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We present a wave-function approach to the study of the evolution of a small system when it is coupled to a large 
reservoir. Fluctuations and dissipation originate in this approach from quantum jumps that occur randomly 
during the time evolution of the system. This approach can be applied to a wide class of relaxation operators in 
the Markovian regime, and it is equivalent to the standard master-equation approach. For systems with a 
number of States N much larger than unity this Monte Carlo wave-function approach can be less expensive in 
terms of calculation time than the master-equation treatment. Indeed, a wave function involves only N compo- 
nents, whereas a density matrix is described by N~ terms. We evaluate the gain in computing time that may be 
expected from such a formalism, and we discuss its applicability to several examples, with particular emphasis 
on a quantum description of laser cooling. 

1. INTRODUCTION 
The problem of dissipation plays a central role in quantum 
optics. The simplest example is the phenomenon of spon- 
taneous emission, in which the coupling between an  atom 
and the ensemble of modes of the quantized electromag- 
netic field gives a finite lifetime to al1 excited atomic 
levels. Usually the dissipative coupling between a small 
system and a large reservoir can be treated by a master- 
equation approachl-4; one writes a linear equation for the 
time evolution of the reduced system density matrix, 
ps = Trre,(p), trace over the reservoir variables of the 
total density matrix. If we denote the Hamiltonian for 
the isolated system Hs, this equation can be written as. 

In Eq. (11, Y,,., is the relaxation superoperator, acting on 
the density operator ps. It is assumed here to be local in 
time, which means that ps(t) depends only on ps at the 
same time (Markov approximation). Al1 the system dy- 
namics can be deduced from Eq. (1). One can calculate 
one-time average values of a system operator A: a(t) = 

(A)(t) = Tr[ps(t)A] and also, by using the quantum regres- 
sion t h e ~ r e m , ~  multitime correlation functions, such as 
(A(t + 7) B(t)). 

Recently a novel treatment of dissipation of energy from 
a quantum system (two-level atom) coupled to a zero- 
temperature reservoir was pre~ented .~  This treatment is 
based on the evolution of a Monte Carlo wave function 
(MCWF) of the small system, which consists of two ele- 
ments: evolution with a non-Hermitian Hamiltonian and 
randomly decided quantum jumps, followed by wave- 
function renormalization. This approach, which is equiva- 
lent to the master-equation treatment, is interesting for 
two reasons. First, if the relevant Hilbert space of the 
quantum system has a dimension N that is large com- 
pared with 1, the number of variables involved in a wave- 

function treatment ( - N )  is much smaller than the one 
required for calculations with density matrices (-N2). 
Second, new physical insight may be gained, in particular 
in the studies of the behavior of a single-quantum system. 

The purpose of the present paper is to give a general 
presentation of this method for a wide class of system- 
reservoir couplings (Section 2). In particular, the method 
presented here is not restricted to a zero-temperature 
reservoir. The physical content of the method and its re- 
lation to previous wave-function treatments in dissipative 
quantum optics are discussed in Section 3. We then indi- 
cate how the MCWF formalism can be used for calculating 
two-time correlation functions, and we give two illustra- 
tions of this (Section 4). Section 5 is devoted to the pre- 
sentation of a series of examples to which the MCWF 
treatment can be applied. In Section 6 we discuss the 
existence of several MCWF descriptions for a given re- 
laxation operator Cerel,,, and we illustrate this with an ex- 
ample of population trapping. Finally, in Section 7 we 
give a few indications concerning the convergence of the 
MCWF method and the gain in computing time that one 
might expect. 

Soon after the completion of the study by Dalibard et 
it was brought to our attention that other approaches 
have recently been developed involving a stochastic evolu- 
tion of wave functions. In the context of nonclassical 
field generation, Carmichae17 proposed an  approach 
named quantum trajectories, inspired by the theory of 
photoelectron-counting sequences8 and quite similar to 
the spirit of Dalibard et On the basis of the continu- 
ous quantum theory of measurement,' Dum et al." devel- 
oped a Monte Carlo simulation of the atomic master 
equation for spontaneous emission. In the framework of 
quantum jump theory, Hegerfeldt and Wilser l1 considered 
a quantum-mechanical mode1 for describing a single radi- 
ating atom, which could also be the starting point for an 
effective Monte Carlo evolution with atomic wave func- 
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tions." Finally, the relation of Ref. 6 to a general sto- 
chastic formulation of quantum mechanics has been 
pointed out to us by Gisin." Throughout this paper we 
will connect our results with the ones obtained in these 
parallel approaches. 

2. GENERAL PRESENTATION OF THE 
METHOD 
In this section we present a general description of the 
MCWF method. We start by presenting the class of re- 
laxation operators that can be studied by this method. 
We then present the procedure itself, and finally we show 
its equivalence with the master-equation treatment. 

A. Relaxation Operator 
The class of relaxation operators that we consider in this 
paper is the following: 

This type of relaxation operator is quite general and is 
found in most of the quantum optics problems involving 
dissipation. In Eq. (2)  the Cm operators act in the space of 
the small system. Depending on the nature of the problem 
there can be one, a few, or an infinity of these operators. 

A series of examples with the dissipation operator in the 
form of Eq. (2 )  will be given in Section 5. Here we indi- 
cate the expression of (ereh,(ps) for the case of spontaneous 
emission by a two-level system or by a harmonic oscillator, 
where there is just a single operator Cl = f i a -  in the 
relaxation operator [Eq. (211: 

For the two-level system formed with a stable ground state 
Ig) and an excited state le) with a lifetime r-', we have 

For a harmonic oscillator, u -  and a+ are related to lower- 
ing and raising operators: 

B. Monte Car10 Wave-Function Procedure 
We now present the procedure for evolving wave functions 
of the small system. Consider at time t that the system is 
in a state with the normalized wave function I4(t)). In 
order to get the wave function at time t + St, we proceed 
in two steps: 

1. We calculate the wave function 14(11(t + St)) obtained 
by evolving I4(t)) with the non-Hermitian Hamiltonian: 

This gives the following for sufficiently small St: 

Since H is not Hermitian, this new wave function clearly 
is not normalized. The square of its norm is 

= i - Sp, (8) 

where Sp reads as 

The magnitude of the step St is adjusted so that this calcu- 
lation at first order is valid; in particular, it requires 
Sp << 1. 

2. The second step of the evolution of 14) between t and 
t + St consists in a possible quantum jump. We leave this 
term intentionally vague here; for particular examples we 
see below that this quantum jump can correspond to the 
projection of the wave function associated with a gedanken 
measurement process. In order to decide whether this 
jump happens, we choose a quasi-random number E, uni- 
formly distributed between O and 1, and we compare it 
with Sp. If Sp is smaller than E, which occurs in most 
cases since Sp << 1, no quantum jump occurs, and we 
take the following for the new normalized wave function 
at t + St: 

I4(t + St)) = Ic$"'(t + St))/(l - S P ) " ~ ,  6p < E .  (11) 

If E < Sp, a quantum jump occurs, and we choose the new 
normalized wave function among the different states 
Cm14(t)), according to the probability law r i ,  = Spm/Sp 
[note that Bmnm = 1 because of Eq. (9)] :  

with a probability ri ,  = Sp,/Sp, Sp > E .  (12) 

For the particular case of a two-level atom coupled to 
the vacuum electromagnetic field, these two steps coincide 
with the ones given in Refs. 6 and 7. 

C. Equivalence with the Master Equation 
With this set of rules we can propagate a wave function 
I4(t)) in time, and we now show that this procedure is 
equivalent to the master equation (1). More precisely, we 
consider the quantity Ü(t) obtained by averaging ~ ( t )  = 

I4(t))(4(t)( over the various possible outcomes at time t of 
the MCWF evolutions al1 starting in )4(0)) ,  and we prove 
that ( t )  coincides with ps(t) at al1 times t,  provided that 
they coincide at t = 0. 

Consider a MCWF I4(t)) at time t.  At time t + St the 
average value of u ( t  + St) over the evolution caused by 
different values of the random number é is 
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which gives, when we use Eq. (71, 

We now average this equation over the possible values of 
u(t), and we obtain 

This equation is identical to the master equation (1). If 
we assume that ps(0) = 1$(0))(4(0)(, Ü(t) and ps(t) coin- 
cide at any time, which demonstrates the equivalence be- 
tween the two points of view. In the case where ps(0) 
does not correspond to a pure state, one first has to de- 
compose it as a statistical mixture of pure states, 
p(0) = Cp,lxi) (xi[, and then randomly choose the initial 
MCWF's among the Ixi) with the probability law pi. 

As is mentioned in Section 1, the master-equation 
approach and the reduced density matrix give access to 
one-time average values a(t) = (A)(t) = Tr[ps(t)A], which 
can now also be obtained with the MCWF method. For 
several outcomes I4"'(t)) of the MCWF evolution, one cal- 
culates the quantum average ($"'(t)IAl4"'(t)), and one takes 
the mean value of this quantity over the various outcomes 
l(b(i'(t)): 

For n values that are sufficiently large, Eq. (15) implies 
that (A)(,)@) = (A)@). We will see in Sections 5 and 7 
that this MCWF procedure based on the use of Eq. (16) for 
determining average values of operators may be more effi- 
cient than the master-equation approach. 

It appears clearly in this proof that the equivalence of 
the master-equation and MCWF approaches does not de- 
pend on the particular value of the time step St. From a 
practical point of view, the largest possible St is preferable, 
and one might benefit from using a generalization of 
Eq. (7) to a higher order in St, for example, a fourth-arder 
Runge-Kutta-type calculation. The only requirement on 
St is that the various qiSt, where the fiqi are the eigenval- 
ues of H, should be small compared with 1. Of course, we 
assume here that those eigenvalues have been simplified 
as much as possible in order to eliminate the bare energies 
of the eigenstates of Hs. For instance, for a two-level 
atom with a transition frequency coupled to a laser 
field with frequency w ~ ,  one makes the rotating-wave ap- 
proximation in the rotating frame so that the Iqil values 
are of the order of the natural width T: the Rabi frequency 
a, or the detuning S = o~ - UA; they are consequently 
much smaller than UA. 

One might wonder whether there is a riiinimal size for 
the time step St. In the derivation presented above, it can 
be chosen to be arbitrarily small. However, one should 
remember that the derivation of Eq. (1) involves a coarse- 
grain average of the real density operator evolution. The 
time step of this coarse-grain average has to be much 
larger than the correlation time r, of the reservoir, which 
is typically an optical period for the problem of sponta- 
neous emission. Therefore one should be cautious when 
considering any result derived from this MCWF approach 
involving details with a time scale of the order of or 

shorter than r,, and only St larger than r, should be ap- 
plied. This appears clearly if one starts directly from the 
interaction Hamiltonian between .the system and the 
reservoir in order to generate the stochastic evolution for 
the system wave fun~t ion .~  The condition St '» r, is 
then necessary to prevent quantum Zeno-type ef- 
fects.13 This restriction is discussed in detail in Ref. 11 
in connection with quantum measurement theory. 

3. PHYSICAL INTERPRETATION OF 
THIS PROCEDURE 
We now discuss the physical content of this procedure. To 
this purpose, we consider at time t = O a harmonic oscilla- 
tor (the same formalism applies to the case of a two-level 
system by replacement of 10) and Il) by Ig) and le)) in a 
superposition of the two lowest-lying states: 

We suppose that the oscillator relaxes toward its ground 
state 10) with the relaxation operator defined by Eqs. (3) 
and (5). Therefore we know that at time t = +m the os- 
cillator will be in state 10); it may have reached this state 
without emitting any photon (probability Iaol2) or with the 
emission of one single photon (probability IPoI2). 

In the MCWF formalism, following the first step of Sub- 
section 2.B and using Hs = fiwobtb, we have at time St 

The probability Sp defined in Eq. (9) for making a quan- 
tum jump is . 

and it corresponds to the probability for emitting a photon 
between O and St. The choice of the random number E 

therefore simulates the result of the measurement of the 
number of photons emitted between O and St. The case 
Sp > corresponds to the detection of a photon, and the 
quantum jump described in Eq. (12) is simply the projec- 
tion of the wave function ont0 the ground state IO), associ- 
ated with this detection. If such a quantum jump occurs, 
the wave function I4(St)) is simply IO), and it does not 
evolve anymore. 

We now investigate the other part of the wave-function 
evolution, i.e., the case Sp < e, corresponding to the no- 
detection result. First, we treat the example of the har- 
monic oscillator. Then we consider the general result and 
connect it with previous wave-function treatments in 
quantum optics, mainly on the basis of the delay function 
(or waiting time function). 

If no quantum jump occurs, the normalized wave func- 
tion I4(St)) is proportional to J4"'(St)). Using the fact that 
St is small, we get 

We note that in addition to the free evolution at frequency 
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oo, there has been a slight rotation of the wave function: 
the probability amplitude of being in the ground state has 
increased, and the probability of being in the first excited 
state has decreased. From the photon measurement 
point of view, the non-Hermitian part of the evolution de- 
scribed in Subsection 2.B corresponds to the modification 
of the state of the system associated with a no-detection 
result of the number of emitted photons. The information 
gained in a zero-result experiment and its consequences 
for the evolution of the system has been emphasized by 
Dicke,14 and, in the context of quantum jumps, by Pegg 
and Knight,15 by Cook,16 and by Porrati and Putterman.'" 
For the present problem this rotation is essential. If it 
did not occur, i.e., if we were to take 

the probability of having a quantum jump (i.e., detecting a 
photon) between 6t and 26t would be strictly equal to the 
probability between O and 6t [Eq. (1911, and this would re- 
peat over and over until a quantum jump would finally 
occur. One would then always find that a photon is emit- 
ted between t = O and t = a ,  provided that IPoI2 # O, and 
this conclusion would clearly be wrong. Owing to the 
slight rotation in Eq. (201, however, the probability for 
making a quantum jump between St and 2St is smaller 
than Sp, and it will be reduced over and over, as no quan- 
tum jump occurs in successive time steps. Assuming that 
no quantum jump occurred between O and t, we can write 
I+<t>) as 

where a(t)  and P(t) are solutions of the nonlinear set of 
equations deduced from Eq. (20): 

The solution of this set of equations is 

The probability P(t) for having no quantum jumps be- 
tween O and t is found to be 

This confirms the statement made at the beginning of this 
section: there is a probability l a O l 2  that no jump will 
occur between t = O and t = a ,  and there is a probability 

= 1 - 1û0I2 for a jump to occur. In this particular 
case we have therefore been able to determine completely 
the stochastic evolution of IdJ(t)) (see also Ref. 7): 

With a probability P(t), 

With a probability 1 - PO), 

where û(t) and P(t) are given in Eqs. (24). We note that if 
the initial state of the oscillator is taken as an  eigenstate 

of b, a coherent state, the wave function is not changed in 
quantum jumps, and al1 changes take place during the 
nonunitary evolution, which takes the wave fimction 
through a progression of coherent states (see also Ref. 12). 

We now extend this treatment of the zero quantum 
jump periods to the general case. Suppose that we know 
that no quantum jump has occurred between O and 
t. During this period we find that the wave function 
obeys a nonlinear differential equation deduced from 
Eqs. (7) and (11): 

which generalizes Eqs. (23). The solution of this equation 
is, for a time-independent Hamiltonian, 

which generalizes Eqs. (24). This corresponds to an  evo- 
lution with the non-Hermitian Hamiltonian between O 
and t : 

and a normalization of the result a t  the end of the 
evolution. 

This result allows us to connect our approach to the 
standard treatments of,resonance fluorescence. In those 
treatments, following the work of Moll~w,'~ the atomic 
dynamics is interpreted as phases of evolution with a non- 
Hermitian Hamiltonian H, separated by spontaneous- 
emission processes. This non-Hermitian Hamiltonian 
coincides with the one derived in this paper for the par- 
ticular case of spontaneous emission. If one defines a re- 
duced atomic density operator u'"'(t) in the subspace 
containing n = 0,1,2,. . . , fluorescence photons, one gets 
a n  infinite hierarchy of equationsls: 

du'"' i 
-= -[a("], H l  + feeding term(u'"-''1, 

dt i 
(30) 

which corresponds to the atom cascading along the ladder 
labeled by the number of fluorescence photons n = 

0,1,2 ,... . 
This picture has been used successfully to interpret 

many quantum-optics phenomena, such as resonance f luo- 
rescence spectra, photon statistics, and quantum jumps. 
In this formalism an  important quantity is the probability 
distribution of the time interval between the emissions of 
two successive photons, i.e., the so-called delay function or 
waiting time f u n c t i ~ n . ' ~ - ~ ~  When this function is known 
analytically, it can generate an  efficient Monte Carlo 
analysis of the process: just after the emission of the nth 
fluorescence photon at  time t,, the atom is in its ground 
state and the choice of a single random number is suffi- 
cient to determine the time tn+l of emission of the 
(n + 1)th photon. This type of Monte Carlo analysis was 
used in Ref. 22 to simulate an  atomic-beam cooling ex- 
periment and in Ref. 20 to prove numerically the exis- 
tence of dark periods in the fluorescence of a three-level 
atom (quantum jumps). Recently laser cooling of atoms 
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by velocity-selective coherent population trapping23 and 
lasing without inversionz4 have been analyzed by this type 
of Monte Carlo method. 

Unfortunately the delay function cannot be calculated 
analytically for complex systems that involve a large num- 
ber of levels. Nevertheless, it is possible to generate a 
Monte Carlo solution of Eq. (30) in which a single random 
number determines the time of emission of each fluores- 
cence photon.1° The non-Hermitian evolution given in 
Eq. (29) has to be integrated step by step numerically, so 
that the amount of calculation involved is similar to that 
required by the method presented in this paper. The 
physical interpretations of the two approaches are also 
similar; we note in particular that for both approaches 
physical quantities such as (+(t)lAl+(t)) have to be evalu- 
ated with normalized wave functions. This normaliza- 
tion is systematically done at  every step for the approach 
presented in this paper and has to be added in the ap- 
proach based on the numerical simulation of Eq. (30). 

Finally, we note that, as was shown in Gisin,'' it is also 
possible to simulate a relaxation equation of the type of 
Eqs. (1) and (2) by a continuous stochastic equation (see 
also Ref. 25). In this approach, no quantum jump occurs, 
but at  each step St a small random element is added to the 
wave function. This approach has been used mainly in a 
discussion of the foundations of quantum mechanics, but 
it can also be the starting point for an explicit solution to 
quantum optics pr~blems. '~ For the particular case of 
homodyne detection of fluorescence light, Carmichae17 
has transformed the evolution involving quantum jumps 
(Subsection 2.B) into a continuous stochastic evolution 
similar to the one obtained by Gisin. 

4. TWO-TIME CORRELATION FUNCTION 
Often in quantum optics problems one needs to calculate 
two-time correlation functions of atomic operators A and 
B, such as 

For instance, the fluorescence spectrum of a laser-driven 
atomic system is obtained by the Fourier transform of the 
two-time correlation function of the dipole. Another ex- 
ample in the semiclassical theory of radiative forces is the 
momentum diffusion coefficient, which describes the 
heating of the atom caused by the fluctuations that are 
due to the randomness of spontaneous-emission processes 
and which is given by the integral of the two-time correla- 
tion function of the force operator. The goal of this 
section is to indicate how one can handle such a calcula- 
tion in the MCWF method and to give some examples of 
this pr~cedure. '~ 

A. Master-Equation Appmach to Correlation Functions 
In the master-equation approach, correlation functions 
such a s  the one in  Eq. (31) a re  calculated by using 
the quantum regression theorem5: one expands A on the 
basis of Xi j  = li)( jl, where li) and 1 j )  are members of a 
basis set of the system Hilbert space, and one calculates 
the value of the corresponding correlation functions: 

For T = O the Cij(t, 0) are one-time averages and are calcu- 
lated directly from the master-equation result for the den- 
sity matrix. The T evolution of the Ci j ( t ,~)  is shown to be 
given by 

where the coefficients zijkl, which include the evolution 
that is due to the system Hamiltonian as well as the con- 
tribution of are the same as the ones giving the evo- 
lution of the one-time averages (quantum regression 
theorem) : 

These one-time averages (X, j(t)) are identical to the densi- 
ty-matrix elements ~ , ~ ( t ) ;  the coefficients 2 i j k /  are accord- 
ingly known from the master equation (11, and one readily 
solves Eq. (33). 

B. Monte-Carlo Approach 
We now present the procedure that one can use in the 
MCWF formalism. We first let (4) evolve from O to t, as 
explained in Section 2. For a given outcome I+(t)) of this 
evolution we form the four new states: 

where p I, p 1 are normalization coefficients. Now evolv- 
ing IXZ(~)) 'and IXi (~) )  according to the MCWF procedure, 
we calculate 

and we obtain the correlation function [Eq. (31)] 

The averages in Eq. (39) are taken first, for a given I+(t)), 
over the different outcomes for the evolution between O 
and T of I X Z  (TI), IX1(~)), and second, over the different out- 
comes for the evolution between O and t of 14) itself. 

To prove that this procedure gives the same results as 
the ones obtained from the master equation and the use of 
the quantum regression theorem, we consider the quanti- 
ties ~ i , ,  defined as 

and we check that the average K, of these quantities over 
the different outcomes of the Monte Carlo evolution indeed 
equals Cij(t,7). For T = O this is easily checked from the 
expressions (35) and (36) for Ix,(O)) and IXg(0)): 
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so that 

Because they are linear combinations of one-time aver- 
ages and therefore follow from Eq. (341, the evolution of 
the Kij(7) values is identical to the evolution of the CiJ(t,r) 
values given in Eq. (33). Consequently K;;(T) coincides 
with Ci,(t,r) for any 7. 

C. Examples of Correlation Functions 
We now consider two examples of the calculation of corre- 
lation functions. The first one can be treated completely 
analytically. It consists in the calculation of the symmet- 
ric position correlation function of the damped harmonic 
oscillator of Eqs. (3) and (5): 

We note from the derivation of Eq. (41) that, for a 
Hermitian operator B, the symmetric or antisymmetric 
correlation functions (A(t + r)B(t) 2 B(t)A(t + 7)) can be 
determined from mean values with only a pair of func- 
tions IX+(r)) or IX;(r)). We choose as initial state the 
ground state of the oscillator 14(O)) = IO), which is the 
steady state of Eq. (3). Therefore C,(t,r) does not depend 
on t, and the first step of the procedure outlined above, 
i.e., Monte Car10 evolution of 14) between O and t is trivial. 
At time t we construct the two new wave functions lX+(0)), 
which in this simple case give 

We now have to evolve these wave functions and calculate 
the average values c+(T) of X. Fortunately, the stochastic 
process associated with the evolution of lx,) has already 
been determined. From Eq. (26) we get 

Using Eqs. (24) and (25), we finally &tain 

which agrees with the result from the master-equation 
treatment.3 

The second example deals with a laser-driven two-level 
atom. We suppose here that the laser is strictly resonant 
so that the atom-laser coupling can be written in the 
rotating-wave approximation: 

where fl is the Rabi frequency characterizing the atom- 
laser coupling. We want to calculate the dipole correla- 
tion function: 

This calculation is done in steady state so that the Fourier 
transform of Eq. (48) gives access to the fluorescence 
spectrum (for a resonant excitation in this case). We pro- 
ceed in the following way: we start at time t = O in the 
ground state, and we let the MCWF evolve for a time suf- 
ficiently long to have several quantum jumps (spontaneous 
emissions). In a density-matrix description this guaran- 
tees that the steady state has been reached. In the 
MCWF approach it implies that there is no memory of ini- 
tial conditions. From Ic$(t)) obtained in this way we gen- 
erate nl times two pairs of states IXI(r)) and IX;(7)) as 
defined above, and we calculate the average over those nl 
runs of the quantities (37) and (38). Then we repeat this 
whole procedure nz times, each time getting a new I4(t)) 
from the random evolution of 14) between O and t. The 
results of this procedure are indicated in Fig. 1, where we 
show the values of C(t, 7) normalized to its value at T = O 
for various choices of nl and nz, in comparison with the 

Fig. 1. Solid curves: real part (upper curve) and imaginary 
part of the dipole correlation function for a two-level atom 
(S+(t + 7)s-(t))/(S+(t)S-(t)), for various choices of the numbers ni 
and nz (see text). Dotted curves: we have indicated the exact 
result obtained by using optical Bloch equations and the quantum 
regression theorem. The field parameters of the calculations are 
n = ior, s = o. 
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analytic prediction~.~' The same number of lx) functions 
is used in al1 the calculations. As observed, the higher 
values of n2 lead to the best results because they provide a 
closer description of the state a t  time t. 

5. EXAMPLES 
We now give several examples of quantum-optics problems 
to which the MCWF formalism can be applied. This se- 
ries of examples is far from being exhaustive, and here we 
do not intend to give explicit results but simply discuss the 
main lines of the method in each case. 

A. Reservoir at Finite Temperature 
We have already discussed the case of a two-level system or 
of a harrnonic oscillator with a spontaneous-emissionlike 
coupling [Eq. (3)], i.e., a coupling to a bath of harrnonic 
oscillators in its ground state (zero temperature). We can 
easily extend this treatment to the case of a nonzero- 
temperature reservoir. In this case we know that the re- 
laxation operator reads as 

where a' are still given by Eqs. (4) and (5) and where 
n(w0) stands for the mean number of excited quanta at 
temperature T at the resonance frequency wo of the two- 
level system or of the oscillator: 

By comparison with Eq. (2) we see that in this case we 
have to deal with two operators Cm: 

The quantum jumps associated with those two operators 
correspond to a decay by a spontaneous or a stimulated 
emission [Eq. (51)] or to an excitation by the absorption of 
a reservoir quantum of energy [Eq. (52)]. 

B. Relaxation of Type Tz 
We consider here the case of a two-level system, but we 
now suppose that the relaxation consists of a dephasing 
between ground- and excited-state amplitudes: 

where P, and P, denote the projection operators on the 
ground and the excited states. This relaxation operator 
damps the nondiagonal terms of the density matrix with a 
time constant T2, but it does not change the populations of 
the ground or the excited state. In order to treat such a 
relaxation operator by the MCWF procedure, we rewrite 
Eq. (53) as 

%e,x(ps) = -(1/4Tz)[(Pe - Pg)2ps + ps(Pe - P,)~] 

+ (l/2Tz)(Pe - P,)ps(P, - P,). (54) 

This has the structure of Eq. (2) with a single Cm operator: 

The operator CfCl is then proportional to identity, and 
this implies that the wave function remains unchanged 
when no quantum jump occurs, except for the free evolu- 
tion that is due to Hs. In a quantum jump the action of 
the operator Cl on a wave function 14) = alg) + pie) is 
simply to change the sign of a and to leave P unchanged. 
We note also that in this case the probability for a quan- 
tum jump 6p does not depend on 14) since it is always 
equal to 6t/2T2. 

Let us remark finally that it is quite difficult to asso- 
ciate a measurement process with the quantum jumps re- 
sulting from the action of Cl. A description closer to 
reality is obtained if we simulate real dephasing collisions 
of reservoir particles with the system, with each collision 
having a random duration and a random strength, with 
mean values leading to relaxation equation (53). The fact 
that relaxation equation (53) can be brought into the form 
of Eq. (2), however, implies that such an  additional pre- 
scription for simulating a wave-function evolution is not 
required at this point. 

C .  Spontaneous Emission With Zeeman Degeneracy 
We now come back to the problem of spontaneous emission 
of a two-level system, and we take into account the angu- 
lar momentum of the ground (J,) and excited (Je) levels. 
In this case we choose a quantization axis z and, in order 
to give the relaxation equation a simple form in the 
(J,, mg)=, 1 Je ,  me)= basis, we write it as 

where E, is the standard basis associated with the z axis, 

€0 = U Z ,  . (58) 

and where S+ and S- are raising and lowering operators 
proportional to the atomic dipole operator: 

X I Je, me = mg + q)z, 

In Eqs. (59) a Clebsch-Gordan coefficient enters in the 
coupling of the ground- and the excited-state sublevels. 
From Eq. (56) we see that the MCWF procedure will in- 
volve three operators Cm : 

We note that the relation 

ensures that the relaxation operator (56) has the same 
structure as Eq. (2). From the measurement point of 
view presented in Section 3 this corresponds to a simula- 
tion in which not only the number of photons emitted dur- 
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ing St is detected but also the angular momentum of those 
photons along a given axis z. 

D. Momentum Diffusion in  Brownian Motion 
We now turn to a problem in which the atomic motion 
plays a role. We consider the motion of a free particle, 
with a Hamiltonian Hs given by 

We suppose that this particle interacts with a bath formed 
by small particles and that this interaction causes a diffu- 
sion of the momentum of the Brownian particle with a 
relaxation operator: 

In Eq. (631, R represents the Brownian particle position 
operator. The integral is taken over the momentum q 
transferred in a collision, and N(q) is the normalized dis- 
tribution of those transfers of momentum. The quantity 
y is the collision rate. 

In the master-equation approach this relaxation equa- 
tion leads to simple equations of evolution for the popula- 
tions n(p) of each momentum eigenstate Ip): 

To apply the MCWF formalism, we check that Eq. (63) has 
the structure of Eq. (2) with an  infinity of Cm operators: 

This simple form for the Cm values ensures that for an 
initial state equal to a momentum eigenstate Ipo), the  
wave function remains at any time a momentum eigen- 
state Ip). More precisely, a t  each step 8t there is a proba- 
bility 1 - y8t for remaining in  this eigenstate and a 
probability y8t for changing p to p + q, where q is deter- 
mined randomly according to the probability law N(q). 
We recover the Monte Carlo simulation that one would 
perform intuitively by applying to the Brownian particle 
random kicks with this probability distribution N(q). 

Note that one can also start with a wave function that is 
a linear superposition of various momentum eigenstates: 

In this case, I&(t)) will remain a superposition of momen- 
tum eigenstates Jp,), which are obtained from the Jpio) by a 
translation that is the same for al1 states. On the other 
hand, the free evolution of the coefficients cri(t) that is due 
to Hs [Eq. (62)] is different for each state. On average, 
this leads to a damping of the nondiagonal density-matrix 
elements between the various momentum eigenstates Ip). 
Such a simulation will reveal the destruction of spatial co- 
herences by the collisions, and it will give access to the 
spatial diffusion coefficient. 

E. Spontaneous Emission Including Recoil 
We now come to the description of the center-of-mass mo- 
tion of an  atom that is due to spontaneous emission. 
With the additional interaction with a laser wave this situ- 
ation is a t  the basis of laser cooling and is of great practical 
importance. The dissipation operator can be written 
as2930 

x ps(c S+)exp(ik R) ,  (67) 

where the first line describes the decay of excited-state 
populations and coherences and of optical coherences by 
spontaneous emission and the second and third lines de- 
scribe the corresponding feeding of ground-state popula- 
tions and coherences. The integral runs  over the 
direction of the emitted photon, with a wave vector k 
pointing in the direction of the solid angle n ,  and the sum 
includes a basis set of two polarizations c orthogonal to 
this wave vector; R is the atomic position operator. 

We take 

and we check that can be put in the form of Eq. (2), 
with an integral over 0 and a summation over E,  by using 
the following identity: 

The probability for getting a quantum jump in the time 
step St is given, according to Eq. (69), by 6p = Trie&, 
where ne represents the total population of the excited 
level. When a quantum jump occurs, i.e., when a photon 
is spontaneously emitted, we make a random choice to 
determine its direction. This is done by using the normal- 
ized probability density for a given direction of emission n :  

where (cl,cz) is a polarization basis set orthogonal to the 
direction and where 

Once the direction of the recoil is known, the polarization 
c of the photon is chosen between the two possible results 
cl, c2 with the probabilities P(n,c,)/P(n).  Finally, Cn,., is 
applied to the wave function J4(t)) in order to get the state 
of the system after the quantum jump. 

We note that this quite lengthy procedure can be greatly 
simplified if one restricts i t  to a simplified spontaneous- 
emission diagram for which photons are  emitted only 
along a given set of coordinates u,, u,,u,. In this case we 
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can choose also u,,uy, u, as a basis set for the polarization 
vectors: a photon propagating along u,, for instance, can 
have polarization uy or u,. This leads to a replacement of 
the integral over n in Eq. (67) by a sum of only six terms 
k = Ikui :  

When one is not interested in the detailed effect of the 
spontaneous-emission pattern on the atomic dynamics, 
this approximation brings a significant simplification to 
the MCWF procedure. 

Another simplification occurs when only the atomic mo- 
tion in one dimension, for example, dong the z axis, is 
considered, as is the case, for example, in one-dimensional 
laser cooling calculations. We then take the trace of 
Eq. (67) over the x and y variables, which leaves us with 
the relaxation equation2"' 

The vectors 6, have been introduced in Eqs. (57) and (581, 
and Xq(kf) is the normalized probability density for hav- 
ing a spontaneous photon with angular momentum hg and 
linear momentum hk' dong the z axis: 

The Monte Car10 procedure corresponds in this case 
to the detection of the momentum hk' of the emitted pho- 
ton along the z axis and of the angular momentum of the 
photon along the same axis. The corresponding Cm opera- 
tors are 

We use this form in Subsection 5.E which is devoted to 
Doppler cooling. 

E Doppler Cooling 
We now focus on the case of one-dimensional Doppler 
cooling of a two-level atom, for which we present some nu- 
merical results. This will give an illustration of the effec- 
tiveness of the MCWF method as compared with the 
master-equation approach when the number of states is 
not too low. 

1. The Mode1 
An atom with a transition Jg - Je = Jg + 1 is placed in a 
a+ polarized standing wave so that only the Zeeman sub- 
levels Jg, mg = Jg) and Je, me = Je) play a role; for simplic- 
ity we denote these substates as Ig) and le) in what follows. 
Doppler cooling occurs for negative values of the detuning 

S = w~ - w~ between the laser and the atomic frequen- 
cies; i t  originates from the fact that a moving atom is 
closer to . resonance with the counterpropagatiqg compo- 
nent of the wave than with the copropagating one; the 
atom therefore feels a net radiation pressure force op- 
posed to its v e l o ~ i t y . ~ ~ , ~ ~  This picture works well at non- 
saturating laser intensities, where one can add the effect 
of the two waves independently. At higher intensities 
this type of semi-classical analysis based on the calcula- 
tion of a damping force becomes more c o m p l i ~ a t e d , ~ ~ . ~ ~  and 
a quantum treatment of the atomic external motion is a 
good alternative. Here we present the result of such an 
analysis using both a master-equation and a MCWF 
approach. 

The Hamiltonian Hs using the rotating wave approxi- 
mation reads as25 

where Z and P are the atomic position and momentum 
operators and n is the Rabi frequency of each traveling 
wave forming the standing wave. We choose the initial 
wave function I+(O)) equal to (g,p = O). At a time t, l+(t)) 
can be written as 

where the momentum po depends on the random recoils 
that have occurred between O and t and remains constant 
between two quantum jumps. According to Subsection 
2.B, evolution of a, and Pn consists of sequences of two 
steps. First, the wave function evolves linearly with the 
non-Hermitian Hamiltonian H = Hs - ihTPe/2: 

Then we randomly decide whether a quantum jump oc- 
curs. The probability Sp for a jump is proportional to the 
total excited-state population: 

If no quantum jump occurs, we simply normalize the wave 
function. If a quantum jump occurs, the momentum hk' 
along the z axis of the fluorescence photon is chosen ran- 
domly with the probability law X+(kl) [Eq. (7411, and the 
new wave function is obtained by the action of 

on (+(t)). This leads to 

po + po + hk - hk', (85) 
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Fig. 2. Time evolution of (pz) in Doppler cooling. Time is mea- 
sured in units of the excited-state lifetime ï-', and momentum in 
units of fik. The detuning 6 and the Rabi frequency il are given 
by il = -6 = ï/2. The atomic mass is such that ï = 200fik2/M. 
The points represent the Monte Carlo results, obtained by averag- 
ing n = 500 MCWF evolutions. The error bars correspond to the 
statistical error 6 ~ & , .  We have also indicated by a curve the re- 
sults of the density-matrix approach. Both caiculations involve 
200 quantum levels and take approximately the same computing 
time on a scalar machine. In the inset we have detailed the 
short-time regime corresponding to the diffraction of the atomic 
de Broglie wave by the laser standing wave. 

where p is a normalization coefficient. We note that in 
this way the recoil that is due to spontaneous emission is 
treated in an exact manner. In the master-equation ap- 
proach an exact treatment of the spontaneous recoil re- 
quires a discretization of atomic momenta on a grid with a 
step size smaller than fik. This increases the amount of 
calculation of the master equation with respect to the 
MCWF one, in addition to the N-versus-N2 argument men- 
tioned in Section 1. 

In order to make a fair comparison between the two ap- 
proaches, we have chosen a coarse discretization for the 
atomic momentum, with a step size fik, i.e., k' = -k,O, or 
k. An optimum representation of the diffusion rate that 
is due to the directional distribution of spontaneously 
emitted photons is obtained by taking the probability law 
for the quantum jumps governed by C-k,Co,Ck to be 
%:%: %. The corresponding modified values of X+(kl) 
are then also used in the master-equation calculations for 
this problem. 

2. Numerical Results 
We have considered the case of sodium atoms (ï = 

200 hk2/M), for which the minimal Doppler cooling limit, 
obtained for 6 = -ï/2 and fl << T; corresponds top,, = 
8.4 fik. We have discretized the momentum between 
-50 fik and +50 hk, which corresponds to a basis with 
202 eigenstates total, with at  any time 101 nonzero coeffi- 
cients a, and p, [see Eq. (78), wherep, is either an odd or 
an even multiple of fik]. 

The results for the evolution of the sample mean (Pz)(,,, 
defined as 

1 " 
(P2)(n)(t) = - (4(i)(t)lP214(i)(t))9 

n i-i 

are given in Fig. 2, together with the results for (P2)(t) 
obtained by using the master-equation treatment. These 

results correspond to the parameters fl = -6 = ï/2. The 
MCWF results have been obtained with the average of 
n = 500 evolutions. 

In Fig. 2 we have indicated the statistical error 6Ptn, on 
the determination of This quantity 6P;,,, which is 
defined in Section 7, gives an estimate of the quality of 
the result, and with n = 500 wave functions the signal-to- 
noise ratio in the range of 20 is quite satisfactory. 

With a scalar machine we have found that the time re- 
quired for the calculation with 500 wave functions is equal 
to the time required for the master-equation evolution. 
With a vectorial compiler we have found that there is an  
additional gain of a factor 15 in the benefit of the MCWF 
procedure. Therefore, even for this relatively simple 
one-dimensional problem with only 200 levels, the  
MCWF method is a t  least as efficient as the master- 
equation approach for determining cooling limits with a 
good precision. 

In Fig. 2 we clearly see the existence of two regimes in 
the evolution of (P2)(t). For short times (t < 200ï-'; see 
the inset of Fig. 2) the number of spontaneous emissions is 
small, and the physics involved is essentially the diffrac- 
tion of the plane atomic de Broglie wave by the grating 
formed by the laser standing ~ a v e . ~ ~  For longer interac- 
tion times, dissipation comes into play37,38 and (P2)(t) 
tends to a steady-state value, of the order of (llfik)'. This 
value for p,,, is larger than the Doppler cooling limit 
(8.4 fik) because of saturation effects. 

Figure 3 shows the evolution of the momentum distribu- 
tion of a single MCWF. The MCWF extends over approxi- 
mately 5fik and explores as time goes on al1 the significant 
parts of the momentum space. In Fig. 4 we have given 
the evolution of the momentum distributions obtained by 
the master-equation approach (Fig. 4a) and by the MCWF 
approach after average (Fig. 4b). In Section 7 we will 
compare the convergence of the MCWF method for global 
operators (Le., Pz) and for local operators (Le., population 
of a single state). 

6. EQUIVALENT MONTE CARLO 
SIMULATIONS FOR A GIVEN MASTER 
EQUATION 
In this section we discuss the existence of several differ- 
ent Monte Carlo approaches for a given relaxation opera- 

t=500r-l 

t=100r-l 

t=5or-l 2liiii5 O t=or-l 
-50 50 

MOMENTUM (hk) 
Fig. 3. Time evolution of the momentum distribution for a single 
Monte Carlo wave function for the Doppler cooling situation de- 
scribed in Fig. 2. The MCWF extends over approximately 5fik 
and explores as time goes on ail significant parts of the momen- 
tum space. 
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t=i oor -1 A 

I t-or-1 I 
-50 O 50 -50 O 50 

MOMENTLIM (hk) MOMENTUM (hk) 
Fig. 4. Time evolution of the atomic momentum distributions, obtained for the Doppler cooling situation described in Fig. 2. a, Result of 
the master-equation approach. b, Result of the average of 500 MCWF's. 

tor (erehX, leading in average to the same results but with 
possibly different physical pictures. 

Here we restrict ourselves to the class of Monte Carlo 
approaches that are related by a given invariance property 
of the relaxation operator (e,,,... Suppose that there ex- 
ists an  operator T, acting in the Hilbert space of the sys- 
tem, such that 

This operator T can be, for instance, a rotation operator, 
and Eq. (87) is then fulfilled if the dissipation process is 
isotropic. Equation (87) can be transformed into 

The first MCWF analysis can be done by using the opera- 
tors C, defined in Eq. (601, obtained after writing the re- 
laxation equation with z as quantization axis. Suppose 
that the atom starts, for instance, in Ig, m, = -1). The 
atom-laser coupling leads first to an increase of the popu- 
lation of the excited state le, m, = O). A spontaneous pho- 
ton may then be emitted (Fig. 6a), which, depending on its 
angular momentum q, = 21, puts the atom back into 
Ig, m, = r l )  (the transition le, m, = O) + Ig, m, = O) is 
forbidden because of the vanishing Clebsch-Gordan coef- 
ficient). However, it may also happen that no sponta- 
neous photon is detected after a long time, with the 
successive steps of evolution owing to the non-Hermitian 

(ereiax(ps) = Tt(ereiax(~ps T ~ ) T ,  (88) Hamiltonian H and renormalization of the resulting wave 
function causing a continuous rotation from lg, m, = I l )  

which means that we can write the relaxation operator into 14Nc) and therefore trapping the atomic population 
alternatively as into this state (last part of the time sequence of Fig. 6a). 

with 

We can therefore perform the Monte Carlo simulation 
either with the set of operators Cm or with the set of oper- 
ators Dm. The physical pictures given by these two Monte 
Carlo simulations may be quite different from each other, 
although we know that their predictions concerning one- 
time averages or two-time correlation functions are the 
same. The choice of a particular simulation should be 
made by considering the convergence of the numerical cal- 
culation, as we show in Section 7, or for emphasizing a 
particular physical aspect of the problem. 

We now give an  example of two equivalent Monte Carlo 
simulations for the same physical process. Consider a g, 
J, = 1 * e, Je = 1 transition irradiated by two resonant 
laser fields with the same intensity and polarized a+ and 
a- with respect to the z axis (Fig. 5a). It is known from 
the analysis by optical Bloch equations that the. atomic 
population is eventually trapped in a ground state that is 
not coupled to the laser field. This is related to the dark 
resonance phenomenon. If we suppose that the two waves 
are in phase, this dark state is 

Fig. 5. Configuration schemes leading to a dark resonance: a 
g, J, = 1 - e, Je = 1 transition is irradiated by two waves respec- 
tively u+ and a- polarized along the z axis. a, If angular mo- 
mentum is quantized along the z axis, the dark resonance 
appears as the formation of a nonabsorbing state, which is a lin- 
ear combination of Ig, m, = -1) and Ig, m, = 1). b, If angular 
momentum is quantized dong the axis parallel with the resulting 
linear polarization of the light (y axis), the dark resonance corre- 
sponds to an optical pumping to the /g, m, = 0) state, which is not 
coupled to the light because the Clebsch-Gordan coefficient con- 
necting lg, J, = 1, m, = 0) and le, Je = 1, m, = O) is zero. 
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Note that the continuous rotation into the trapping state 
is of the same type as the one seen in Section 3 for the 
spontaneous emission of an oscillator in a linear superpo- 
sition of the ground and the excited state. 

Now we can replace the set of operators Cq by a different 
set obtained in choosing a different quantization axis. 
For instance, suppose that we choose this new quantiza- 
tion axis y parallel to the resulting linear polarization of 
the laser light at the atom position. Because of the .rr po- 
larization of the laser excitation along that axis (see 
Fig. 5b) we now identify the trapping state as 

and we perform the Monte Car10 simulation by using the 
set of operators Dq that are analogous to those given in 
Eq. (60) but defined now with respect to the y axis. In 
Fig. 6b we have plotted such a simulation involving two 
quantum jumps. We start again in the state Jg ,  m, = -1) 
that we expand on the Jg,  m,) basis. In the first part of 
the evolution a continuous rotation toward J g ,  m, = 0) 
takes place. Then a first photon with q, = O is detected; 
this detection projects the wave function ont0 a superposi- 
tion of Ig, m, = 21) and the population of the trapping 
state / g ,  m, = O) is O. The atom then cycles between 
Ig, m, = 21) and le, m, = t l ) ,  and the population of the 
trapping state remains zero until one detects a second 
photon with a polarization q, = 21. This detection 
projects the wave function into the trapping state. The 
way the system enters into the dark resonance is then 
more readily understood as a kind of optical pumping. 

In Figs. 6c and 6d we check that the two simulations 
lead to the same average results. We observe smaller 
fluctuations in the results obtained with the quantization 
along the z axis; the reason for this difference in the qual- 
ity of the simulation is explained in Section 7. 

7. GETTING GOOD STATISTICS WITH THE 
MONTE CARLO WAVE-FUNCTION METHOD 

A. Definition of a Signal-to-Noise Ratio 
A primary goal of Our procedure is to determine the aver- 
age value (A)(t) at time t of a given Hermitian system op- 
erator A, knowing the state of the system a t  time O. 
Applying Our MCWF method with a number n of simula- 
tions, we obtain the sample mean 

which will approximate (A)(t) with a statistical error SA(,) 
related to the square root of the sample variance (bA)&) by 

When n is large compared with 1, the sample variance 
tends to a finite value that we denote AA;,). Conse- 
quently, the condition for having a good signal-to-noise 
ratio (A)/SA(,) can be written as [if (A)(t) is expected to be 
zero, it may be replaced by the precision that one requires 

for the calculation] 

In the following we give an estimate of (AA)&,(t), and we 
then discuss the requirement on n given by the inequality 
(96) in terms of local or global operators. 

B. Estirnate of the Sarnple Variance 
To estimate (AA)f,,(t), we use the general inequality 

Expression (95) can be overestimated by 

When n is large compared with 1, the two terms of the 
right-hand side of this expression have a finite limit. The 
first term tends to (A2)(t), and the second tends to (A)2(t), 
where the averages are now taken in the system density 
matrix a t  time t. The right-hand side of inequality (98) 
therefore tends to the variance (AA)?,,)(t) of the operator 
A for a system in a state described by the density matrix 
ps(t): 

We therefore have the following overestimate of (AA)&(t): 

Consequently, a sufficient condition on n deduced from in- 
equality (96) is 

We note that inequality (100) becomes an identity if al1 
the Iq5"'(t)) are eigenstates of the operator A. This is the 
case for instance in the study of Brownian motion outlined 
in Subsection 5.D, if we take (4(t)) = (p) and if we chooseA 

Fig. 6. MCWF simulation of a dark resonance. The population 
of the uncoupled state in a single MCWF evolution, corresponding 
to a measurement of the photon angular momentum along the z 
axis, a, or dong the y axis, b. The two types of evolution are 
clearly different. Average of 100 MCWF evolutions, with a mea- 
surement of the photon angular momentum along the z axis, c, or 
dong they axis, d. Apart from fluctuations, the two simulations 
lead to the same result, as expected. 
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Fig. 7. Time evolution of the variance AA(,,)(t) and of the 
sample variances AA(,)(t) obtained for the two simulations with 
the y and z quantization axis for the dark resonance problem 
(n = 1000). The sample variance for the y axis choice is close to 
its upper bound AA<,,)(t), whereas the simulation with the choice 
of the z axis leads to a noise that is more than two times smaller 
(also compare Figs. 6c and 6d). 

equal to the projection operator on a given lpo): A = 

lpo) (pal. For the case of Doppler cooling, taking A = Pz, 
we have found in steady state that AA[,) - 0.8AA(,,) for 
n = 500; the difference between these two quantities is 
essentially determined by the typical width of the individ- 
ual MCWF's (cf. Fig. 3). 

Let us also emphasize that, in contrast to AA[,,)(t), the 
quantity AA(,)(t) can Vary for a given system with the 
choice of the set of the Cm operators. We illustrate this 
point for the example of dark resonances discussed at the 
end of the previous section. We choose A = 1 4 ~ ~ )  (4NC(, 
whose average value gives the population of the trapping 
state, and in Fig. 7 we plot the value of AA[,,,(t) and of the 
AA[,)(t) values obtained for the two simulations with the y 
and z quantization axes. The initial state is Ig, m, = -1) 
for the three curves. We have taken n = 1000 so that 
AA[,)(t) =. AA(,)(t). In Fig. 7 one clearly sees that in- 
equality (100) is confirmed for this example. We also note 
that the simulation with the y quantization axis has a 
AA(,) close to its upper bound; this is easily understood 
since in this case, as soon as one quantum jump occurs, 
the wave function is in an eigenstate of A, with the eigen- 
value O if the detected photon is 7~ polarized or 1 if it is a, 
polarized. The simulation with quantization along the 
z axis leads to AA(,)(t) smaller by a factor of 2 and is 
therefore more appropriate if one looks for a rapidly con- 
verging procedure. 

C. Local versus Global Operators 
In order to discuss the requirements imposed by inequal- 
ity (101), we now split the various operators A into two 
kinds. First, there are local operators, such as the ones 
giving the population of a particular state 1 j), A = 1 j ) (  jl 
and A2 = A. For those operators we expect that 

where N denotes the total number of quantum levels in- 
volved in the simulation (we suppose here that N >> 1). 

If we insert these values into inequality (101), we see that 
the number n of simulations that have to be performed 
must be larger than the number of levels N: . 

local operators n >> N .  (103) 

Clearly one does not gain by using a Monte Carlo treat- 
ment in this case. The amount of calculation for deter- 
mining a single J4(t)) is reduced by a factor N with respect 
to the calculation of the density matrix ps(t), but one has 
to repeat n MCWF runs to get good statistics, with n > N. 

We note that inequality (100) is in fact an overestimate 
of PA(,) and that wave functions extending over several 
eigenstates of the operator A of interest lead to smaller 
values of AA[,) compared with AA(,,). This may in par- 
ticular be the case for the local operators, and the typical 
momentum width of a Monte Carlo wave function in our 
simulation of laser cooling (see Fig. 3) leads to a much bet- 
ter agreement between the momentum distributions in 
Fig. 4a and 4b than expected from relations (101) and 
(102). To illustrate this, we calculated the fluctuations in 
the population of the zero-momentum state, described by 
the local operator A = Ip = O)(p = O); we obtained at  
time t = 2000ï-' the values (A)(,) = 4 x (AA)?,) = 

7 x The ratio between these quantities is propor- 
tional to the typical width in momentum space of a wave 
function and weakens constraint (1031, which was deduced 
from relations (101) and (102). 

The MCWF treatment is more efficient if one deals with 
global operators, such as the population of a large group of 
levels, or, for the description of laser cooling, the average 
kinetic energy. For those operators we have 

For instance, if we consider the problem of a Brownian 
particle thermalized with a reservoir at temperature T 
and if we take A = P2/2M, we get in steady state 

In this case we see from inequality (101) that good statis- 
tics are obtained after n Monte Carlo runs as soon as 

global operators n >> 1.  (106) 

If one requires, Say, a 10% accuracy for the average of 
global operators, inequality (106) dictates the choice 
n = 100. Thus, when the number N of levels involved is 
larger than this number, the MCWF treatment may be 
more efficient than the master-equation approach. To 
compare with laser cooling experiments, a 10% accuracy 
will usually be sufficient, and even for the simple case of 
Doppler cooling we have noted that the stochastic evolu- 
tion of wave functions is competitive with the integration 
of the density-matrix equation. 

8. CONCLUSION 
As we mentioned in the Introduction, there have recently 
been a number of papers that discuss the applicability of 
stochastic methods as an  alternative to the usual treat- 
ment of master equations in quantum mechanics. These 
may draw on different sources of inspiration, but they al1 
lead to a description involving a stochastic wave-function 
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evolution, which may be either continu ou^'^ or involve 
quantum jumps.6~7~10~11 

In the present paper we have presented a stochastic evo- 
lution for the wave function of a system coupled to a reser- 
voir generalizing that of Ref. 6. We have proved the 
equivalence of this Monte Carlo wave-function approach 
with the master-equation treatment, and we have given 
several examples where it can be applied. In addition, we 
have considered in detail the efficiency with which expec- 
tation values of physical observables may be calculated 
with this method. In order to control the fluctuations in- 
herent in any simulation procedure, one must propagate a 
large number of wave functions and, depending on the 
dimensionality of the system Hilbert space and on the 
type of observable considered, the simulations may be 
more or less efficient than the master-equation treatment. 

As an  example, we considered one-dimensional laser 
cooling of two state atoms, and these calculations bring 
promises for Our present attempts to treat more general 
three-dimensional cooling. Also, a method for calculating 
two-time correlation functions was demonstrated; the ap- 
plicability of this method to the more complex problem of 
the spectrum from cooled atoms in optical molasses is now 
being studied (see also Ref. 41). 

Apart from a numerical procedure, the replacement of 
the density matrix by wave functions provides new in- 
sight; for example, it reveals mechanisms for the evolution 
of the system that may manifest themselves less clearly in 
the master-equation approach. We wish to emphasize, 
however, that by the MCWF procedure one does not get 
knowledge of how individual systems in an ensemble actu- 
ally evolve and how they contribute to the averages as ob- 
tained by the density matrix. At the level of individual 
wave functions the method only provides a model. As we 
saw in Section 6, several different such models can apply, 
and none of these models can be claimed to yield a more 
typical realization than the others. It is noteworthy, 
though, that if a particular detection scheme is invoked, 
according to Our measurement interpretation of the 
MCWF procedure, the Monte Carlo wave function does 
correspond to a true evolution of the system according to 
standard quantum mechanics. 

As seen from another perspective, this work confronts 
two very different definitions of the density matrix: (i) a 
reduction, by means of a trace, of the state of the com- 
bined system + reservoir, which can no longer be de- 
scribed by a pure state in the small system, and (ii) a 
statistical description of an ensemble of systems populat- 
ing different states with a given probability law. Which 
of the two underlying interpretations for the density ma- 
trix is used has no influence on the way in which mean 
values are obtained; this explains why the master equa- 
tion, which is certainly derived from the first definition 
for the density matrix, can be treated by Our MCWF 
method, which relies on the second interpretation. 
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