

The art of NIST light control & precision measurement Jun Ye JILA, NIST & Univ. of Colorado http://jila.colorado.edu/YeLabs ICAP Summer School, Paris, July 19, 2012 NIST, NSF, DARPA, AFOSR

A modern epoch in quantum metrology

Precision Measurement

Many-particle Quantum systems

Many-body physics & novel quantum states push the fundamental limit of measurement Precision measurement & clocks determine microscopic parameters and system properties

Lecture I: Art of light control

Lecture II: Precision quantum metrology

Lecture III: Ultracold molecules – a new frontier

- A remarkable convergence of

Ultracold, Ultrafast, Ultrastable, Ultraprecise

What makes a versatile photon laboratory?

Scientifically useful photons span a space of many dimensions

Spectral resolution - Nature's finger prints

Dispersive Spectrometer

- Measure wavelength
- Resolution 10⁻⁶

ca. 1660 I. Newton

Laser spectroscopy

- Measure frequency
- Resolution 10⁻¹⁵

Why light ? - Chasing the SPEED!

Faster oscillations \rightarrow More cycles \rightarrow Smaller errors

Light ripples: 10¹⁵ cycles per second, & we count every one

Precision: 1 000 000 000 000 000 $~\pm~~1$

bacteria

Sun

First, make the field steady -Stable optical cavity

Cavity length 1 m : fits 10⁶ optical waves Finesse 10⁵ : error amplified by 10⁵ Division of a cycle: 10⁵ (10⁻⁶) (10⁻¹¹) (10⁻¹⁶)

But wait, how do you count so fast?

But wait, how do you count so fast?

But wait, how do you count so fast? Something runs equally as fast, and very stable!

Coherence - how long a wave lasts

Mirror thermal noise

Complex (lossy) Young's modulus: $E(\omega) = E_0 [1 + i\phi(\omega)]$

$$S_{x, mirror} \simeq \frac{4k_B T}{\omega} \frac{1 - \sigma^2}{\sqrt{\pi} E w_0} \phi_{sub} \left(1 + \frac{2}{\sqrt{\pi}} \frac{1 - 2\sigma \phi_{coat}}{1 - \sigma \phi_{sub}} \frac{d}{w_0} \right)$$

Y. Levin. *PRD* 57, 659 (1997).
K. Numata et. al. *PRL* 93, (2004).
G. M. Harry et. al. *Class. Quant. Grav.* 19, (2002).

Rulers for the Universe Testing the fundamental laws of Nature

LISA

Spacecraft #1

Time - frequency correspondence

 $\Delta \phi$

- Train of pulses → comb of frequencies

Time (ns)

3 modes

Group vs. Phase Velocity

- In any material, the group and phase velocities differ
- Carrier phase slowly drifts through the envelope as a pulse propagates

Group vs. Phase in Modelocked Lasers

Each emitted pulse has a distinct envelope-carrier phase

- due to group-phase velocity difference inside cavity

Time- and frequency-domain connections

 f_r = Comb spacing f_o = Comb offset from harmonics of f_r $\Delta \phi$ = Phase slip b/t carrier & envelope each round trip

$$2\pi v_n \cdot \tau + \Delta \phi = 2n\pi \rightarrow$$
$$v_n = nf_r - \Delta \phi f_r / 2\pi$$
$$\overbrace{f_o}^{f_o}$$

Hänsch, 1978, Garching and Boulder 1999 – 2000 Udem *et al.*, Phys. Rev. Lett. <u>82</u>, 3568 (1999). Diddams *et al.*, Phys. Rev. Lett. <u>84</u>, 5102 (2000).

A rainbow spectrum with 10⁻¹⁹ precision

Schibli *et al.*, Nature Photonics 2, 355 (2008).

Frequency spectrum in optical frequency synthesis

The First Optical Frequency Chain

NBS (NIST): measurement of speed of light, 1972

J. L. Hall & J. Ye, "NIST 100th birthday", Optics & Photonics News 12, 44, Feb. 2001

Optical comparison at 1-Hz - two spatially & spectrally separated lasers

Foreman et al., Phys. Rev. Lett. <u>99</u>, 153601 (2007).

Precise distribution of ultra-stable signals

SYRTE, NIST, ...

Foreman, Holman, Hudson, Jones, and Ye, Rev. Sci. Instrum. 78, 021101 (2007).

Optical lattice – a many-body quantum system Science 331, 1043 (2011)

- Engineered quantum states \rightarrow eliminating motional effects
 - Separation of internal and external degrees of freedom
 - Isolation from environment
- Long coherence times
- Large atom numbers to increase signal and accuracy

JILA Sr atomic clock

Science **314**, 1430 (2006); Science **319**, 1805 (2008); Science **320**, 1734 (2008); Science **324**, 360 (2009); Science **331**, 1043 (2011).

10,000,000,000,000,000 \pm 1 (10⁻¹⁶)

Phase-sensitive ultrafast science

(carrier-envelope phase)

Ultra-short pulse provides "absolute" phase reference

Processes sensitive to E-field ("extreme nonlinear optics")

- Ionization & x-ray generation
- Tunneling from metal surface

Threshold

Quantum interference between perturbation orders

Optical Arbitrary Waveform Generation

(cold molecules) Thorpe *et al.*, Science **311**, 1595 (2006).

Stowe *et al.*, PRL **96**, 153001(2006). PRL **100**, 203001 (2008) Jones *et al.* PRL **94**, 193201 (2005). C. Gohle *et al.*, Nature 436, 234 (2005).

Direct Frequency Comb Spectroscopy

Global atomic structure & Control

Cavity - comb coherent coupling

Cavity-enhanced Direct Frequency Comb Thorpe et al., Science 311, 1595 (2006). Foltynowicz et al., PRL 107, 233002 (2011).

Wide spectral coverage

Comb (3 - 5 µm) 800 nm comb ...) P(17)] P_Q(15) ∕ 1.6 0.8 H₂O 2 (211) (000) (211) (110 P(15) Mundulululuu 02 Absorption (a. u.) 0.6 1.2 NH₃ 0.8 818.0 819.0 765.0 765.5 820.0 0.4

High sensitivity

coverage

0

Broad spectral

(1 x 10⁻¹⁰ cm⁻¹Hz^{-1/2}; parts per 10⁹)

High resolution

Real time acquisition •

H₂CO, CH₃OH, H₂O

Application case: Breath analysis

H₂O₂: Marker of Acute Respiratory Distress Syndrome Mortality: 30-40%

Elevated level of H_2O_2 in breath of ARDS cases: ~10 ppm Dr. John Repine, Univ. Colo. Medical School, J. Pulmonar Respirat Med 2012.

Comb detection limit: 0.1 ppm

Foltynowicz et al., Appl. Phys. B, DOI 10.1007/s00340-012-5024-7 (2012).

Charting the extreme ultraviolet landscape (Ultrahigh-resolution XUV spectroscopy)

- Precision tests of fundamental physics
- Simple 3-body systems (i.e. helium), but also complex molecules
- Nuclear transitions
- High-precision test of QED
 - Ground state Lamb shift scales as Z⁴
 - Higher-order corrections scale as Z⁶

High-harmonic generation — VUV, EUV, soft X-ray

Three step model

Step 2: Field Reversal

Step 1: Ionization

Step 3: Recombination

Corkum, Phys Rev Lett 71, 1994

Coherent VUV and XUV radiation

Harmonic Generation with a train of IR pulses-Harmonic Generation with a single IR pulse a train of attosecond pulses

High-harmonic generation

Power scaling - XUV frequency Comb

Confirmation of VUV comb

Spectroscopy - the ultimate test Cingöz et al., Nature 482, 68 (2012).

Comb-Resolved Spectroscopy

Cingoz et al., Nature 482, 68 (2012).

Reduce the Doppler broadening

Also, Ne transition; 17th harmonic (62 nm)

Special thanks

A. Cingöz
T. Alison
C. Benko
K. Cossel
B. Bjork
A. Fleisher

I. Hartl A. Ruehl M. Fermann (IMRA)

D. Yost (MPQ) L. Sinclair (NIST) P. Masłowski (U. Torun) A. Foltynowicz (Umeå U.) F. Adler (NIST) M. Thorpe (NIST) R. J. Jones (U. Arizona) M. Stowe (Lincoln Lab) A. Pe'er (Ban Ilan Univ.) T. Schibli (U. Colorado) S. Foreman (Stanford U.) D. Hudson (Sydney) K. Moll (Precision Photonics) D. Jones (UBC) T. Ban (Zegrab) A. Marian (MPG, Berlin)