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We discuss the Ward identities of the Wess-Zumino-Witten models on Riemann surfaces and 
point out some ambiguities in the description of the zero modes of the currents. In the case of the 
torus, we show how to describe them and we write the Ward identities in such a way that they 
become complete. We examine in detail how the Ward identities are related to the Kubo-Martin- 
Schwinger condition. As an illustration of this formulation, we present a new proof of the 
Weyl-Kac character formula. The proof essentially relies on the mixed Virasoro × Kac-Moody 
Ward identities and explains the relation of the heat equation on the group manifold to the 
Weyl-Kac character formula. 

1. Introduction 

Both in the study of  the two-dimensional critical phenomena  and in the string 
theory  one of  the more important  purposes is to find a complete description of  all 

conformal  field theories [1]. Moreover,  as emphasized by Polyakov [2] and Cardy  

[3], we have to look at these theories on the torus and on higher genus. There is now 

a clear unders tanding - in the functional approach [4-8] as well as in the operator  

formalism [9,10] - of  the free conformal  field theories on Riemann surfaces. Bosonic 
and fermionic free field theories have been extensively discussed in the recent 

literature, especially in connection with the abelian bosonizat ion - with [10-13] or 

wi thout  [4-7]  twisted fields. But, little is known concerning the interacting confor-  

mal field theories, in particular for those which have a central charge greater than 
one. Therefore,  to describe the Wess-Zumino-Wit ten models [14] on higher genus is 

a concrete  approach  to this problem. It is also the first step in a complete 

descript ion of  the non-abelian bosonization [14] on Riemann surfaces. Stringy 

speaking, it also corresponds to describe the loop expansions of strings compactif ied 
on group manifolds  [15]. 

In this article, we point out  that  to have complete Ward  identities for the current 
algebras on Riemann surfaces requires to consider "character  valued expectation 
values";  i.e. expectation values with an insertion of  an element of  the Lie group. 
Here, complete  Ward  identities mean that the Ward identities reduce the study of  

* Supported in part by NSF Grant PHY-80-19754 and in part by a "bourse Lavoisier du ministere 
fran~ais des affaires &rang~res". 

0550-3213/88/$03.50©Elsevier Science Publishers B.V. 
(North-HoUand Physics Publishing Division) 



78 D. Bernard / WZW models 

the theory to the evaluation of the correlation functions involving the primary fields 
only. We discuss in details the case of the torus, and present our formulation of the 
Ward identities for the current algebras. We also describe how the Ward identities 
are related to the Kubo-Martin-Schwinger condition [16]. 

As an illustration of this formulation of the Ward identities, we give a new proof 
of the Weyl-Kac character formula [17]. The proof essentially relies on the mixed 
Virasoro × Kac-Moody Ward identities, which are no more than the cyclicity 
property of the trace together with the Sugawara's construction. This proof explains 
the "mysterious relation of the heat equation on the Lie group to the representa- 
tions of the loop group" (ref. [18], p. 286). An application of this relation can be 
found in the work of Frenkel [19] concerning the orbital theory for the affine Lie 
algebras. In his study, he extensively uses the relation of the denominator of the 
Weyl-Kac character formula to the heat equation, see also ref. [20]. In addition, in 
ref. [18], p. 283, it was noted - without explanation - that the Weyl-Kac character 
formula possesses "the striking property that the power of q = exp(i2~r~') which 
accompanies each finite dimensional character x x(g) does not depend on the affine 
representation (except on its level), and is proportional to the value of the Casimir 
of the finite dimensional representation". This property turns out to be a simple 
consequence of the mixed Ward identities. 

2. General remarks 

One of the more powerful properties of the conformal field theories resides in the 
following fact [1]: because of the Ward identities associated to the Virasoro algebra 
the correlation functions with insertions of the stress-tensor are expressed in terms 
of the correlation functions without insertion. It is therefore sufficient to only 
determine the correlation functions involving the primary fields. In addition to the 
conformal symmetry, the WZW models also possess chiral conserved currents, 
J ~ ( z )  and J"(,~), which represent two commuting affine Kac-Moody algebras ~tl) 
and ~o). As described by Knizhnik and Zamolodchikov [21] for the WZW models 
on the sphere, the Ward identities for the current algebras reduce the study of these 
models to the computation of the correlation functions between the affine primary 
fields only; the correlation functions with currents inserted in them are deduced 
from the correlation functions without insertion. 

What about on higher genus? The Ward identities for the Virasoro and for the 
current algebras have been described by Eguchi and Ooguri [22]. For the Virasoro 
algebra, the situation is similar: if one knows the correlation functions between the 
primary fields one also knows the correlation functions between the primary fields 
and the stress-tensor. The relation is evidently more complicated. In particular it 
involves derivatives with respect to the moduli parameters of the Riemann surfaces. 
But for the affine algebras the situation is rather different. Let us recall how the 
Ward identities of the current algebras look like on a Riemann surface of genus g. 
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Consider a collection of N primary fields of the current algebra, (I)1(~1) . . . . .  (I)N(~N). 
They belong to some representations Po) of the finite semi-simple Lie algebra ~. 

is the Lie algebra of the Lie group G on which the WZW model is defined. The 
Ward identities for one insertion of the current j a ( g )  are [22]: 

N 

<Jza~,(~,)  - - -~N(~N)> = E az lOgE(g ,~k ) l ( ak )<~ l (~ l ) ' ' - ~N(~N)>  
k-1 

g 

+ Y'. o :y(z)(J~i jdP,(~ l ) . . . * ,v(~eu)) .  (2.1) 
j - i  

Here, t~k ) = 0(k)(t a) is the representation of the Lie algebra ~ which only acts on 
the field ~k(~k)" The matrices t a satisfy [t a, t °] =ffbt~ where f fb  are structure 
constants of ~'. To write eq. (2.1), we have chosen a basis of canonical cycles on the 
Riemann surface, (aj, bj), j = 1 . . . . .  g. E(z, ~) is the prime form on the Riemann 
surface; it depends on the choice of the canonical cycles, toj(z), j = 1 . . . . .  g, are the 
holomorphic differential forms dual to the canonical cycles (a i, by). The operators 
J~ j are the zero modes of the currents: 

.Lfo;j = ~ -/~ • (2.2) 

These Ward identities have been demonstrated in [22] by using (non-analytic) 
Green functions. They also can be derived by analytic considerations. The contrac- 
tion of the current J~ with a primary field (/)(~) must produce a (multivalued) 
meromorphic 1-form with only a simple pole located at z --- ~. Therefore, this 1-form 
is the derivative of the logarithm of the prim form: this is the first term of the r.h.s. 
in (2.1). To determine the second term note that it must be holomorphic in z. As 
such it is completely defined by its a-periods. Evaluation of the a-periods of both 
sides in (2.1) gives the result since 8flogE(z, ~) has vanishing a-periods. These 
Ward identities can also be derived from the method of the operator valued 
differential forms described by Witten [10]. 

In the same way, one derives the Ward identities for two insertions: 

a b (J;J2 q,,(~,)... ON(~N)> = -K 8~az &log E(z, w)(O,(~,)... ON(~N)) 

{ N ) 
+ f~h 8~log E(z, w) + 8f ~_~ t~k ) 8~log E(z, ~k) 

k - I  

x <s~o,(,~,)...  0,,,(¢,,,)> 

g 

+ E ~0j(z ° b . . . .  )(J~: j J ~ l ( £ 1 )  (/)N (~N)) (2.3) 
j--1 
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In order to illustrate why and how the zero modes carry almost all the non-trivial 
information concerning the WZW model, let us deduce the implication of eq. (2.3) 
for the partition function. The variation of the logarithm of the partition function 
with respect to the moduli parameters, rn k, k = l  . . . . .  3 g - 3 ,  is the expectation 
value of the stress-tensor [22, 23]: 

3g-3 0 

(T~z) = ~ hk~-0-~mklOg Z(m, ~) ,  (2.4) 
k-1  

where the h~ form a basis of quadratic abelian differentials. 
In the WZW models, we postulate that the stress-tensor is given by Sugawara's 

construction. Namely, inside the correlation functions we have: 

TSuS.= a a (2.5) 

where h* is the dual Coxeter number of ff and K the level of the affine 
representation. Therefore, from the Ward identities (2.3), we have: 

KdimG S(z) ~_o¢Oj(Z)( J~J{~".k lo~k(z). (2.6) 
(T~sus) = K+h* 12 ). 2(K + h*) 

Here S(z) is the holomorphic projective connection, see ref. [24]. Under a change of 
holomorphic coordinate, z ~ w(z), it transforms inhomogeneously: 

S(w)dw 2= S(z)dz 2+ (z; w} dw 2, (2.7) 

where (z; w ) is the schwarzian derivative. Therefore the Virasoro central charge is 
C o = KdimG/(K+ h*). 

In addition, the variation of the partition function of a free boson under a change 
of the complex structure is the projective connection. Thus, we have the following 
identity: 

h~ ~_~k logl Z( m, ~ ) 
k=l Om [ det(Im 

g / ~_1% o;j 0;k 
= -  (z  2 ( r + h * )  ), 

(2.8) 

Note that eq. (2.8) looks like a multi-time heat equation on the group manifold; 
the time variables being the moduli parameters. This remark will be made more 
precise in sect. 4. In the case of the torus, eq. (2.8) gives rise to "monstrous" 
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identities between theta functions and string functions of the affine representations. 
Sometimes, they reduce to Jacobi identities. 

Eq. (2.8) perfectly illustrates that almost all the special features of a given WZW 
model are encoded inside its zero modes. The zero modes correspond to the 
solitonic sector of the Lie algebra valued fields. The quantum part is simply 
described by free field quantities. Therefore, to have a complete description of the 
model, and a powerful formulation of the Ward identities, we need to define the 
action of the zero modes inside the correlation functions. 

One way to define these zero modes is obviously to describe them as a derivation. 
To do that, we have to make precise which kind of derivation it is. We also must 
consider "character valued expectation values"; i.e. expectation values with an 
insertion of an element of the Lie group G. For concreteness, let us restrict ourself 
to the case of the torus. For each element g of the Lie group G with g = exp('t) 
where ~, is an element of the Lie algebra c¢, we define character valued expectation 
values and denoted them ( ' " ) s  or ( - - . ) v .  Under a conjugation of g by a 
constant element go of G, g ~ goggo ~, the expectation values transform as follows: 

(~)1''" (~N)gog$o ~ = go(l)(g0)""" g0(N)( g 0 ) ( ~ l  " '" ON)g (2.9) 

if the field ~j belongs to the representation go(j) of ~. In particular setting go = g in 
the above equation, we find: 

(O , . . .  qbn)g = O(,)(g).-. go(N)(g)(¢l--. ON)S" (2.10) 

This equation expresses the invariance of the correlation functions under global 
gauge transformation. Lie derivation of this equation produces other conservation 
laws. 

The correlation functions ( . . - ) s ,  but also the partition function, noted Z(r ;  g) 
or Z( r ;  ~,), now depend on all the moduli parameters. They depend on ~- but also on 
the element g of the Lie group G. Z(r ;  g) depends only on the conjugation class of 
g; i.e.: Z(¢; goggo t) = Z(r;  g). 

We define the action of the zero modes J~ by: 

(J~)s ='La,,l°g Z ( r ;  g ) ,  (2.11) 

(2.12) 

where .~Q denotes the Lie derivitive on the group manifold G along the left-invari- 
ant Killing vector e[. Similarly, the zero modes ,~ could be described by Lie 
derivative along the right invariant Killing vector e~. This definition ensures that 
the currents JQ(z) and J~( i )  commute. 

The formulae (2.9) to (2.12) can be derived from the definition of the correlation 
functions in the operator formalism, 

( * '  "'" *~)s  = Z - ' ( r ;  g ) T r ( g * l  .. .  tbNqLo), 
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and the following well-known formulae: 

1 - e -ady 
- "d ' /  and g ' ~ j ( ~ ) ' g - a = p ( j ) ( g ) ' ~ j ( ~ ) .  (2.13) e-~de~ ad y 

Here ad "t denotes the adjoint representation of T. 
Now, contrary to eqs. (2.1) and (2.3), we have a precise definition of the zero 

modes. But, we do not know what is the contraction function; i.e. we do not know 
what is the generalization of the derivative of the logarithm of the prime form. A 
priori, we imagine that it depends on g so that the Ward identities for one insertion 
of a current will take the following form: 

N 

k - 1  

(2.14) 

Since we do not know the 1-form ~0~(z, rig),  it could seem that we have made no 
progress: we only have moved the problem from the zero modes to the contraction 
function %(z ,  ~[g). But, in the following we will describe how we can specify this 
function. In this way the Ward identities will become complete. Evidently, they will 
involve derivatives with respect to all the moduli parameters r and g. 

3. The Kubo-Martin-Schwinger condition and the Ward identities 

In this section we show that the Kubo-Martin-Schwinger (KMS) condition [16] 
yields to the Ward identities on the torus and we show how it allows us to determine 
the contraction function o~(z, ~lg)- The KMS condition is a relation satisfied by an 
equilibrium state at finite inverse temperature ft. It relates the expectation values of 
observable at time t and at time (t + i/3). To be precise, for any observables A and 
B(t),  we must have: 

(AB( t ) )#  = ( B(t  + if l)A)o. (3.1) 

The condition (3.1) is almost equivalent to the cyclic property of the trace. In 
simple field theories, like free fermions, it uniquely determines the vacuum. A 
beautiful application of this condition to the Hawking radiation of the black holes 
has been described by Haag and co-workers in ref. [25]. 

For  the character valued expectation values introduced above the KMS condition 
reads: 

~J~(z )J t ' (w)  ... ~l(/;x) --. ~N (~N))g 

= q(e~a~)d~Jb(w)' ' '  q~t(~l)"'" ~N(~N)Jd(zq))s  (3.2) 
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where q -- exp(i2~r~), with Im(~') > 0. The fields are supposed to be ordered in such 

a w a y  tha t  Izl > Iwl > " ' "  > I~xl > " ' "  > I~ul > Izql. m s imple  de r iva t ion  of  eq. 

(3.2) uses the cyclicity property of the trace and the fact that JO(z) is a Virasoro 
primary field with conformal weight one. Note that from the 1.h.s. to the r.h.s, of 
(3.2) we have moved the current JQ from the left to the right, but on the r.h.s, its 
argument is zq instead of z. 

Let us illustrate on the two-point function of the currents, (JO(z)Jb(w))s,  how 
we use the KMS condition (3.2) to derive the Ward identities. Consider a chiral 
affine current J~(z), 

J " ( z )  = ~,J~ z - " - l  , (3.3) 
n 

whose modes J,~ satisfy the commutation relations of an untwisted affine Kac-Moody 
algebra: 

[ j~, .ibm] = f:bj,~+,, _ nK 6 "b 8,,+,,,,o. (3.4) 

Here, f f b  are normalized by f fb fdc= _2h,~ad. (In eq. (3.4), there is a minus sign 
in front of the central charge K because the Killing form is negative on c¢. It 
evidently disappears if we change the normalization of the structure constants by a 
factor i: f~h ~ iffb). We suppose that the currents Ja(z) have only integer modes, 
so that we describe the affine algebra in one of its homogeneous gradations. 

In terms of the modes J~, the KMS condition becomes: 

n a b - a d y  a b d q (J~Jn~)g = (e )d(J~J~ )~. (3.5) 

Eq. (3.5) allows us to express the expectation value a b (J 'J~)g in terms of the 
commutator  [J~, j,b]. Namely, for n #: 0, we have: 

a (1 
(J],J~)s = 1 - q'-"e adv 

(3.6) 

Note that eq. (3.6) does not determine the expectation values with an insertion of a 
zero mode since the matrix ( 1 - e  -adv) is not invertible. Therefore, there is no 
contradiction between the KMS condition and the definition (2.11) of the zero 
modes. 

To find the two-point function (JQ(z)Jb(w))s we just have to re-sum the 
expression (3.6). We find: 

z w ( J a ( z ) J b ( W ) ) s =  -KwOw~(z ,  wlg)ah+ ~0(z, wlg)afaa(j~)s + (J~Job)s, (3.7) 
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where the matrix to(z, wig) is: 

w ~ ( q "  ( w ) ,  q" ( z ) , )  
- -  + e_ad v _ q" e a d ~ - -  - q" . (3.8) to(z, w l g ) = z _ w  ,,=l 

The expectation values of the zero modes are defined in eq. (2.11). The factor zw in 
front of the two-point function is due to our choice of coordinate z instead of the 
standard choice exp(i2~rz). 

Notice that in eq. (3.8), we have defined an analytic continuation of the correla- 
tion function <Ja(z)Jb(w))g, initially defined for Izl > Iwl > Izql, in the region 
Iw/q I > Izl > Iqwl, - or Iz/ql > Iwl > Iqzl. Actually, with a little more work, we 
can define an analytic continuation of to(z, wig ) on any compact domain of the 
complex plane. But later on, the formulae will be more transparent if we keep the 
expression (3.8) for to(z, wig ). We just mention that this analytic continuation can 
be used to show that the Ward identities (3.7), or (3.10) and (3.11) below, reduce to 
those described in eqs. (2.1) or (2.3) in the borderline case where there is no 
insertion of an element of the Lie group. Indeed, when g = e with e the unity of the 
Lie group, the function ~o(z, w)= to(z, wig = e) evaluated in the standard coordi- 
nate e(z) = exp(i2~rz) is (almost) the derivative of the logarithm of the O~ function: 

2i~r to( e( z ), e(w)lg = e) = 0zlog Ot(z - wlz ) - i~r. (3.9) 

O 1 is the theta function with characteristic [~/2] The factor ( - i~r)  cancels out in 
L~/2j" 

the Ward identities since at g = e the correlation functions are singlet under the Lie 
group G. 

In a similar way, one derives the Ward identities in presence of primary fields. We 
have for one insertion: 

z<J~(z)~t(~l) . . .  ~N (/;N)>s- z<Ja(z))s(dp,(~,).., q~N (~JN)>~ 

N 

to(z, (klg)~t(ak)<~,(~l)... ON(~N))~ +~, , (q~t(~l)""  q~N(~N))g (3.10) 
k = l  

and for two insertions: 

z< Ja( z )Jb( w)dP,( ~l) ... ON( I;N) )s -- z< J"(  z ) )s< jb (  w )01( I;1)... ~N(~N)>g 

= - K  & t o ( z ,  

( N ) 
+ to(z, wlg)af fb+Sff E to(z, ~ d 6klg)at(k) (J" (w)¢ l (~ l )""  ~N(rN))s 

k=l  

(3.11) 
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Here to(z, wig) is the same function as in eq. (3.8). The Ward identities (3.10) and 
(3.11) effectively have the structure suspected in (2.14). They are complete in the 
sense that it is now sufficient to know the correlation functions between the primary 
fields to know all the correlation functions. But, the price to pay for having this 
completeness is to evaluate the correlation functions for any element g of the Lie 
group. 

In the WZW models, there are three kinds of Ward identities. There are the Ward 
identities associated to the Virasoro algebra, those associated to the affine Kac- 
Moody algebras, and the mixed Ward identities [21]. These latter arise when we 
impose the Sugawara's expression for the stress-tensor, equation (2.5). In that case, 
the correlation functions (T(z)dPx(lil)... ~N(liN))g can be obtained in two different 
ways: either directly from the Virasoro algebra or by taking the limit w ~ z in the 
Ward identities of the current algebra. Comparison of the two results gives the 
mixed Ward identities. These identities are powerful. They determine the conformal 
weight of the primary fields: A(k)=Casimir(P(k))/2(K+h*); they give rise to 
differential equations which allow us to solve the model [21; 26]; etc . . . .  

On the torus, the mixed Ward identities look like: 

z2(Tsug.( z )~(  ~ ))g - z2(Tsu~.( z ))g(qb( ~))g 

= [a  o,to(z, + + A)]  

+ qOq(~(~))g. (3.12) 

Here to(z, ~) = to(z, ~lg = e) is the function defined in eqs. (3.8) or (3.9). 
To obtain the fundamental differential equations satisfied by the primary fields 

you have to extract the residue as z -~ ~ in eq. (3.12). Without going into the details, 
we just report the result which can be synthesized as follows: 

(~j°3~j + 2A(j))((t~I('~I)""" ~N(~N))) 

1 
+ IK+h,  k.jE to(~y, g;klg).bt'~y)t~k)((*,(~,) ' ' '  *N ('~,v))) 

1 
+ r +  h --'--'--~t(~)'~"((dp'(~')''" dPN(~N))) = 0. (3.13) 

The double bracket means: 

((~)1(~1).--ON(~N))) = Z(T; g)H(T; g)(Ot(~a). . .  ~)N(~N))g, (3.14) 

where Z(T; g) is the partition function and //(~; g) an infinite product defined 
below in eq. (4.3) 

Eq. (3.13) will allow us to determine the correlation functions of the primary 
fields. In the following we will not continue in going into the depths of the WZW 
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models on the torus or on higher genus; this discussion will be developed elsewhere 
[27]. But, we will describe how we derive the Weyl-Kac character formula by using 
the method described above. 

4. A new proof of the WeyI-Kac character formula 

In the following we will use the mixed Ward identities to give a new proof of the 
Weyl-Kac character formula [17]. The proof goes in two steps: We first exhibit the 
link between the Sugawara's construction, the heat equation on the Lie group and 
the Weyl-Kac character formula. In this way, we will be able to determine the 
general structure of the Weyl-Kac character formula. In a second step, we show how 
the affine Weyl group determines the coefficients left undetermined by the first 
analysis. 

Recall that on the torus the stress-tensor expectation value gives the variation of 
the partition function: 

qOqlog Z(¢; g) = z2(Ts~,.(z))s. (4.1) 

The limit of the Ward identities (3.7) as w --* z yields to the following expectation 
value of Tsug.(z): 

z2(Ts~.(z))g= + K+h------- ~ tr e _ . d , _ q .  

+ K+h-------- 2 tr e_.~iT--q adt .  (J~)~ 

1 
2(K + h*) ~J;°Jg)* ' (4.2) 

where the traces are taken in the adjoint representation of ft. 
Let us introduce the following infinite product: 

/-/(,; g) = f i  det(1 - q"eadV). (4.3) 
n--1  

The determinant is defined in the adjoint representation. H(r;  g) is related to the 
denominator of the Weyl-Kac character formula. It is invariant under a conjugation 
by any element go of G: /-/(r; golggo) =/-/(r;  g). It satisfies the following proper- 
ties: 

~ l t r  ( n q " )  (4.4) qOqlogH('r; g) = - e_ad v -  q" , 

,-°° ( q , e  -adv _ ) 
~alog/7(r ;  g) = _ ~ t tr q" ad tQ (4.5) 
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On the other hand, from the relations (2.11) and (2.12) between the zero modes 
and the partition function, we know that the expectation value of the Casimir of the 
zero modes is: 

1 
( Jo~J~)s = Z(z;  g) 'ff'~'~aZ( T; g)" (4.6) 

Using all these properties and the expression (2.11) of the expectation value of the 
zero modes, we write equation (4.2) as follows: 

qt)qiog[Z(~'; g ) r / (~ - ;  g ) ]  = + 
h ~  

~1 I _ I--Ir[ g) K+ h* qOqt°gllt ~'; 

1 
r + h* .ff'alog Z( ~'; g)Sa~ log H(  r; g) 

1 1 
2 ( K +  h*) Z ( r ; g )  "~a'ff'aZ('r;g)" (4.7) 

This is an example of the mixed Virasoro × Kac-Moody Ward identities. They 
yield to differential equations on the moduli space. To prove the Weyl-Kac 
character formula we just have to integrate this differential equation. 

The infinite product//(T; g) possesses the surprising property to be a solution of 
the heat equation on the group manifold [20]: 

1 
qaqn(z; g) = - 2h--- z a o  n (~ ;  g) ,  (4.8) 

where A o is the laplacian on the Lie group. We have chosen the normalization such 
that: 

Aoxx(g)  = - C(~ )xx(g) ,  (4.9) 

if xx(g) is the character of a finite dimensional representation of ff with highest 
weight ~ and C(h) the Casimir of this representation. The property (4.8) has been 
proved by Fegan [20]. His proof gives a demonstration of the Macdonald's identities 
[28] which does not use the WeyI-Kac character formula. Thus, there is no 
illogicality in our demonstration of the Weyl-Kac formula. For completeness we 
recall Macdonald's identities: 

H ( r ;  g) = E exxx(g)q c(x)/Eh', (4.10) 
hEP+ 

where e x = 0, + 1 and where the sum is over all the finite dimensional representa- 
tion of &. P+ denotes the set of the highest weights of the representations of ~. The 
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precise definition of e x is ex= e(to) if h E  p -  to(p) mod[h*Q ~] for some Weyl 
transformation to. p is the Weyl vector and Q" the co-root lattice of ft. Using 
identities (4.10) it is easy to check eq. (4.8).* 

Therefore, since A o = Laa'£aa, we have: 

qOq[Z(,; g)H(,r ;  g)] = 
1 

2 ( K +  h*) AGtZ(r ;g ) I I (* ;g ) ] "  (4.11) 

This is the striking property of the Weyl-Kac character formula: the numerator 
satisfies the heat equation on the group manifold. Note that the demonstration only 
uses the mixed Ward identities which are no more than the cyclic property of the 
trace (the KMS condition) together with Sugawara's construction. 

Knowing the general form of the solutions of the heat equation we deduce that: 

1 
- -  ~, Nxxx(g)q cO0/2tr+h*~ (4.12) z ( , ;  g) = g) 

for any representation of the affine algebra of level K. As above Xx(g) is the 
character of the finite dimensional representation of ~ whose highest weight is ?, 
and C(A) is its Casimir. The sum is over all the finite dimensional representations 
of ~. 

The coefficients N x are integers which depend on the affine representation. They 
evidently cannot be determined by the Ward identities. 

Therefore, from now let us concentrate on an irreducible highest weight represen- 
tation of the affine algebra $?~1). Denote by A its highest weight, by zA(~; g) its 
character - or partition function - and by N~ A) the associated integers. We have to 
specify the conditions which define zA(*; g) as the partition function for the affine 
representation A. 

The affine representations are in one to one correspondence with the weights of 
the dilated affine chamber KCu. Let us explain this statement. A unitary affine 
representation of a given level K is uniquely determined by its highest finite 
dimensional representation of the finite Lie algebra ~. Here "highest" representa- 
tion of ~ means the representation of ~ which has the "lowest" conformal weight, 
i.e. the representation which has the lowest Virasoro eigenvalue. Furthermore, the 
unitarity of the representation requires that the highest weight of this highest 
representation be inside the affine dilated chamber KCar if the level of the 
representation is K [17]. If we denote by • the highest root of ~, the affine dilated 
chamber is KCar = (?~ ~ P+/(?~, ~)  ~< K }. Since the correspondence is one to one, 
we must have: 

Nxta) = 8A;x if ~ K C a r .  (4.13) 

* Fegan's result, eq. (4.8), can also be proved by using the mixed Virasoro × Kac-Moody Ward 
identities, eq. (4.7). This new proof of eq. (4.8) is presented in the note added in proof. 
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We will now prove that this initial condition together with the action of the affine 
Weyi group on the partition function completely determine all the coefficients N~x a). 
We first quote the result and then describe the proof. For a representation A of level 
K, the integers Nx ta) are: 

Nx~a) = { ; (to) i f k + P = t o ( A + o ) m ° d I ( K + h ' ) Q ' ]  otherwise, (4.14) 

where to is any element of the Weyl group W of the finite Lie algebra ft. e(to) = _+ 1 
is the determinant of the Weyl transformation to. 

The demonstration uses more standard algebraic methods and is a little more 
technical. Before describing the action of the affine Weyl group Waf we write the 
partition function in a different way. First note that the partition function zA(T; g) 
is Tr(gq L0) without the factor exp(-i2~r¢C~/24). This is due to our choice of 
coordinate z instead of exp(i2~rz). To restore this factor we define: 

Ztoms(A r," g; t) = ei2"Xtq-Cc,/2'Za(r; g) = Xr(gei2"rtqLo-c,;/24), (4.15) 

where we have introduced the central charge K for later convenience. We now 
choose 3' in the Cartan subalgebra: g = exp(7 )=  exp(i2rrJ,-h), and we remember 
ourself the Weyl formula for the characters of the finite dimensional representations 
of if: 

n ( x  + pl~') 
xx(exp(i2~'l,, h)) H ( p l r )  (4.16) 

with 

H(xl l ,  ) = Y'. e(to)exp(i2cr(to(x), v)) .  (4.17) 
t o E W  

Then, using the value of the Casimir, C(~,) = I h + pl 2 - 1012, the strange formula of 
Freudenthal-de Vries, I pl 2/2h* ---dim G/24 ,  and the formula (4.16), we re-express 
the partition function a . Zto~s(~, v; t) as: 

A Zto,.~(¢; ~'; t )  = ~ - t ( ~ . ;  v; t)C 2"(x+h°)' E 
~ . ~ P .  

where ~ (~ ;  v; t) is the Weyl-Kac denominator: 

Nx~A)H(~. + plv)qlX+ol2/2(x+h') , 

(4.18) 

~ (T ;  v; t)  = ei2"~h'tqlpl2/2h'H(pl~)H('r; v). (4.19) 

The affine Weyl group acts on the weights of the affine algebra. By duality, it acts 
on the triplet (T; p; t). The affine Weyl group is the semi-direct product War = W × T 
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where W is the finite Weyl group of ff and T a group isomorphic to the co-root 
lattice Q" [17]. The action of W~ on the triplet (¢; v; t) is the following: 

60(~'; v; t) = (¢; 60(v); t) if co ~ W, 

T~( ' t ; v ; t )=(r ;v+¢a; t+(v ,a )+½r(a ,a ) )  i f a ~ Q ' .  (4.20) 

Since the multiplicities of two affine weights which are conjugated by War are 
equal, the partition function A . Zto~(¢,  v; t) is invariant under the transformations 
(4.20). By using the second form of the Macdonald's identities: 

-@(r; v; t) = e '2'~h°' E H ( a l v ) q  I"l~/zh" (4.21) 
a~h*Q" 

or directly from the product expression of the denominator ~(~'; v; t), eq. (4.19), it 
is easy to check that ~(T; v; t) is anti-invariant under the action of W~t. Therefore 
the numerator ,A/'a(r; v; t), 

JV'a(~'; v; t) = e i2"~K+h')t Y'~ 
X~P+ 

is also anti-invariant. Namely, 

N~xA)H()~ + Olv)q Ix÷pl2/20:+h°) (4.22) 

60at [.A/'A ](~'; v; t)  = e(O~a~),A/'a(T; v; t) (4.23) 

for any elements War of the affine Weyl group. 
To analyse the anti-invariance of ,A/'a(r; v; t), we write it as a sum over all the 

weight lattice P. Indeed since the Weyl orbit of the positive weights covers the 
weight lattice, P = W[P_], we have: 

.A/'A(¢; V; t) = e n"¢K+h''' E M)a)e'Z~O'">q lyl~/2¢K+n'' 
.v~ P 

(4.24) 

with 

M~yA)=e(o~)N~ a) i f y = o J ( ~ . + O )  mod[(r+h*)Q ~] 

and My ~a) = 0 otherwise. 
The anti-invariance of the numerator, eq. (4.23), implies that: 

M~a)=e(~o)M~ a) if x = ~ ( y )  mod[(K+h*)Q~]. (4.25) 

In particular, eq. (4.25) implies that M~ aJ vanishes if y lies on the boundary of 
the affine dilated chamber ( K +  h*)Car. Indeed, if y ~ 0 ( K +  h*)Caf, either there 
exists a simple root a, such that (a  i, y )  = 0, or (q~, y )  = K +  h*. In the first case, y 
is invariant under the Weyl reflection ~: o~,(y) =y - (a,, y)a~ =y ,  whereas in the 
latter case, y is invariant under the Weyl reflection to, modulo (K+h*)Q ~, 
~ , ( y ) = y - ( y ,  dp)dp=y-(K+h*)dP. In both cases equation (4.25) implies that 
My ta) vanishes. 
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The vanishing of M~ a) on O(K+ h*)Caf and the boundary conditions (4.13) for 
N(x A) induce the following initial conditions for M~A): 

MJA) = 8y, a+o i f y ~ ( r + h * ) C ~ f  (4.26) 

On the other hand, the quotient P/ (K+ h*)Q" is isomorphic to the Weyl orbit 
of the dilated affine chamber (K + h*)C~, P / (K  + h*)Q ~ = W[(K + h*)C~f]. There- 
fore, the initial conditions (4.26) together with the relation (4.25) completely 
determine the coefficients My(a): 

MY(a) = ( ~ (w) otherwise, i f y = ~ o ( a + o )  mod[(K+h*)Q"] (4.27) 

This proves the Weyl-Kac character formula. The definition (4.27) of the coeffi- 
cients M~ a) is equivalent to the expression (4.14) of the coefficients Nx ~a). 

To characterize the Weyl-Kac formula via the coefficients My (a) corresponds to 
writing it in a more familiar form; namely in terms of theta functions: 

Ztor, s(1. , z  " u; t) = ~-1(~.; v; t)e '2'~(x+h')t ~., e(~o)O x+h',~(a+p)(r; v) , (4.28) 
~ E W  

where the O's are the theta functions with characteristics defined over the co-root 
lattice Q~. 

5. Conclusion 

In summary, we have been able to write the Ward identities for the Wess- 
Zumino-Witten models defined on the torus in such a way that they become 
complete. In this formulation, the Ward identities entirely determine the correlation 
functions with any insertions of currents in terms of the correlation functions 
between the primary fields of the affine algebras. This construction demands the 
introduction of "character valued expectation values"; i.e. correlation functions 
with an insertion of an element of the Lie group. The Ward identities now involve 
derivatives with respect to all the moduli parameters: the moduli parameters of the 
Riemann surface but also those associated to the Lie group. The completeness of the 
Ward identities requires the evaluation of the correlation functions for all values of 
these moduli parameters. 

In this article, we have restricted ourself to the description of the Ward identities 
without going into the details of the WZW models on Riemann surfaces. This will 
be developed in a separate publication [27]. But, we have made explicit the relation 
between the Ward identities on the torus and the Kubo-Martin-Schwinger condi- 
tion. The methods described above seem to be closely related to those used in the 
dual models in the seventies [29]. 

Using the Ward identities in the form described above, we have presented a new 
proof of the Weyl-Kac character formula. Let us recall how the proof works. First, 
it turns out that the mixed Virasoro × Kac-Moody Ward identities imply that the 
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numerator of the Weyl-Kac formula is a solution of the heat equation on the group 
manifold. This property completely determines the structure of the Weyl-Kac 
character formula. During the proof, beside the Ward identities, we only have used 
the known fact that the denominator of the Weyl-Kac formula is a solution of the 
heat equation (but see the note added in proof below). In a second step, we show 
that the invariance of the partition function under the action of the affine Weyl 
group completely determines the coefficients left undetermined by the Ward identi- 
ties. This part of the demonstration is technical but quite standard. It would be 
interesting to have a different demonstration which does not use the affine Weyl 
group but rather the unitarity of the conformal field theory. 

This "physical" proof of the Weyl-Kac character formula shows once more the 
predominant role played by Sugawara's construction in the theory of the affine 
Kac-Moody algebra. 

There still remains a challenge to prove the (non-chiral) Weyl-Kac ch~aracter 
formula by path-integrating the Wess-Zumino-Witten action. 

I gratefully acknowledge helpful discussions with I. Frenkel, G. Moore, D. Olive, 
Z. Qiu and E. Witten. 

Note added in proof 

For integrating the Ward identity (4.7), and thus for proving the Weyl-Kac 
character formula, we have used Fegan's result: 

1 
qOqII(T;g)= 2h,arH(,;g) 

In this little note, we point out that this result can be proved using the 
Virasoro × Kac-Moody Ward identities for non-unitary representation of the affine 
albegra ~ (~). 

After some algebra, eq. (4.7) can be written as follows: 

qOo+ 2 ( K + h , ) A o  Z(r;g)I-l(r;g)= K+h-------xZ(,;g) qCgq+ 2-~-A G /-/(~';g). 

For proving this relation we only have used the commutation relations of the 
affine currents together with the cyclic property of the trace. Therefore, this relation 
is valid whether the representation is unitary or not. 

Now consider a non-unitary representation whose highest weight is a scalar for 
the finite Lie algebra ff but whose central charge K is not an integer. In this case, 
there is no null vector in the Verma module except those associated to the Lie 
algebra ft. Therefore, the character of this non-unitary representation is: 

1 
Z°°°°m' ( ' ; g ) =  U ( r ; g )  

Insertion of this relation in the Ward identity (4.7) proves Fegan's result. 
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Thus, with this little improvement, the proof of the Weyl-Kac character formula 
is now only based on the Virasoro × Kac-Moody Ward identities of the WZW 
models. Therefore, it gives a completely new proof of the MacDonald's identities. 
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