Dipolar quantum gases

Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam

Outline

- Experiments with ultracold dipolar particles
- Scattering problem. Dipolar bosons
- Dipolar BEC. Stability problem
- Dipolar Fermi gas. Scattering problem
- Superfluid pairing
- Several ideas

ICAP Summer School, Paris, July 16-21, 2012

Novel object - Dipolar gas

Different physics compared to ordinary atomic ultracold gases

Alkali-atom molecules d from 0.6 D for KRb to 5.5 D for LiCs

Atoms with large μ

Remarkable experiments with Cr atoms ($\mu = 6\mu_B \Rightarrow d \approx 0.05$ D) T. Pfau group (Stuttgart)

Effects of the dipole-dipole interaction in the dynamics Stability diagram of trapped dipolar BEC

Spinor physics in chromium experiments at Villetaneuse, B. Laburthe-Tolra

Now disprosium ($\mu = 10\mu_B$, (B. Lev)) and erbium ($\mu = 7\mu_B$, (F. Ferlaino)) are in the game **Polar molecules. Creation of ultracold clouds**

Buffer gas cooling (Harvard, J. Doyle)

- Stark deceleration (Meijer, Berlin; JILA) H₃, ND₃, CO, etc. ; $T \sim 1mK$ and low density
- Optical collisions (photoassociation, D. DMille group, JILA, elsewhere)

Polar molecules. Creation of ultracold clouds

Photoassociation

Transfer of weakly bound KRb fermionic molecules to the ground rovibrational state JILA, D. Jin, J. Ye groups

Experiments with NaK (MIT, MUnich, Trento) and KCs (Innsbruck) molecules

Ultracold chemistry

 $\label{eq:KRb} \begin{array}{ll} \text{Ultracold chemical reactions} & \mathrm{KRb} + \mathrm{KRb} \Rightarrow \mathrm{K}_2 + \mathrm{Rb}_2 \\ \\ \text{New trends in ultracold chemistry} \end{array}$

Suppress instability \rightarrow induce intermolecular repulsion For example, 2D geometry with dipoles perpendicular to the plane

Reduction of the decay rate by 2 orders of magnitude at JILA

Select non-reactive molecules, like NaK, KCs, RbCs

Theoretical studies

- Innsbruck group (P. Zoller, G. Pupillo, M.A. Baranov et al). Large variety of proposals including bilayer systems, Rydberg atoms etc.
- Trento group (S. Stringari et al). Excitation modes etc
- Harvard group (E. Demler, M. Lukin et al). Multilayer systems etc
- Hannover group (L. Santos et al). Spinor and dipolar systems
- Tokyo group (M. Ueda et al) Spinor and dipolar systems
- Cambridge group (N.R. Cooper, Jesper Levinsen). Novel states
- Rice group (H. Pu et al). Excitations and stability etc
- Maryland group (S. Das Sarma et al) Fermi liquid behavior etc
- Taipei group (D.-W. Wang et al)
- Barcelona group (M. Lewenstein et al)

Dipole-diple scattering

Wave function of the relative motion

$$\psi_{in} \to \sum_{l,m} \psi_{kl}(r) i^{l} Y_{lm}^{*}(\theta_{kd}, \varphi_{kd}) Y_{lm}(\theta_{rd}, \varphi_{rd})$$

$$\psi_{out} \to \sum_{l',m'} \psi_{kl'}(r) i^{l'} Y_{l'm'}^{*}(\theta_{kd}, \varphi_{kd}) Y_{l'm'}(\theta_{rd}, \varphi_{rd})$$

Scattering matrix $\sim \int Y_{lm}^* Y_{l'm'} Y_{20} d\Omega_{rd}$

 V_d couples all even l, and all odd l, but even and odd l are decoupled from each other

Radius of the dipole-dipole interaction

$$\stackrel{\mathrm{d}}{\bullet} \stackrel{\mathrm{f}}{\bullet} \stackrel{\mathrm{f}}{\bullet} \frac{\left(-\frac{\hbar^2}{m}\Delta + V_d(\vec{r})\right)\psi(\vec{r}) = \frac{\hbar^2 k^2}{m}\psi(\vec{r}) }{\frac{\hbar^2}{mr_*^2} = \frac{d^2}{r_*^3} \Rightarrow r_* \approx \frac{md^2}{\hbar^2} }$$

 $egin{aligned} r \gg r_* & o \mbox{free relative motion} \ r_* \sim 10^6 \div 10^3 a_0 & \ polar \mbox{molecules} \ r_* pprox 50 a_0 o & \ chromium \mbox{atoms} \end{aligned}$

$$kr_* \ll 1 \longrightarrow \underbrace{\text{Ultracold limit}}_{T \ll 1mK \text{ for Cr}}$$

Scattering amplitude I

Ultracold limit $kr_* \ll 1$

$$V_d = 0 \Rightarrow f = g = \frac{4\pi\hbar^2}{m}a$$

What V_d does?

$$k = 0 \rightarrow g = \int \psi_0^*(\vec{r}) (\mathcal{U}(\vec{r}) + V_d(\vec{r})) d^3r = \text{const}; \quad r \lesssim r_*$$

g may depend on d and comes from all even l

Scattering amplitude II

 $k \neq 0$ $f = \int \psi_{k_i}^*(\vec{r}) V(\vec{r}) e^{i\vec{k}_f \vec{r}} d^3 r$ $r \leq r_* \rightarrow \mathsf{put} \ k = 0 \rightarrow q$ $r \gg r_* \to \psi_{k_i} = e^{i\vec{k}_i\vec{r}}$ $f = \int V_d(\vec{r}) e^{i\vec{q}\vec{r}} d^3r \longrightarrow \frac{4\pi d^2}{3} (3\cos^2\theta_{ad} - 1); \vec{q} = \vec{k}_f - \vec{k}_i$ $f = q + \frac{4\pi d^2}{2} (3\cos^2\theta_{ad} - 1)$

Dipolar BEC I

Uniform gas

$$H = \int d^3 \left[\psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta \right) \psi(\vec{r}) + \frac{1}{2} g \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r}) \right. \\ \left. + \frac{1}{2} \int d^3 r' \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r'}) V_d(\vec{r} - \vec{r'}) \psi(\vec{r'}) \psi(\vec{r'}) \right]$$

Bogoliubov approach $\psi = \psi_0 + \delta \Psi \rightarrow$ biliniear Hamiltonian

$$H_B = \frac{N^2}{2V}g + \sum_k \left[\frac{\hbar^2 k^2}{2m} a_k^{\dagger} a_k + n\left(g + \frac{4\pi d^2}{3}\left(3\cos^2\theta_k - 1\right)\right)a_k^{\dagger} a_k\right]$$
$$\frac{n}{2}\left(g + \frac{4\pi d^2}{3}\left(3\cos^2\theta_k - 1\right)\right)\left(a_k^{\dagger} a_{-k}^{\dagger} + a_k a_{-k}\right)\right]$$

Dipolar BEC II

Excitation spectrum

$$\epsilon_k = \sqrt{E_k^2 + 2E_k n \left(g + \frac{4\pi d^2}{3} \left(3\cos^2\theta_k - 1\right)\right)}$$

$$g > \frac{4\pi d^2}{3} \rightarrow dynamically stable BEC$$

$$g < \frac{4\pi d^2}{3} \rightarrow \text{complex frequencies at small } k$$

and $\cos^2 \theta_k < \frac{1}{3} \rightarrow \text{collapse}$

Trapped dipolar BEC

Gross-Pitaevskii equation $\left[-\frac{\hbar^2}{2m}\Delta + V_h(\vec{r}) + g\psi_0^2 + \int \psi_0(\vec{r'})^2 V_d(\vec{r} - \vec{r'}) d^3r'\right] \psi_0(\vec{r}) = \mu \psi_0(\vec{r})$

Important quantity $V_{eff} = g \int \psi_0^4(\vec{r}) d^3r + \int \psi_0^2(\vec{r'}) V_d(\vec{r} - \vec{r'}) \psi_0^2(\vec{r}) d^3r d^3r'$

 $V_{eff} > 0$ or $V_{eff} < 0$ and $|V| < \hbar \omega$ $g = 0 \rightarrow N < N_c \rightarrow$ suppressed low *k* instability (Santos et.al, 2000)

It is sufficient?

Stability problem

$$\langle V_d \rangle = \int n_0(\vec{r'}) V_d(\vec{r'} - \vec{r}) d^3r = -d^2 \frac{\partial^2}{\partial z^2} \int \frac{n_0(\vec{r'})}{|\vec{r} - \vec{r'}|} d^3r$$
$$V_d = -d^2 \frac{\partial^2}{\partial z^2} \frac{1}{|\vec{r} - \vec{r'}|} - \frac{4\pi d^2}{3} \delta(\vec{r} - \vec{r'})$$

Large $N \Rightarrow$ Thomas-Fermi BEC

 $n_0 = n_0 \max\left(1 - \frac{z^2}{R_z^2} - \frac{\rho^2}{R_\rho^2}\right) \quad \text{Eberlein et. al (2005)}$ $g > \frac{4\pi d^2}{3} \rightarrow \text{stable at any } N$

Example

– p. 17

Experiment with Cr

$$g > \frac{4\pi d^2}{3}$$
$$(\mu = 6\mu_B!)$$

(T. Pfau, Stuttgart) BEC ($n \sim 10^{14} cm^{-3}$) effect of the dipole-dipole interaction (small)

Pancake dipolar BEC

Roton structure \Rightarrow decrease of the interaction amplitude

Roton-maxon structure

Roton minimum can be but at zero Instability!

Stuttgart experiment

Ideas from superfluid ${}^{4}He$

How to put the roton minimum higher (*) or lower (**)?

What happens? (S.Balibar, P. Nozieres, L. Pitaevskii)

(*) negative pressure (acoustic pulses)

(**) increase the pressure

Metastable liquid

 $(**) \Rightarrow$ supersolid (density wave), loss of superfluidity, or?

Prehistory

Quasi2D dipolar BEC at T = 0

short range interaction (g) + dipole-dipole

Consider
$$0 < g \ll \frac{4\pi d^2}{3}$$
. Then, for $qr_* \ll 1$

$$V_{\vec{q}\vec{p}} = g(1 - C|\vec{q} - \vec{p}|)$$

where

$$C = \frac{2\pi d^2}{g}$$

Spectrum

Rotonization

$$\xi \ge C \ge \frac{\sqrt{8}}{3}\xi$$

The roton minimum touches zero for

$$C = \xi \Rightarrow k_r = \frac{2C}{\xi}$$

For $C > \xi$ we have collapse. No stable supersolid state Pedri/Shlyapnikov; Cooper/Komineas (2007)

Dipolar Fermi gas

What does th dipole-dipole interaction do in a Fermi gas?

Single component gas

The dipole-dipole scattering amplitude is independent of |k| at any orbital angular momenta alowed by the selection rules.

Long-range cotribution
$$\sim d^2$$

Short-range cotribution $\sim k^2$
omit
Universal result for *f*

Physical picture. Stability

Odd-*l* scattering amplitude

$$f = \frac{1}{2} \int \left(e^{i\vec{k}_i\vec{r}} - e^{-i\vec{k}_i\vec{r}} \right) V_d(\vec{r}) \left(e^{-i\vec{k}_f\vec{r}} - e^{i\vec{k}_f\vec{r}} \right) d^3r = 4\pi d^2 (\cos^2\theta_{dq_-} - \cos^2\theta_{dq_+})$$

$$\vec{q}_{\pm} = \vec{k}_i - \vec{k}_f$$

$$e^{i\vec{k}\vec{r}} = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} j_l(kr)i^l Y_{lm}(\hat{r}) Y_{lm}^*(\hat{k})$$

Partial amplitude $f(l_i m_i; l_f m_f)$

$$f(10;10) = -\frac{6d^2}{5}\cos\theta_{dk_i}\cos\theta_{dk_f}$$

Superfluid *p***-wave pairing**

$$nd^2 \ll E_F$$

Analog of
$$a \to \sim \frac{md^2}{\hbar^2} (r_*!)$$

$$\Delta = g \langle \psi_{\uparrow} \psi_{\downarrow} \rangle \sim E_F \exp\left(-\frac{1}{\lambda}\right); \lambda \sim \frac{1}{k_F r_*};$$

$$\Delta \propto E_F \exp\left\{-\frac{\pi E_F}{12nd^2}\right\}$$

Cooper pairs are superpositions

of all odd angular momenta (for $m_l = 0$)

Transition temperature

 $nd^2 \ll E_F$ $T_c = 1.44E_F \exp\left\{-\frac{\pi E_F}{12nd^2}\right\}$ Baranov et.al (2002) GM correction included

 $\Delta \rightarrow \text{anisotropic} \propto \sin\left(\frac{\pi}{2}\cos\theta\right)$

- Maximum in the direction of the dipoles.
- Vanishes in the direction perpendicular to the dipoles

Distiguished features

Anisotropic gap \rightarrow gapless excitations in the direction perpendicular to the dipoles. Damping rates etc.

Anisotropy \rightarrow different from *p*-wave superfluid B and A phases of ³He. In B Δ is isotropic, and in A it vanishes only at 2 points on the Fermi shpere ($\theta = 0$ and $\theta = \pi$)

Value of T_c

$$d \sim 0.1 \div 1 \mathcal{D}$$

NaK $\Rightarrow d = 2.7\mathcal{D}$ and can be made $0.5\mathcal{D}$ ($r_* = 2500 \text{\AA}$) in a certain electric field

$$\frac{T_c}{E_F} \to 0.025 \text{ at } n \to 6 \times 10^{12} \text{cm}^{-3} \text{ (} E_F \approx 400 \text{ nK)}$$

 $(T_c \rightarrow 10nK)$

One easily achieves the strongly interacting regime

2D dipolar Fermi gas

2-component Fermi gas (\uparrow and \downarrow). Short range g > 0

$$H = \sum_{k} \frac{\hbar^{2} k^{2}}{2m} \left(a_{k\downarrow}^{\dagger} a_{k\downarrow} + a_{k\uparrow}^{\dagger} a_{k\uparrow} \right) + |g| \sum_{k,p,q} \left(1 - C |\vec{q} - \vec{p}| \right) a_{k+q\uparrow}^{\dagger} a_{k-q\downarrow}^{\dagger} a_{k-p\downarrow} a_{k+p\uparrow} - C = \frac{2\pi d^{2}}{|g|}$$

Interesting problem

s-wave interaction on the Fermi surface

 $|g|(1 - 4Ck_F/\pi)$

 $k_F C > \pi/4 \rightarrow 8d^2 k_F > |g| \rightarrow \text{superfluidity}$

 $k_F C < \pi/4 \rightarrow 8d^2 k_F < |g| \rightarrow \text{no superfluidity}$

Quantum transition to a normal state with decreasing density

Superfluid pairing for tilted dipoles \rightarrow Baranov/Sieberer (2011)

1D dipolar Fermi gas

short range g > 0

$$\begin{split} H &= \sum_{k} \frac{\hbar^{2} k^{2}}{2m} \left(a_{k\downarrow}^{\dagger} a_{k\downarrow} + a_{k\uparrow}^{\dagger} a_{k\uparrow} \right) + \\ &+ |g| \sum_{k,p,q} \left(1 + B |\vec{q} - \vec{p}|^{2} \ln(|\vec{q} - \vec{p}| l_{0}) \right) a_{k+q\uparrow}^{\dagger} a_{k-q\downarrow}^{\dagger} a_{k+p\downarrow} a_{k-p\uparrow} \end{split}$$

$$B = \frac{d^2}{|g|}$$

Quantum transition

Interaction at the Fermi points

$$g_{eff} = |g|[1 + 2B(k_F l_0)^2 \ln(k_F l_0)]$$

 $g_{eff} < 0 \rightarrow \text{superfluid}$

 $g_{eff} > 0 \rightarrow$ ordinary Luttinger liquid

Quantum transition superfluid-Luttinger liquid with decreasing density