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Density-phase representation

A A A

= [ |00 o and o SN0+ V) - 201 L)
2m 2

O B2 o s L
th— = —— Ay + g Yy + V(r)p — QLY
ot 2m
b =expi®Vn; T =Vaexp—id; [a(r),d(r)] =id(r — 1)
n = ng(r)+ dn; & = dy(r) + 6P Small fluctuations of the density
Take zero and linear orders of NLSE with respect to 67 and V§®
Zero order = GP equation for ¥y(r) = /no(r) exp|i®o(r)]

h? .
—%Ar% + g| U Ty + V(r)¥y — QLY = p¥

LLL = Uy = \/nofo(z) exp(—|z|?/2)
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Zeroorder euation

Projected GP equation T
A 1
PF(z,2) = — /dwd’u_J exp|—|w|? + zw]F(w,w) = LLL

T

0 =w = geometry of an infinite plane
& — ~A—2WW+2W 2 o - — — hQO)
— [ dwdwe fo(w)[" fo(w) = pfo(2); p=p

Triangular vortex lattice fo(2) = (20)Y/49,(\/7vz, q) e* /2
q=exp(inT), T=u+iv, v =3/2, u=—1/2

= ang; o =0.1596
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First order

Linear order = equations for on and 6® =

solution in terms of elementary excitations (uy, vk)

5iv = \/roe 12N " fu expl—i®g) — T expli®o]] exp|—iext]ax+h.c.

k
56— —ie ) 3 P P h
= —1 U ' —iext|a .C.
NP [uy exp[—iPg| + Uy exp[i®y|| exp[—iext]ax+

uk, Uk — Solutions of projected BdG equations

2gP(|Wo|*ux) — gP(V30g) = (fi + ex)ux
29P(|Wo|* ) — gP(Viuy) = (i — ex) i
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Solution of projected BdG equations

C Zk . 1.2 ikr
Uk = %fo (Z + 7+> eth-2/2e=F/4 — ¢\ P(foe™™)
~ C Z]C —ik_z —k? —ikr

~

K(k) + €k
2€k

1/2

~ 1/2
ek2/8; Cor = K(k) — ex |K2(k)‘ek2/8
2€k K2 (k)

ky =ky T ky; cix = [

~

K(k) = 2K, (k) — K1(0; K;(0) = K5(0) = K(0) = o ~ 1.1596

Ki(k) = v Z (_1)nme—7rv(n2—|—m2)e_\/ﬁkxn—i—i\/ﬁkyme—ki/él
Kg(k):\/ﬂ Z (_1)”me—m(n2+m2)e—\/ﬁ(kx—iky)(n+m)e—ki/2+ikxky/2
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Excitation spectrum

e = [2K1(k) — Kol* — [K2(k)[*
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L ow-energy excitations

k2 (n+ 1)k k2 k4
k<l = K=ol 8+ e ],Kg oz( 4+ ) n = 0.821

€= M ng(kl)? ~ 0.2628 ng (kl)*
Exactly coincides with Sonin (2005)
Tight confinement in one direction = g = 2v/27h?a/mly; lo = \/h/mwy
Rb®" Q=100 Hz wy =300 Hz = ng/hQY ~ 0.1 atn ~ 3 x 108 cm~2 (LLL!)

Low-energy excitations = ¢ < 1 Hz

v =mnl?> > 1 — mean-field regime
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Brief historical overview

Elastic oscillations of a vortex lattice in incompressible superfluids
= ¢€(k) x k Tkachenko (1966)

Finite compressibility = ¢(k) o< k?
Volovik/Dotsenko (1979); Baym/Chandler (1983); Sonin (1987)

Hydrodynamic approach Baym (2004); Sonin (2005); Fetter
w(k) o< /402 + (52 + A)k2 = inertial
2
e(k) Sk
VA2 + (52 + A)k?
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Brief historical overview

JILA experiment (E. Cornell group) T
“A

>t
Typical picture from the JILA experiment

Calculation of the observed frequencies: Anglin, Baym

Mizushima et al, Bigelow group, Stringari group
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Problem
f Non-condensed density n’ = (1'T9") = exp(—|2|>) 3y |vi|? T
, /d2k dk
n v —_— A~V _
€k k
Low-momentum divergence. No true BEC.

This is not a problem!
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One-body density matrix

01 (x) = (B (©)5(0) = T(x) To(0) exp { ~ 3 ((08(w) - 56(0)) |

§O(r) = _% 3 (Clkjﬁ@k) exp(ikr/2)di + h.c.
k

(6@ (r) — §9(0))?) = ag/ (;ZW]; (1+2Ny,)

11— Jo(kr/2)]
€k

T=0= {((0®(r)—P(0))*) s~ —~In <—>

/ 1//mmnl?
g1(r) o (‘)

r

r> 1 Baym (2004)

Phase coherence length I, ~ [ exp(ni?) >>> [ is extremely large
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One-body density matrix

4G
2D T=0
T
\\‘—
LG
1D T=0

A gl

2D finite T

t9

—

Vortex latticeinthe LLL

\
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Nature of thevortex statein theLLL
No long-range order. No true BEC in the thermodynamic limit

Algebraic order. QuasiBEC with an extremely large phase coherence length

ex o k?. No superfluidity

Landau criterion is not satisfied

Analogy with "flux flow resistivity” in superconductors
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Meéelting of the vortex lattice

f One cannot locate the vortex point to a distance smaller than T

: . 1
the mean separation between particles = (§r)* ~ 5
™

2
From the Lindemann melting criterion = ( lz) ~ 0.02

we estimate the critical value of the filling factor

(ratio of the number of particles to the number of vortices) v, = mn.l* ~ 10

More controlled calculation involves the consideration

of collective modes of the lattice. This increases v,

Exact diagonalization for a small system gives v. =~ 6
Cooper/Wilkin/Gunn (2001)
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Strongly correlated states (v < v,.)

Good understanding for small filling factors

1 :
V=g = Laughlin state

N
Urn({zi}) Hz‘<j(z’i - Zj)2
Exact ground state for contact repulsion at L = N(N — 1)

v ;, vanishes when two coordinates coincide

Zero local two-body correlation
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Laughlin state

The average density is uniform. Vortices are not localized in space
Translational symmetry is not broken. Vortices are bound to the particles
U, changes phase by 2 x 27 when any particle
encircles the position of another particle
Each particle thus experiences 2 vortices

bound to the position of every other particle

Incompressible state with gapped excitations in the bulk and gapless edge modes

Exact diagonalization = incompressibility and the gap of 0.05¢/1°

o |
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M oore-Read state

Vg OCS H (Zz'—Zj)Q H (Zl _Zm)2

i<j<N/2 N/2<l<m

Non-abelian statistics for quasiparticle excitations
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