D (constant density of states): logarithmic divergence

$$E_{2D} = -2E_R e^{-\frac{2\Omega}{\rho_{2D}|V_0|}}$$

The Cooper problem:

Bound Electron Pairs in a Degenerate Fermi Gas*

LEON N. COOPER

Physics Department, University of Illinois, Urbana, Illinois (Received September 21, 1956) Two fermions with weak interactions on top of a filled Fermi sea

Total momentum zero

Total momentum non-zero 2q

search for a small binding energy $E_B = E - 2E_F < 0$

$$-\frac{1}{V_0} = \frac{1}{\Omega} \int_{E_F < \epsilon < E_F + E_R} d\epsilon \frac{\rho_{3D}(\epsilon)}{2(\epsilon - E_F) + |E_B|}$$

Pauli blocking

$$E_B = -2 E_R e^{-2\Omega/\rho_{3D}(E_F)|V_0|}$$

Compare with previous result for single particle bound state

$$-\frac{1}{V_0} = \frac{m}{\hbar^2} \int_{q<\frac{1}{R}} \frac{d^n q}{(2\pi)^n} \frac{1}{q^2 + k^2} = \frac{1}{\Omega} \int_{\epsilon< E_R} d\epsilon \frac{\rho_n(\epsilon)}{2\epsilon + |E|}$$

search for a small binding energy $E_B = E - 2E_F < 0$

$$-\frac{1}{V_0} = \frac{1}{\Omega} \int_{E_F < \epsilon < E_F + E_R} d\epsilon \frac{\rho_{3D}(\epsilon)}{2(\epsilon - E_F) + |E_B|}$$

Pauli blocking

$$E_B = -2E_R e^{-2\Omega/\rho_{3D}(E_F)|V_0|}$$

After replacing the bare interaction V_0 by the scattering length a

$$E_B = -\frac{8}{e^2} E_F e^{-\pi/k_F|a}$$

Cooper Pairing

Consider two particles \uparrow , \downarrow , on top of a filled, "inert" Fermi sea

Total momentum zero

Total momentum non-zero

- Reduced density of states
- Much smaller binding energy

The important pairs are those with zero momentum
BCS Wavefunction

How can we find a state in which all fermions are paired in a self-consistent way?

John Bardeen

Leon N. Cooper John R

er John R. Schrieffer

BCS Wavefunction

• Many-body wavefunction for a condensate of Fermion Pairs: $\begin{aligned}
\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) &= & \varphi(|\mathbf{r}_1 - \mathbf{r}_2|)\chi_{12} \dots \varphi(|\mathbf{r}_{N-1} - \mathbf{r}_N|)\chi_{N-1,N} \\
& \uparrow \\
\text{Spatial pair wavefunction} \\
\chi_{ij} &= \frac{1}{\sqrt{2}}(|\uparrow\rangle_i |\downarrow\rangle_j - |\downarrow\rangle_i |\uparrow\rangle_j)
\end{aligned}$

Second quantization:

 $|\Psi\rangle_{N} = \int \prod_{i} d^{3}r_{i} \varphi(\mathbf{r}_{1} - \mathbf{r}_{2}) \Psi^{\dagger}_{\uparrow}(\mathbf{r}_{1}) \Psi^{\dagger}_{\downarrow}(\mathbf{r}_{2}) \dots \varphi(\mathbf{r}_{N-1} - \mathbf{r}_{N}) \Psi^{\dagger}_{\uparrow}(\mathbf{r}_{N-1}) \Psi^{\dagger}_{\downarrow}(\mathbf{r}_{N}) |0\rangle$

- Fourier transform: Pair wavefunction: $\varphi(\mathbf{r}) = \sum_{k} \varphi_{k} \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{\Omega}}$ Operators: $\Psi_{\sigma}^{\dagger}(\mathbf{r}) = \sum_{k} c_{k\sigma}^{\dagger} \frac{e^{-i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{\Omega}}$
- Pair creation operator: $b^{\dagger} = \sum arphi_k c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow}$
- Many-body wavefunction: $\left|\Psi\right\rangle_{N}=b^{\dagger\,N/2}\left|0\right\rangle$ a fermion pair condensate

$|\Psi\rangle_N$ is not a Bose condensate

$$|\Psi\rangle_N = {b^\dagger}^{N/2} \, |0\rangle$$

Commutation relations for pair creation/annihilation operators

$$\begin{bmatrix} b^{\dagger}, b^{\dagger} \end{bmatrix}_{-} = \sum_{kk'} \varphi_{k} \varphi_{k'} \begin{bmatrix} c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow}, c^{\dagger}_{k'\uparrow} c^{\dagger}_{-k'\downarrow} \end{bmatrix}_{-} = 0 \quad \checkmark$$
$$\begin{bmatrix} b, b \end{bmatrix}_{-} = \cdots = 0$$

$$\left[b, b^{\dagger}\right]_{-} = \dots = \sum_{k} |\varphi_{k}|^{2} (1 - n_{k\uparrow} - n_{k\downarrow}) \neq 1 \qquad \bigstar$$

Occupation of momentum *k*

• pairs do not obey Bose commutation relations, unless $n_k \ll 1$

$$[b, b^{\dagger}]_{-} \approx \sum_{k} |\varphi_{k}|^{2} = 1$$
 BEC limit of
tightly bound molecules

BCS Wavefunction

 Introduce coherent state / switch to grand-canonical description: $\mathcal{N} |\Psi\rangle = \sum_{J_{\text{even}}} \frac{N_p^{J/4}}{(J/2)!} |\Psi\rangle_J = \sum_M \frac{1}{M!} N_p^{M/2} b^{\dagger M} |0\rangle$ $=e^{\sqrt{N_p} b^\dagger} \left| 0 \right\rangle$ $= \prod e^{\sqrt{N_p} \varphi_k c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow}} |0\rangle \qquad c^{\dagger}_k \text{ and } c^{\dagger}_{k'} \text{ commute}$ $=\prod^{n}\left(1+\sqrt{N_{p}}\;\varphi_{k}\,c_{k\uparrow}^{\dagger}c_{-k\downarrow}^{\dagger}\right)\left|0\right\rangle \text{ because }c_{k}^{\dagger2}=0$ • Normalization: $\mathcal{N} = \prod_k \frac{1}{u_k} = \prod_k \sqrt{1 + N_p |\varphi_k|^2}$ • BCS wavefunction: $\left| |\Psi_{\rm BCS} \rangle = \prod_{i} (u_k + v_k c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger}) | 0 \rangle \right|$ with $v_k = \sqrt{N_p} \varphi_k u_k$ and $|u_k|^2 + |v_k|^2 = 1$

BCS Wavefunction

$$\left|\Psi\right\rangle_{N}=b^{\dagger^{N/2}}\left|0\right\rangle$$

and

$$|\Psi_{\rm BCS}\rangle = \prod_{k} (u_k + v_k c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow}) |0\rangle$$

are identical!

Many-Body Hamiltonian

- Second quantized Hamiltonian for interacting fermions:
- $\hat{H} = \sum_{\sigma} \int \mathrm{d}^3 r \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{\hbar^2 \nabla^2}{2m} \right) \hat{\Psi}_{\sigma}(\mathbf{r}) + \int \mathrm{d}^3 r \int \mathrm{d}^3 r' \hat{\Psi}_{\uparrow}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\downarrow}^{\dagger}(\mathbf{r}') V(\mathbf{r} \mathbf{r}') \hat{\Psi}_{\downarrow}(\mathbf{r}') \hat{\Psi}_{\uparrow}(\mathbf{r})$
 - Contact interaction:
 - Fourier transform via

$$V(\mathbf{r}) = V_0 \delta(\mathbf{r})$$
$$\Psi_{\sigma}^{\dagger}(\mathbf{r}) = \sum_k c_{k\sigma}^{\dagger} \frac{e^{-i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{\Omega}}$$

$$\hat{H} = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \frac{V_0}{\Omega} \sum_{k,k',q} c_{k+\frac{q}{2}\uparrow}^{\dagger} c_{-k+\frac{q}{2}\downarrow}^{\dagger} c_{k'+\frac{q}{2}\downarrow} c_{-k'+\frac{q}{2}\uparrow}$$

• BCS Approximation:

Only include scattering between zero-momentum pairs

$$\hat{H} = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \frac{V_0}{\Omega} \sum_{k,k'} c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} c_{k'\downarrow} c_{-k'\uparrow}$$

• Solve via 1) Variational Ansatz, 2) via Bogoliubov transformation

- Insert BCS wavefunction into Many-Body Hamiltonian.
- Minimize Free Energy:

$$\mathcal{F} = \left\langle \hat{H} - \mu \hat{N} \right\rangle = \sum_{k} 2\xi_{k} v_{k}^{2} + \frac{V_{0}}{\Omega} \sum_{k,k'} u_{k} v_{k} u_{k'} v_{k'}$$
with $\xi_{k} = \epsilon_{k} - \mu$
Result:
$$v_{k}^{2} = \frac{1}{2} \left(1 - \frac{\xi_{k}}{E_{k}} \right)$$

$$u_{k}^{2} = \frac{1}{2} \left(1 + \frac{\xi_{k}}{E_{k}} \right)$$
with $E_{k} = \sqrt{\xi_{k}^{2} + \Delta^{2}}$
Gap equation:
$$\mathcal{F} = \left\{ \hat{H} - \mu \hat{N} \right\}$$

•

$$\Delta = -\frac{V_0}{\Omega} \sum_k u_k v_k = -\frac{V_0}{\Omega} \sum_k \frac{\Delta}{2E_k}$$

Solution via Bogoliubov Transform

• BCS Hamiltonian is quartic:

$$\hat{H} = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \frac{V_0}{\Omega} \sum_{k,k'} c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} c_{k'\downarrow} c_{-k'\uparrow}$$

• Introduce pairing field (mean field or decoupling approximation):

$$C_{k} = \langle c_{k\uparrow} c_{-k\downarrow} \rangle$$
$$c_{k\uparrow} c_{-k\downarrow} = C_{k} + (c_{k\uparrow} c_{-k\downarrow} - C_{k})$$

small fluctuations (assumption)

- Neglect products (correlations) of those small fluctuations
- Define

$$\Delta = \frac{V_0}{\Omega} \sum_k C_k$$

This plays the role of the condensate wavefunction

Solution via Bogoliubov Transform

• Rewrite Hamiltonian, drop terms quadratic in C's:

$$\hat{H} = \sum_{k} \epsilon_{k} (c_{k\uparrow}^{\dagger} c_{k\uparrow} + c_{k\downarrow}^{\dagger} c_{k\downarrow}) - \Delta \sum_{k} \left(c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} + c_{k\downarrow} c_{-k\uparrow} + \sum_{k'} C_{k'} \right)$$

Hamiltonian is now bilinear

• Solve via Bogoliubov transformation to quasiparticle operators:

$$\begin{split} \gamma_{k\uparrow} &= u_k c_{k\uparrow} - v_k c_{-k\downarrow}^{\dagger} \\ \gamma_{-k\downarrow}^{\dagger} &= u_k c_{-k\downarrow}^{\dagger} + v_k c_{k\uparrow} \\ \bullet \text{ With the choice } v_k^2 &= \frac{1}{2} \left(1 - \frac{\xi_k}{E_k} \right) \text{ and } u_k^2 &= \frac{1}{2} \left(1 + \frac{\xi_k}{E_k} \right) \\ \text{ we get } & \text{ with } E_k &= \sqrt{\xi_k^2 + \Delta^2} \\ \hat{H} - \mu \hat{N} &= -\frac{\Delta^2}{V_0/\Omega} + \sum_k (\xi_k - E_k) + \sum_k E_k (\gamma_{k\uparrow}^{\dagger} \gamma_{k\uparrow} + \gamma_{k\downarrow}^{\dagger} \gamma_{k\downarrow}) \\ \text{ Ground state energy } & \text{ Non-interacting gas of fermionic quasi-particles} \\ \end{split}$$

Solution of the gap equation

$$\begin{split} \Delta &\equiv \frac{V_0}{\Omega} \sum_k \left\langle c_{k\uparrow} c_{-k\downarrow} \right\rangle = -\frac{V_0}{\Omega} \sum_k u_k v_k = -\frac{V_0}{\Omega} \sum_k \frac{\Delta}{2E_k} \\ \Delta &= -\frac{V_0}{\Omega} \sum_k \frac{\Delta}{2E_k} \\ 1 &= -\frac{V_0}{\Omega} \sum_k \frac{1}{2E_k} \\ -\frac{\Omega}{V_0} &= \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{2\sqrt{(\epsilon_k - \mu)^2 + \Delta^2}} \\ \hline -\frac{\Omega}{V_0} &= \int d\epsilon \; \frac{\rho_3(\epsilon)}{2\sqrt{(\epsilon - \mu)^2 + \Delta^2}} \end{split}$$

Looks similar to equation for bound state in 2D (and Cooper problem)

$$-\frac{1}{V_0} = \frac{m}{\hbar^2} \int_{q < \frac{1}{R}} \frac{d^n q}{(2\pi)^n} \frac{1}{q^2 + k^2} = \frac{1}{\Omega} \int_{\epsilon < E_R} d\epsilon \frac{\rho_n(\epsilon)}{2\epsilon + |E|}$$

Solution of the gap equation

• Gap equation:

$$-\frac{\Omega}{V_0} = \int d\epsilon \; \frac{\rho_3(\epsilon)}{2\sqrt{(\epsilon - \mu)^2 + \Delta^2}}$$

• Number equation:

$$n = \langle \hat{n} \rangle = \sum_{k,\sigma} \left\langle c_{k,\sigma}^{\dagger} c_{k,\sigma} \right\rangle$$

- Simultaneously solve for μ and Δ

Solution of the gap equation

Critical temperature

• Can be derived from Bogoliubov Hamiltonian with fluctuations

Experimental realization of the BEC-BCS Crossover

Preparation of an interacting Fermi system in Lithium-6

Electronic spin: $S = \frac{1}{2}$, Nuclear Spin: I = 1 \rightarrow (2I+1)(2S+1) = 6 hyperfine states

BEC of Fermion Pairs (Molecules)

 $T > T_C$ $T < T_C$ $T \bowtie T_C$

These days: Up to 10 million condensed molecules

Boulder	Nov '03
Innsbruck	Nov '03, Jan '04
MIT	Nov '03
Paris	March '04
Rice, Duke	

M.W. Zwierlein, C. A. Stan, C. H. Schunck, 0 S.M.F. Raupach, S. Gupta, Z. Hadzibabic, 0.0 W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003)

Observation of Pair Condensates BEC-Side BCS-Side Resonance (above dissociation limit for molecules)

Radial density [a.u.]

-300 -200

-100

100

0

Position [um]

200

300

-300 -200

Thermal + condensed pairs

0

Position [um]

-100

First observation: C.A. Regal et al., Phys. Rev. Lett. 92, 040403 (2004)

100

200

300

-300

-200

-100

100

0

Position [um]

200

300

M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. **92**, 120403 (2004).

Condensate Fraction vs Magnetic Field

M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. **92**, 120403 (2004).

How can we show that these gases are superfluid?

Vortex lattices in the BEC-BCS crossover

Establishes *superfluidity* and *phase coherence* in gases of fermionic atom pairs

Superfluidity of fermions requires pairing of fermions

Microscopic study of the pairs by RF spectroscopy

RF spectroscopy

Dissociation spectrum measures the Fourier transform of the pair wavefunction

Width \propto (1/pair size)² Threshold \propto (1/pair size)²

Rf spectra in the crossover

Excitations in a superfluid

How to inject quasi-particles near the Fermi surface?

RF Spectroscopy of a BCS superfluid

- Final state empty, measures integrated (over k) spectrum
- RF photon creates quasiparticle and free particle in third state

BCS limit: splitting becomes exactly Δ

Polarized Superfluid

Related experiment JILA: RF photoemission

A. Schirotzek, Y. Shin, C.H. Schunck, W.K., Phys. Rev. Lett. 101, 140403 (2008).

Now: Fermions with repulsive interactions

Itinerant Ferromagnetic Phase Transition in Ultracold gases

Stoner model

$$\hat{H} = \int d^3x \left[\sum_{\sigma} a_{\sigma}^+ \left(\frac{p^2}{2m} \right) a_{\sigma} + g a_{\uparrow}^+ a_{\downarrow}^+ a_{\downarrow} a_{\uparrow} \right]$$

A Fermi gas with short-range repulsive interactions

Kinetic energy

$$E_{kin} = \frac{3}{5} N_1 E_{F,1} + \frac{3}{5} N_2 E_{F,2} = (...) (N_1^{5/3} + N_2^{5/3})$$

$$\Delta N = N_1 - N_2$$

$$\eta = 2\Delta N / N$$

$$N_{1,2} = \frac{N}{2} \pm \frac{\Delta N}{2} = \frac{N}{2} (1 \pm \eta)$$

$$E_{kin} = (...) ((1 + \eta)^{5/3} + (1 - \eta)^{5/3})$$

Mean-field approximation for interaction term:

$$\propto \frac{k_F a}{V^2} N_1 N_2 = (...) k_F a (1 + \eta) (1 - \eta)$$

Experiments

- Prepared a two-component Fermi gas(~ 0.65 million per each spin state)
- Vary repulsive interactions near Feshbach resonance located at 834 G

Three observations of non-monotonic behavior when approaching the Feshbach resonance

- Suggests that itinerant FM can occur for a free gas with short-range interactions
- First study of quantum magnetism in cold fermionic atoms
- Quantum simulation of a Hamiltonian for which even the existence of a phase transition is unknown

BUT:

- Lifetime only 10 ms
- Molecular fraction 25 %
- Magnetic domains not resolved
- Ferromagnetic fluctuations vs. ferromagnetic ground state

G.B. Jo, Y.R. Lee, J.H. Choi, C.A. Christensen, H. Kim, J. Thywissen, D.E. Pritchard, W.K., Science 325, 1521-1524 (2009).

More recent work:

- No ferromagnetic transition
- Rapid decay into pairs
- \Rightarrow Highly correlated gas, breakdown of mean field description
- \Rightarrow Atoms with strong repulsion cannot be isolated from molecules

C. Sanner, E.J. Su, W. Huang, A. Keshet, J. Gillen, W.K., Phys. Rev. Lett. **108**, 240404 (2012)

Cold atomic gases provide the building blocks of quantum simulators

Quantum "engineering" of interesting Hamiltonians

Ultracold Bose gases: superfluidity (like ⁴He)

Ultracold Fermi gases (with strong interactions near the unitartiy limit): pairing and superfluidity (BCS, like superconductors)

Optical lattices: crystalline materials

Soon: magnetism in strongly correlated systems