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1 Introduction

2 Quantum non-demolition measurements

2.1 Indirect measurement and POVM

What kind of experiments?

Give a brief description of cavity QED experiments done in S. Laroche’s group.....

Idem with circuit QED?.....

What are (weak) indirect measurements?

To formalize this scheme we consider a system interacting with probes. For simplicity we

suppose that all probes have been prepared in a pure state |ϕ〉 (before interacting with the

system). Let ρ be the system density matrix ρ. The system recursively interacts with a probe

during some time interval. Let U be the interacting evolution operator - acting on the tensor

product of the system and probe Hilbert spaces. After the interaction has taken place, some

probe observable is measured (not a system observable). Let |s〉 be the complete basis of the

observable eigen-states (we assume non-degeneracy for simplicity).

When interacting with a probe the evolution of the system density matrix decomposes in

two steps. First there is the evolution due to the interaction. This evolution (of the system and

the probe) is

ρ⊗ |ϕ〉〈ϕ| → U (ρ⊗ |ϕ〉〈ϕ|)U †.

Second there is the probe measurement. Measuring the probe observable projects this state

in one of the eigen-space of the observables. If the output measurement is s, the projection

operator is I⊗ |s〉〈s|. As a consequence, the system state becomes

ρ→ Fs ρF
†
s

π(s)
, with probability π(s) = Tr(Fs ρF

†
s ),

with Fs := 〈s|U |ϕ〉 - which is an operator acting on the system Hilbert space only. As a

consequence of the unitarity of U , the operators Fs satisfy∑
s

F †s Fs = I.

This ensures that the probabilities sum to one:
∑

s π(s) = 1 because
∑

s Tr(Fs ρF
†
s ) = Tr(ρ) = 1.

Definition “POVM”:

A set of operators Fs satisfying the relation
∑

s F
†
s Fs = I form, by definition, a so-called POVM

- for Positive Operator Valued Measure.

Remark 1:

If the probes are prepared not in a pure state but in a mixed state ρp =
∑

σ pσ|σ〉〈σ| with∑
σ pσ = 1 and |σ〉 the basis diagonalizing ρp. We may look at two transformations. First
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we may apply the above procedure with ρ ⊗ ρp as system-probe initial state. If the probe is

projected onto |s〉 by the measurement, then the system state is transformed into

ρ→
∑
σ

pσ F
(σ)
s ρF (σ)†

s /π(s), with probability π(s) =
∑
σ

pσπ
(σ)
s ,

where π
(σ)
s := Tr(F

(σ)
s ρF

(σ)†
s ) with F

(σ)
s := 〈s|U |σ〉. Second we may look at applying randomly,

with probability pσ, the POVMs F
(σ)
s . Then conditioned on selecting σ, the system state is

transformed into F
(σ)
s ρF

(σ)†
s /π(σ)(s) with probability π(σ)(s) = Tr(F

(σ)
s ρF

(σ)†
s ). Its mean – over

σ – differs from the above transformation. Let us instead condition on the output signal. The

probability to find s as output is
∑

σ pσπ
(σ)
s . Thus, conditioned on the signal to be s, the mean

system state is now the same as above. As long as we are interested in the mean behavior, we

are free to choose any of the two descriptions. In the following we shall restrict ourselves to

probes in pure states.

Quantum channels and completely positive maps

If we don’t record the measurement outputs (or, equivalently, if we trace over the probe

degrees of freedom) the mean system density matrix ρ̄ is transformed linearly by the map

Φ : ρ̄→ Φ(ρ̄) :=
∑
s

Fs ρ̄ F
†
s .

This map preserves the positivity and the normalisation of the density matrix. It is actually an

example of a completely positive map, with an explicit Kraus decomposition. To find such a

dissipative evolution in case we trace over the probe degrees of freedom is not surprising because

a series of probes behaves as a reservoir. Hence tracing over its degrees of freedom induces a

dissipative evolution on the system.

Definition: “Completely Positive (CP) Maps”

Let H be a (finite dimensional) quantum system Hilbert space and let ρ denote quantum states

– quantum density matrices – on H. A map Φ acting linearly on quantum states is said to be

completely positive if its extension Φ⊗ I on states on tensor product extension of H of the form

H⊗Km with Km a finite dimensional Hilbert space is positive. By convention, we shall always

assume that CP-maps are trace preserving.

CP-maps represent operations on quantum states. As such they have to preserve the posi-

tivity of the density matrix. But completely positivity is stronger than positivity. We ask for

this stronger condition because we may imagine operating on the system when it is next to

another quantum system, but uncoupled with it. The operation is only going to act on the

system, leaving its neighborhood untouched, and the result should still be consistent with state

positivity. CP-maps are the most general (dissipative) transformations on quantum system and

are alternatively call “quantum channels”.

Given a CP-map Φ, there always exists a family of operators Fs on H such that the writing

Φ(ρ) :=
∑

s Fs ρF
†
s holds true. Of course such writing is not unique, it is called a “Kraus

decomposition”. If the CP-map is trace preserving, i.e. TrΦ(ρ) = 1 for any state ρ, then the

Fs’s have to satisfied
∑

s F
†
sFs = I. That is: the Fs’s form a POVM.
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Any CP-map can be viewed as coming from a unitary evolution on the system coupled to

an auxiliary reservoir by tracing over the degree of freedom of the reservoir. This is expressed

by the following theorem:

Theorem (Stinespring’s theorem) “Auxiliary Reservoir”:

Given a completely positive map Φ there exist a Hilbert space K, a state ω on K and a unitary

operator V on the tensor product H⊗K such that

Φ(ρ) = TrK
(
V ρ⊗ ω V †

)
.

for any state ρ on H.

In the case of the CP-map constructed via indirect measurement on probes the auxiliary

reservoir is the probe system, the state is that in which the probes have been prepared and

the unitary operator is that coding for the system-probe interaction. In formula this gives

Φ(ρ) = Tr(Uρ⊗ ρpU †) because the kets |s〉 form a complete probe basis. This is the essence of

the proof of the Stinepring’s theorem in the finite dimensional case.

2.2 Repeated indirect measurements and progressive collapse

Repeated POVMs

We now repeat/iterate the previous indirect measurement, so that a series of probes recur-

sively interacts with the system. Let P1, · · · , Pn, · · · be the series of probes. After measuring

them, we got a series of measurement outputs (s1, · · · , sn, · · · ). Let ρn be the system density ma-

trix after n step, that is after n probes have interacted with the system and have been measured.

It is recursively - and randomly - updated according to

ρn → ρn+1 =
Fs ρn F

†
s

πn(s)
, with probability πn(s) = Tr(Fs ρn F

†
s ).

Since the outputs s are random the series (ρ0, ρ1, · · · , ρn, · · · ) are also random. If one does

not know the initial system state ρ0, the only data/information available up to step n are the

n first signals (s1, · · · , sn). These random sequences code for our knowledge on the system.

If one knows ρ0 and the sequences of outputs (s1, · · · , sn), one may then reconstruct all the

intermediate system states (ρ0, ρ1, · · · , ρn).

Definition “(Discrete) Quantum Trajectories”:

The random sequences of density matrices (ρ0, ρ1, · · · , ρn, · · · ) obtained by recursive applications

of the random moves defined above are called “quantum trajectories”. Quantum trajectories

are specific to the chosen POVMs which may be modified at each step. Notice that quantum

trajectories are classical random trajectories but in the space of quantum states.

Remark 1:

If we don’t keep record of the measurement outputs we then have to look at the evolution of the

mean density matrix ρ̄n := E[ρn]. By construction this mean state is updated via the quantum

channel Φ:

ρ̄n → ρ̄n+1 = Φ(ρ̄n) = Φn+1(ρ0).

4



Convergence and asymptotic behaviors of such iteration depend on the spectral properties of

the quantum channel. More below.

Remark 2:

In mathematical terms these data define a filtration on an appropriate probability space. The

events of this probability space are sequences (s1, s2, · · · , sn, · · · ), or equivalently the probability

space P is the set of such infinite sequences. We can look at the sequences for which the n-th

first entries are specified and define subspaces Ωs1,··· ,sn as the space of sequences starting with

the specified sequences (s1, s2, · · · , sn) for the first n data. Increasing n amounts to increase

knowledge on the sequences. Hence, the σ-algebras Fn generated by these sets form an increasing

series of σ-algebra, alias a filtration. Given the initial density matrix ρ0, the space P is equipped

with a probability measure by declaring that P[sn+1 = s|Fn] = Tr(Fs ρn F
†
s ).

The non-demolition condition

If we want the series of indirect measurements to be close to what a von Neumann measure-

ment would do, we have to impose that it preserves a given basis of the system Hilbert space,

which is then called the pointer state basis. Let us denote them by |k〉. That is: we have to

demand that the updating preserves |k〉, that is |k〉〈k| → |k〉〈k| with probability one. It is easy

to see that this demands that the interacting evolution operator to be of the following form:

U =
∑
k

|k〉〈k| ⊗ Uk,

with the Uk’s α-dependent unitary operator acting on the probes. Recall that U is a unitary

operator acting on the tensor product of the system and probe Hilbert spaces.

Indeed such an operator clearly preserves the system pointer states |k〉, i.e. U |k〉 ⊗ |ϕ〉 =

|k〉 ⊗ Uk|ϕ〉, and Uk is the probe evolution conditioned on the system to be in the state k.

Let us(k) := 〈s|Uk|ϕ〉. The Fs’s are then diagonal in the pointer basis, Fs|k〉 = us(k) |k〉, or

equivalently

Fs =
∑
k

|k〉 〈s|Uk|ϕ〉 〈k|.

Furthermore, Tr(Fs|k〉〈k|F †s ) = |us(k)|2, so that, after the system-probe interaction, we get

measurement output s with probability p(s|k) := |us(k)|2 and |k〉 → |k〉 with probability 1.

Remark 1:

For k fixed, the numbers p(s|k) := |〈s|Uk|ϕ〉|2 specified a probability measure on the probe

outputs,
∑

s p(s|k) = 1. These are the distributions of the outputs conditioned on the system

to be in the pointer state |k〉. There is one such distribution for each pointer state.

Repeated non-demolition POVMs and convergence

Let us assume that the non-demolition condition is satisfied and let ρn(j, k) := 〈j|ρn|k〉 be

the system density matrix in the pointer basis after n step. Let us give a special name for

the diagonal matrix elements, Qn(k) := ρn(k, k). Because of the non-demolition condition the

recursion formula is very simple. The diagonal elements transform as (we shall deal with the off

diagonal a bit later)

Qn(k)→ Qn+1(k) =
p(s|k)Qn(k)

πn(s)
,
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with probability

πn(s) = Tr(FsρnF
†
s ) =

∑
k

p(s|k)Qn(k).

By construction – because Tr(ρn) = 1 – the diagonal elements Qn(k) define a probability measure

on the pointer states, that is 0 < Qn(k) < 1 and
∑

αQn(k) = 1. This transformation thus

specifies a random flow on probability measures. It is worth noticing to the updating simply

consists in applying Bayes’s rule for conditioned probabilities

We can now spell out the convergence theorem (which is a formalisation of cavity QED

experiment on progressive collapse mentioned above):

Theorem (Bauer-Bernard) “Progressive collapse” :

Assume that the conditioned probabilities s → p(s|k) are all disjoints (that is: there does not

exist a disjoint pair of pointer states k and k′ such that p(s|k) = p(s|k′) for all outputs s). Then:

– The sequences n→ Qn(k) converge a.s. and in L1 for any k.

– The limit distribution is peaked: Q∞(k) := limn→∞Qn(k) = δk;k∞ for some random target

pointer k∞.

– The random target k∞ is distributed according to the initial distribution: P[k∞ = k] = Q0(k).

– The convergence to the target is exponential fast with

Qn(k)/Qn(k∞) ' exp[−nS(k∞|k)],

with S(k∞|k) the relative entropy S(k∞|k) = −
∑

s p(s|k∞) log
[ p(s|k)
p(s|k∞)

]
.

Proof.

The proof is based on the fact that Qn(k) is a martingale. A process is (naively) a martingale

if it is conserved in mean (demanding that it is conserved for each sample would be too much).

Technically this property demands that the mean of the process at step n + 1 conditioned on

the information up to time n is its value at time n, i.e.

E[Qn+1(k) |Fn] = Qn(k), for all k.

Let us compute baring in mind that the mean is computed by averaging on the possible output

values at step n+ 1 with a distribution specified by the system state at time n, so:

E[Qn+1(k) |Fn] =
∑
s

p(s|k)Qn(k)

πn(s)
πn(s)

=
∑
s

p(s|k)Qn(k) = Qn(k)

A theorem in probability theory then says that a bounded martingale converges almost surely

and in L1. The theorem is no so easy to prove but intuitively follows from the fact that the

martingale property limits the possible fluctuations of the process. Hence, at k fixed the series

n → Qn(k) converges. Let Q∞(k) be its limit. It has to satisfy the fixed point condition

p(s|k)Q∞(k) = Q∞(k)π∞(s) with π∞(s) =
∑

k p(s|k)Q∞(k) for all s such that π∞(s) 6= 0.

If the non-degeneracy condition imposing that all conditioned distribution p(|̇k) are different

holds, the only solution to this fixed point condition is that Q∞(k) is peaked. That is: there is

a certain pointer state |k∞〉 such that Q∞(k) = δk;k∞ .
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The target state |k∞〉 is random: it depends on the realization of the series of signals. Its

statistics, its distribution, is again determined as a consequence of the martingale property

because the probability that the target pointer has a given value k is:

P[k∞ = k] = E[δk∞=k] = E[Q∞(k)] = Q0(k),

where is the last equality we used, Q∞(k) = δk∞=k, the martingale property and the fact that

convergence is in L1.

The estimate for the large n behavior follows from an exact formula for the recursion relation

defining the Qn’s:

Qn(k) = Q0(k)

∏
s p(s|k)Nn(s)

Zn

with Nn(s) the number of the value s occurs in the n first output measurement and Zn the nor-

malisation factor Zn =
∑

kQ0(k)
∏
s p(s|k)Nn(s). Suppose that the sequence converges toward

the target k∞. Then,

Qn(k)

Qn(k∞)
=
∏
s

( p(s|k)

p(s|k∞)

)Nn(s) '
∏
s

( p(s|k)

p(s|k∞)

)np(s|k∞)
,

where in the last equality we used that asymptotically at large n, Nn(s) ' np(s|k∞) + · · · by

the law of large numbers. This yields an exponential decrease with rate equal to the relative

entropy. �

Remark 1:

Although we just argued that the system is projected onto one of the pointer state, one may

wonder how to read on which pointer it is projected? The only available information is the

series of outputs (s1, s2, · · · , sn, · · · ). Thus the question is: how to read the target value from

these sequences? The answer consists in looking at the histograms. Indeed, if the target is the

state |k∞〉, the number Nn(s) of time the value s appeared in the output signal after n step is

Nn(s) ' n p(s|k∞), asymptotically at large n. Hence, comparing the histogram of apparences of

all possible output values s with the list of conditioned probabilities p(s|k) allow to read what

k∞ is, provided that these conditioned probabilities are disjoint as we have assumed.

Remark 2:

The recursion relation used in the previous proposition started with the distribution Q0(k) read

from the initial system state. Usually this initial state is unknown, since no information about

the system has yet been extracted, and there is no way to recursively compute Qn(k). In absence

of initial information, one may start with some a priori trial distribution, say Q̂0(k), which may

differ from Q0(k), and update it recursively using Bayes’ rules:

Q̂n(k)→ Q̂n+1(k) :=
p(sn+1|k) Q̂n(k)

Ẑn
,

if sn+1 is the output signals at the (n+ 1)-the step. The distribution of the output signal is of

course specified by the system state, hence by Qn(k) and not by the trial distribution Q̂n(k). As

a consequence Q̂n(k) is not a martingale as is Qn(k). Nevertheless, one may prove that the trial

distribution Q̂n(k) converges and possesses the same limit as the system state distribution Qn(k).

In particular looking at the asymptotic behavior of the trial distribution provided another way

to read what the target pointer state |k∞〉 is.
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2.3 Decoherence, information and entropy

Decoherence or not?

If initially pure, the system state remains pure: not mixing and hence no decoherence al-

though the off-diagonal matrix elements decrease exponentially. However decoherence is present

if we don’t record the probe outputs – because then the series of probes behaves a large reser-

voir. This can be made a bit more quantitative. Under the non-demolition hypothesis all matrix

elements of the system density matrix evolve simply and multiplicatively according to

ρn(j, k)→ ρn+1(j, k) =
us(j)ūs(k)

πn(s)
ρn(j, k), with proba πn(s) =

∑
k

p(s|k)Qn(k).

If we do not keep track of the output signal we have to average over the output values s.

The mean then evolves according to ρ̄n+1(j, k)→ 〈ϕ|U∗αUβ|ϕ〉 ρ̄n(j, k). Hence

ρ̄n(j, k) = [〈ϕ|U∗αUβ|ϕ〉]n ρ0(α, β)→ 0, exponentially.

Remark 1:

The decoherence time ρ̄n(j, k) is of order −1
2 log |〈ϕ|U∗j Uk|ϕ〉|2. An upper bound, which we may

take as an approximation, is − log(
∑

s

√
p(s|j)p(s|k)) = − log( ~Pj · ~Pk), with ~Pk the real vector

with components p(s|k). From usual estimates - or lore - one infers that the decoherence time

is inversely proportional to the square distance between the constituents of the system. So,

we could naively argue that −1/ log[ ~Pj · ~Pk] provides a measure of the square distance between

the pointer states |j〉 et |k〉, although these pointer states are not directly related to positions.

Thsi distance may be viewed as defining a geometry over pointer states. Of course - may be

unfortunately - the geometry induced by this notion of distance depends on the nature of the

interaction with the surrounding (it depends on the interaction operator U).

Information and entropy balance

If initially pure, the system state remains pure and its von Neumann entropy vanishes at all

step,

SvN(n) := −Tr (ρn log ρn) = 0.

However, we may define another entropy, which we call the extrinsic entropy, via

Sext(n) := −
∑
k

Qn(k) logQn(k) 6= 0.

It is non zero unless the system is in a pointer state. It is of course relative to the pointer basis,

but it possesses a nice interpretation in term of information theory.

Indeed, we have two sets of random variables, the k’s, with probability distribution Qn(k)

at step n, and the s’s, the probe outputs at step n + 1, with probability distribution πn(s) =∑
k p(s|k)Qn(k). The joint distribution is Pn(s; k) := p(s|k)Qn(k). A simple computation

(detailed below) tells us that the extrinsic entropy monotically decreases in mean along repeated

non-demolition measurements (it is a super-martingale) and that its variation is coded into the
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so-called mutual information between the pointer state and the output distributions. Namely,

we have

E
[
Sext(n+ 1)− Sext(n)|Fn

]
= −In(s|k) ≤ 0,

with In(s|k) =
∑

s,k Pn(s, k) log
[ Pn(s,k)
πn(s)Qn(k)

]
.

Recall that information theory naturally measures the correlation between two set of variables

via the mutual information. Given two random variables X and Y with probability distribution

p(x, y) and marginales p(x) and p(y), the mutual information is defined as

I(X|Y ) :=
∑
x,y

p(x, y) log
[ p(x, y)

p(x)p(y)

]
= S(X) + S(Y )− S(X,Y ).

It is also equal to the relative entropie of X,Y with distribution p(x, y) and X,Y distributed

with the product distribution p(x)p(y). It measures the amount of information that can be

obtained from one variable by observing the other1. This is indeed what the previous equation

codes for: the mean uncertainty on k at step n+ 1, measured by the entropy Sext(n+ 1), equals

that at step n, given by Sext(n), minus the amount of information In(s|k) gained by knowing

the (n+ 1)-th output value s.

Let us do the computation. At step n+ 1, we have Sext(n+ 1) = −
∑

kQn+1(k) logQn+1(k)

with Qn+1(k) = Pn(s, k)/πn(s) with probability πn(s). Its mean conditioned on the information

Fn up to step n is E[Sext(n + 1)|Fn] = −
∑

s,k πn(s)Qn+1(k) logQn+1(k). Since Qn+1(k) =

Pn(s, k)/πn(s) this may be rewritten as

E[Sext(n+ 1)|Fn] = −
∑
s,k

Pn(s, k) log[Pn(s, k)/πn(s)]

= −
∑
s,k

Pn(s, k) log
[ Pn(s, k)

πn(s)Qn(k)

]
+ Sext(n)

where we used
∑

s Pn(s, k) = Qn(k) in the last step.

3 Open quantum walks

3.1 Open quantum walks

Repeated indirect measurements as random walks

Repeated indirect measurements can be seen as kinds of quantum random walks by associ-

ating values to the output signals. The walker moves randomly on a graph or a lattice, whose

specification depends on which kind of information we keep. Contrary to usual classical random

walks, the walker carries internal degrees of freedom which are encoded into the state of the

1Recall that the mutual information is positive because the log-function is concave. Indeed

I(X|Y ) = −E
[
log
(p(x)p(y)

p(x, y)

)]
≥ − log

(
E
[p(x)p(y)
p(x, y)

])
= − log

(∑
x,y

p(x, y)
p(x)p(y)

p(x, y)

)
= 0
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monitored quantum system. The position of the walker and its internal state are both up-dated

at each step with probability rules which depend on the value of the internal state but which

are borrowed from indirect measurement experiments.

Let us give a few simple examples. Suppose that at each step of repeated indirect mea-

surements we only retain the last digit sn from the series of the first n outputs (s1, · · · , sn),

we may then choose that the walk takes place on the complete graph with vertices indexed by

the possible value s of outputs with the rule that if the n-th output is sn then, by definition,

the walker jumps on site sn. The internal state is then up-dated as in repeated indirect mea-

surements, ρ→ FsnρF
†
sn/Tr(FsnρF

†
sn). Suppose on contrary that we keep all information about

the output signals so that the vertices of the graph are indexed by the sequences (s1, · · · , sn) of

finite but arbitrary length. These naturally form an infinite tree, the descendants of a vertex

corresponding to a given sequence of length n are all the sequences of length n+1 with their n-th

first entrees being fixed by the original sequence. By definition the walker then moves randomly

downwards on the tree and at each step its internal state is up-dated according to the rules of

indirect measurements. Of course we can also imagine intermediate examples in which some

partial information on the outputs (more than only the last digit but less than the complete

series) is kept. Concrete examples will be given below.

Open random walks

Let us formalize the definition following ref.[?]. We need to introduce a graph on which

the walker moves and a quantum system whose states describe the walker’s internal degrees of

freedom – sometimes called the walker’s quantum gyroscope.

Definition (Attal et al) “(Quantum trajectories of) Open quantum walk”:

Let Λ be an oriented graph. Let H be a Hilbert space. Let Bxy be (bounded) operators Bxy on H
associated to any edge x→ y of Λ such that

∑
y B
∗
xyBxy = I for all x. Let (x, ρ) be the position

x ∈ Λ and the internal state ρ of the walker. The open quantum walk (OQW) with transition

matrices Bxy is the Markov chain defined by the moves

(x, ρ)→ (y,
Bxy ρB

∗
xy

πxy
), with probability πxy = Tr(BxyρB

∗
xy).

Let us give an example. Take Z as graph, C2 as internal space, and choose two matrices

B+ (resp. B−) associated to steps to the right (resp. to the left), which are supposed to satisfy

B∗+B+ + B∗−B− = I. Let (xn, ρn) be the position of the walker and its internal state at step n.

The moves are:

(xn, ρn)→
(
xn+1 = xn + εn+1, ρn+1 =

Bεn+1ρnB
∗
εn+1

πn(εn+1)

)
.

with

εn+1 = ± with probability πn(±) = Tr(B±ρnB
∗
±).

Note that the position of the walker is xn =
∑

j εj and that ε = + (resp. ε = −) corresponds to

a move to the right (resp. left). This corresponds to a homogeneous open quantum walk on the

line. Generalization to higher dimension, say to Zd, is simple.
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The relation with repeated POVMs is simple. The probes are Qu-bits – two level systems

– with basis |±〉. They interact recursively with the quantum system – which plays the role of

the walker’s internal quantum gyroscope. The walker moves to the left/right depending on the

probe measurement output which can be either + and −. Hence the information which is kept

is the sum of the outputs.

The OQW trajectories may be considered from dual points of view: either one is interested

in the internal quantum system behavior and focuses on the information extracted from the

repeated POVMs, or one insists looking at the walker’s position, say for geometrical purposes.

This leads to two alternative presentations of OQWs, see below.

Remark 1:

Given x, the set of operators Bxy specifies a POVM, because they satisfy
∑

y B
∗
xyBxy = I. Thus,

we can view the OQW has an iteration of non homogeneous POVMs whose characteristics

depend on the previous output signals. This is clearly reminiscent of feedback procedures: the

action depends on the past information.

Remark 2:

To any OQW is associated a completely positive map acting on states in H⊗L2(Λ). We restrict

ourselves to (extended) density matrix of the form
∑

x ρx⊗ |x〉〈x|. The normalization condition

is
∑

x Tr(ρx) = 1. The CP-map is then defined by

P
(∑

x

ρx ⊗ |x〉〈x|
)

=
∑
x;y

(BxyρxB
∗
xy)⊗ |y〉〈y|.

or equivalently

P(ρ)x =
∑
y

ByxρyB
∗
yx.

It is trace preserving because
∑

x;y Tr(BxyρxB
∗
xy) =

∑
x Tr(ρx) = 1.

Given an OQW (xn, ρn) we may tautologically define density matrices ρn ⊗ |xn〉〈xn|. Their

means are an (extended) density matrices defined through
∑

x ρ̄x(n)⊗|x〉〈x| := E[ρn⊗|xn〉〈xn|].
Looking at one step forward for each sample and averaging we get that

ρ̄x(n+ 1) = P
(
ρ̄(n)

)
x
.

Thus the CP-map P is that governing the evolution of those mean (extended) density matrices.

Remark 3:

Alternatively, OQWs may be obtained by iterating alternatively position measurement and the

map P. Indeed, let us start with the (extended) density matrix ρ⊗ |x〉〈x|, localized at a given

position x, and let us transform it with the map P to obtain
∑

y(BxyρB
∗
xy) ⊗ |y〉〈y|. The

probability to find y as result of a Von Neumann measurement of the position is Tr(BxyρB
∗
xy) =

πxy and the projected state after the measurement is
BxyρB∗xy
πxy

⊗ |y〉〈y| if y is the result of the

position measurement.

Remark 4:

To be more precise what we have defined is the notion of quantum trajectories for a specific

quantum process – which will be described below, see “dilation of open quantum walks”.
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3.2 Basics: ergodicity, irreducibility, detailed balance

Many notions and properties of classical Markov chains apply to open quantum walks. We give

here a few samples of those.

More examples

(i) Simple example of trapped trajectories:

Take Λ = Z and H = C2 with canonical basis | ↑↓〉, and transition matrices B∗x;x−1 = ( 0 0
1 0 ) and

B∗x;x+1 = ( 0 1
0 0 ). Because these matrices square to 0, the walk is very simple: a spin up | ↑〉 is

transfered one step to the left into a spin down | ↓〉, and reciprocally. Hence, after one step any

walker is trapped on two sites and oscillates between those two sites with its spin flipping at

each step.

(ii) State engineering:

..........

(iii) Non-demolition iterated measurements as OQW:

In this example H = C2, Λ = Z and the transition matrices B± := Bx;x±1 are diagonal – this is

the non-demolition hypothesis. Let us parametrize them as B± =
(√

p± 0
0
√
q±

)
with p+ + p− = 1

and q+ + q− = 1. Clearly B∗+B+ +B∗−B− = I. We assume that p± 6= q±.

Suppose, for simplicity, that the initial density matrix ρ0 is diagonal. Then all its iterations

ρn are also diagonal. Let us parametrize them as ρn =
(
Qn 0
0 1−Qn

)
. Let (xn, ρn) be an OQW

trajectory. The up-datings are

(xn, Qn)→
(
xn+1 = xn ± 1, Qn+1 = p±Qn/πn(±)

)
,

with probability πn(±) = p±Qn+q±(1−Qn). As in the first section on repeated non-demolition

measurement, this recursion relation can be solved explicitly:

Qn = Q0 p
Nn(+)
+ p

Nn(−)
− /Zn

where Zn = Q0 p
Nn(+)
+ p

Nn(−)
− + (1−Q0) q

Nn(+)
+ q

Nn(−)
− with N±(n) the number of right/left steps

after n iteration. By definition the sum Nn(+)+Nn(−) = n and the difference Nn(+)−Nn(−) =

xn − x0 is the walker displacement. The distribution of series of outputs (ε1, · · · , εn) can be

computed exactly by recursion:

P[(ε1, · · · , εn)] = Q0 p
k
+p

n−k
− + (1−Q0) qk+q

n−k
− ,

with k the number of + is the sequence. Alternatively, the law of Nn(+) and Nn(−) is:

P
[
Nn(+) = k,Nn(−) = n− k

]
= Q0

(n
k

)
pk+p

n−k
− + (1−Q0)

(n
k

)
qk+q

n−k
− .

Hence, the distribution of the number of steps is the sum of two binomial distributions, – i.e.

the sum two classical random walks –, with respective parameters p± and q± and weights Q0

and 1−Q0.

Ergodicity
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Ergodicity theorems have been proven for CP-maps in a quite general setting. The theorem

we are about to quote is a consequence of one of those proven in [?]. At a first naif level,

ergodicity statements are consequences of the observation that the time average of a dynamical

map is an invariant. In the case of OQWs, this amounts to consider the CP-map P, defined by

P(ρx ⊗ |x〉〈x|) =
∑

y(BxyρxB
∗
xy)⊗ |y〉〈y| and its iterations. The time average, with initial data

ρ⊗ |x0〉〈x0|, is defined by

Sn :=
1

n

n∑
k=0

Pk
(
ρ⊗ |x0〉〈x0|

)
.

It is clear that, if the sum converges, the limit is invariant: P(S∞) = 0. Since the CP-map

P governs the mean behavior of OQWs, this simple observation gives information on the time

average of the mean behavior of OQWs. As it was realized for general CP-map, this information

can be promoted into a path-wise ergodicity statement – i.e. sample by sample and not only in

mean:

Theorem (Kummerer-Maassen) “Ergodicity”:

Let (xn, ρn) an OQW. Then, we have the almost sure convergence of its time average:

1

n

n∑
k=0

ρk ⊗ |xk〉〈xk| →
∑
x

ρinv
x ⊗ |x〉〈x|, a.s.,

when n→∞, with P(ρinv) = 0, or equivalent
∑

xBxyρ
inv
x B∗xy = ρinv

y .

Of course when there is more than one invariant state, ρinv
y is a random variable, i.e. it

depends of the realization. For finite OQWs the number of invariant state is finite, so that ρinv
y

can be decomposed on a basis of invariant states. The coefficients of this decomposition are

random. This is for instance what happens in the case of non-demolition measurements.

This theorem has different formulations or corollaries. First it is equivalent to claiming that

1

n

n∑
k=0

ρk Ixk=y → ρinv
y a.s.

Taking the trace of the previous equation gives information on the frequency that a given site

has been visited by the walk. Let Nn(y) the number of time the walker visits the site y in the

n first step, that is Nn(y) =
∑n

k=0 Ixk=y. Then,

lim
n→∞

Nn(y)

n
= Tr(ρinv

y ),

or equivalently Nn(y) ' nTr(ρinv
y ) at large n. As a consequence, one can reconstruct the

normalized invariant state ρinv
y /Tr(ρinv

y ) by looking at the histogram of the visit of the site y.

Namely,

lim
n→∞

1

Nn(y)

n∑
k=0

ρk Ixk=y =
ρinv
y

Tr(ρinv
y )

.

Proof.

A nice proof is given in [?]. It is based on a Doob decomposition. To simplify notations let
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ρ̂k = ρk ⊗ |xk〉〈xk|. Consider the sum of its iteration
∑n

k=0 ρ̂k. Since E[ρ̂n|Fn−1] = P(ρ̂n−1), its

Doob decomposition is
n∑
k=0

ρ̂k = Mn +

n−1∑
k=0

P(ρ̂k),

with Mn a martingale, E[Mn|Fn−1] = Mn−1. From the law of large for martingales and bound-

ness arguments it follows that 1
nMn → 0 and hence that 1

n

∑n
k=0 ρ̂k −

1
n

∑n−1
k=0 P(ρ̂k) converges

to 0. By iteration, this implies that 1
n

∑n
k=0 ρ̂k −

1
n

∑n−1
k=0 P

m(ρ̂k) converges to 0 for any m. By

summation this then implies that 1
n

∑n
k=0 ρ̂k −

1
n

∑n−1
k=0

(
1
M

∑M−1
m=0 Pm

)
(ρ̂k) also converges to 0.

Now, the operation 1
M

∑M
m=0 P

m project on invariant states. Hence, 1
n

∑n
k=0 ρ̂k converges to an

invariant state. �

Remark 1:

Notice that this theorem has a larger domain of application than the progressive collapse theorem

that we quoted earlier because it is applicable to a more general setting than non-demolition

measurements. But it is less precise than this previous theorem because it gives information

about the convergences of the time average whereas the progressive collapse theorem provides

detailed information about the convergence of the process and about the random limit invariant

state.

Detailed balance

As for the classical random walks there is a simple notion of detailed balance. As in the

classical case, this property implies the existence of a simple invariant state if normalizable.

Definition-Proposition “Detailed balance”:

(i) Detailed balance is said to be fulfilled if there exists a family of operators µx, x ∈ Λ, acting

on H such that Byxµy = µxB
∗
xy.

(ii) In such case, ρinv
x := µxµ

∗
x is P-invariant: P(ρinv) = ρinv.

(iii) If z :=
∑

x Tr(µxµ
∗
x) <∞, then ρinv

x := µxµ
∗
x/z is a normalized invariant state in H⊗L2(Λ).

(iv) If µx fulfills of the detailed balance condition, so does µ∗x. Hence, we may choose µx hermi-

tian.

Proof.

The proof is very simple. The hypothetical relations are Byxµy = µxB
∗
xy and thus µ∗yB

∗
yx =

Bxyµ
∗
x. This implies that µ∗x is solution of the detailed balance condition. Furthermore

P(µµ∗)x =
∑
y

Byxµyµ
∗
yB
∗
yx =

∑
y

µxB
∗
xyBxyµ

∗
x = µxµ

∗
x,

because
∑

y B
∗
xyBxy = I. Hence P(µµ∗)x = µxµ

∗
x and similarly P(µ∗µ)x = µ∗xµx. �

As in the classical case, the detailed balance condition has a simple and natural interpretation

in terms of time reversal. Consider a path Ω = (x0, x1, · · · , x`−1, x`) from x0 to x`. The

probability for the walker, starting at x0 with an internal state ρ0, to follow the path Ω is

P[Ωx0→x`
∣∣x0, ρ0] = Tr(BΩ ρ0B

∗
Ω).

where B∗Ω be the transfer matrix along these paths B∗Ω = B∗x0,x1 · · ·B
∗
x`−1,x`

.

Consider now the reversed path Ω = (x`, x`−1, · · · , x1, x0) from x` to x0, and its associated
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transfer matrix B∗
Ω

= B∗x`−1,x`
· · ·B∗x0,x1 . The detailed balance intertwines them BΩ and BΩ

µx0 B
∗
Ω = BΩ µx` .

Hence, Tr(BΩ µ
2
x0B

∗
Ω) = Tr(BΩ µ

2
x`
B∗

Ω
). Choosing µx to be hermitian, this translates into a

statement about probabilities of visiting reversed paths:

P[Ωx0→x`
∣∣x0, ρ0 = µ2

x0/Tr(µ2
x0)]× Tr(µ2

x0) = P[Ωx`→x0
∣∣x`, ρ` = µ2

x`
/Tr(µ2

x`
)] × Tr(µ2

x`
).

That is: the ratio of the probabilities to visit a path and its time reversed is proportional to the

ratio the asymptotic frequencies of visits of the final and initial points, as usual with classical

detailed balance.

Remark 1:

If it exists, µx intertwines P and its dual P∗, in the sense that P(µMµ∗)x = µxP
∗(M)xµ

∗
x.

Remark 2:

This notion of detailed balance can clearly be extended to any completely positive map. Suppose

that we are giving ourself a completely positive map Φ whose action on states is given by the

following Kraus decomposition Φ(ρ) =
∑

αBα ρB
∗
α with

∑
αB
∗
αBα = I. We say that detailed

balance is fulfilled if there exists an operator µ and c-number matrix Cβα such that
∑

αCβαC
∗
γα =

δβγ (i.e. CC† = 1) such that Bα µ = µB∗β Cβα. In such case, the operator µ intertwines Φ and

its dual Φ∗ via Φ(µOµ∗) = µΦ∗(O)µ∗ and, if Tr(µµ∗) < ∞, then ρinv := µµ∗/Tr(µµ∗) is an

invariant state for Φ.

Irreducibility

A relevant notion is the irreducibility of P because it allows to decompose any OQW in

elementary blocks.

Definition “Irreducibility of OQW”:

Consider an open quantum walk on a graph Λ with transition matrices Bx,y for x, y ∈ Λ and let

BΩ be the transfer matrix associated to a path Ω as above. We say that this OQW is irreducible

if and only if the map P is irreducible in the sense of Davies [?], or equivalently (see [?]) if for

any x, y in Λ and u, v in H, there exists a path from x to y such that 〈v,BΩu〉 6= 0.

This means that if we pick any pair of vectors in the internal walker space at two different

positions on the graph, there always exists a path such the transport of the vector in the initial

position to the final position has a non vanishing component along the chosen vector at the final

position. In other words, an OQW is said to be irreducible if no internal subspace is left when

transporting vectors along random paths.

For an irreducible OQW to possess an invariant state it is enough that the CP-map P

possesses an eigenvalue 1. In this case the invariant state is unique and faithful in the sense that

its eigenvalues are all non zero – again no thing is left in the invariant state.

Irreducible OQWs are building blocks of non irreducible OQWs.

Proposition (Carbonne-Pautrat) “Decomposition of OQW”:

Consider an open quantum walk on a graph Λ, and assume that it possesses a faithful invariant

state. Then it may be decomposed in a collection of M irreducible open random walks as follows:
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– Its Hilbert space decomposes in direct sum, H⊗L2(Λ) = ⊕Mm=1H(m), such that the restriction

P(m) of P on H(m) is irreducible;

– For any m, the space H(m) decomposes as a collection of internal subspaces h
(m)
x ⊂ H, with

h
(m)
x localized at point x ∈ Λ, such that Bxyh

(m)
x ⊂ h

(m)
y .

This means that we can decompose the total space H ⊗ L2(Λ) in pieces. Each component

is made of collection of internal subspaces h
(m)
x indexed by points of the original graph. These

subspaces may be not identical at different points, that is we may have h
(m)
x 6= h

(m)
x for x 6= y.

They also may be not all non trivial. This means that a subgraph Λ(m) = {x ∈ Λ
∣∣h(m)
x 6= {0}}

is associated to each of the component. Each collection subspace h
(m)
x is stable under transport

along any path by the transfer matrices of the original OQW, and H(m) = ⊕x∈Λ(m)h
(m)
x ⊗C|x〉.

Instead of proving this decomposition - but see ref.[?] -, let us take the very simple example

of trapped trajectory we discussed before. Take Λ = Z and H = C2 with canonical basis | ↑↓〉,
and transition matrices

B∗x;x−1 =

(
0 0
1 0

)
, B∗x;x+1 =

(
0 1
0 0

)
.

Because the transition matrices are so simple, a spin up | ↑〉 is transfer one step to the left

into a spin down | ↓〉, and reciprocally. Hence we decompose this OQW into two irreducible

components with identical sublattices Λ(1) = Λ(2) = Λ and Hilbert spacs

h
(1)
2n = C | ↑〉, h(1)

2n+1 = C | ↓〉 and h
(2)
2n = C | ↓〉, h(1)

2n+1 = C | ↑〉.

Notice that this zigzag decomposition is not unique.

3.3 Geometrisation and dilation

Geometrisation

As it is hopefully clear from the previous discussion, open random walks may be viewed

with different perspectives, one of those puts emphasis on the position related observables. This

suggests that we can change gears and adopt a more geometrical point of view by transposing the

geometric constructions of classical stochastic processes to the quantum ones, and in particular

to open quantum walks. Of course such extensions of probability concepts to quantum processes

has some flavors of non-commutative geometry. Natural questions are for instance: Can classical

potential theory be transposed to open quantum walks? What are harmonic measures for

quantum stochastic process? See however ref.[?] for answer in the context of open random

walks. Etc... Another direction for the geometrization of quantum processes incorporating

geometrical data, as OQW does, consists in using them to test the geometry of those data.

For instance, it is well know that the 2D Brownian motion is conformally invariant. One may

wonder [?] whether its open quantum analogue can be made conformally invariant?

Dilation and a simple quantum stochastic process

We now use the example of open quantum walks on the line (on Z) to introduce the notion

of quantum stochastic processes which can be seen as non-commutative extensions of classi-

cal stochastic processes. To make a long story short these processes correspond to the OQW
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construction with series of probes interacting with a quantum walker but with the (important)

modification that the probes are not measured after they have interacted with the walker.

So, we may imagine preparing the system in a state ρ and an (infinite) series of probes all in

the identical pure state |ϕp〉. If Hsys is the system Hilbert space and Hprobe the probe Hilbert

space, the total Hilbert for the system and the collection of probes Hsys ⊗ H⊗∞probe. In the case

of OQW on the line Hsys = L2(Z) ⊗ C2 and Hprobe = C2. Such an infinite product does not

make sense unless a specified state is singled-out. In our case, this state is the initial state of

the system and the collection of probes, that is

ρ0
sys ⊗ ρp ⊗ · · · ⊗ ρp ⊗ · · · = ρ0

sys ⊗ ρ⊗∞p =: Ω,

with ρ0
sys and ρp the system and probes initial states respectively. For instance ρp = |ϕp〉〈ϕp|.

When a finite, but arbitrary large, number of probes has interacted with the system the state

Ω is locally modified – in the sense that there is still an infinite queue of probes in the state ρp.

The Hilbert space Hsys⊗H⊗∞probe describes such local modifications, in way analogous to the fact

that states of a Fock space describe local excitations above a vacuum state.

By construction the evolution is given by the successive iteration of system-probe interac-

tions, as for repeated POVM (but without probe measurements). To describe it we have to

introduce a unitary operator U , acting on the tensor product Hsys⊗Hprobe, and we have to give

a name for the operator describing the interaction of the system with the n-th probe. We call it

U0;n. It acts non trivially on the system Hilbert space and on the n-th copy of the probe Hilbert

space and trivially on the other copy of Hprobe. The evolution of the total state is thus given by

the evolution

Ω→ U0;1 ΩU †0;1 → U0;2U0;1 ΩU †0;1U
†
0;2 → · · · .

After n steps the system and the n first probes are entangled and the density matrix of the total

system is of the form

ρtot
n ⊗ ρp ⊗ ρp ⊗ · · · ,

with ρtot
n the entangled state of the system and the first n probes produced by the n first

successive interactions. At the next step, the evolution produces the state ρtot
n+1 ⊗ ρp ⊗ · · · with

ρtot
n+1 = U0;n+1

(
ρtot
n ⊗ ρp

)
U †0;n+1,

and all probes after the (n+ 1)-th remain untouched.

When successively increasing the number of probes having interacted with the system we

increase the algebra of possible observables, that is we increase the algebra of possible obser-

vations hence of possible information gains. This series of increasing algebras is the quantum

analogue of the notion of filtration in classical stochastic processes. If at each step we measure

an observable on the last probes we are back to quantum trajectories.

Quantum stochastic processes with classical random walks

As an illustration, let us look at the case of a quantum walker with trivial internal space. The

OQW trajectories are then that of classical random walks. What is the corresponding quantum

process?
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For a walk on the line, the system Hilbert space is L2(Z) with basis |x〉, x ∈ Z. The probe

Hilbert space is C2 with basis |±〉. Suppose that all probes as prepared in a pure state |ϕp〉,
say |ϕp〉 = 1√

2
[|+〉+ |−〉]. The system-probe interaction is supposed to be such that the unitary

operator U is

U |x〉 ⊗ |ϕp〉 =
1√
2

[|x+ 1〉 ⊗ |+〉+ |x− 1〉 ⊗ |−〉].

Suppose that initially the walker is in the state localized |x0〉. Iterating the interaction

between the walker and the probes produces an entangled state of the walker and the n first

probes of the form

|ψn〉 =
1

2n/2

∑
ωn

|X(ωn)〉 ⊗ |ωn〉

where the sum is over all walks ωn of length n, starting at x0 and with position X(ωn) at their

nth step, and |ωn〉 := |±〉 ⊗ ...⊗ |±〉 are orthogonal vectors associated to each walk.

This state ressembles some kind of “quantum parallelism”. It enables to book-keep track of

all possible walks in an algebraic way. It also codes for the probability of realization of any given

sample: the probability of occurrence of the walk ωn is the modulus square of the coefficient in

front of |Xn(ωn)〉 ⊗ |ωn〉. We may view the probes states |±〉 as quantum coins.

At this point there is no more information in this sum than in the classical description

– just parallelism. But the information we can extract at step n by observing the n first

probes is encoded into the non commutative algebra of observables on these probes. These

non-commutative extension is the essence of quantum stochastic processes. It offers a way to

‘observe quantum effects’ by considering probe measurements that are not aligned with the basis

vectors. The measurement results will then not be in one-to-one correspondence with walker

trajectories and the position will not be well defined.

Let us assume that we measure the probe effective spin along a tilted direction u, with

observable σu = u · σ, with normalized eigen-vectors:

|±u〉 = e±iϕ/2 cosϑ/2 |±〉 ± e∓iϕ/2 sinϑ/2 |∓〉.

The outputs of these measurements are still be ±.

Measuring σu = u · σ successively on each probe yields repeated POVM and quantum

trajectory, as explained before. If u is alined with the z-axis these trajectories are identical to

the classical random walks - because the property for the walker to be on a well defined position

is preserved by the process. But in all other cases with u generic, the walker quantum state is

a superposition of different positions. Hence the quantum trajectories are not random walks.

What are they?

The POVM associated to measuring σu = u · σ is F± = 〈±u|U |ϕp〉, so that

F±|x〉 = 〈±u|U (|x〉 ⊗ |ϕp〉) =
1√
2

[
|x+ 1〉〈±u|+〉+ |x− 1〉〈±u|−〉

]
.

Instead of working with the position basis |x〉 we can Fourier transform and work with the

momentum basis |k〉. Then F± act diagonally on |k〉 and

F±|k〉 = u±(k) |k〉, with u±(k) =
1√
2

[
〈±u|+〉eik + 〈±u|−〉e−ik

]
.
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That is: we are in the non-demolition situation with the momentum basis states as pointer

states. For u along the z-axis, the u±(k)’s are degenerate in the sense that |u±(k)|2 = 1. But

otherwise they are not. Hence we can apply the previous convergence theorem and claim that the

walker state randomly collapses to a momentum state when iterating the process ad infinitum.

If |ψ0〉 is the initial walker state, the target state |ψ∞〉 at infinite time is

|ψ∞〉 = |k∞〉, with probability P[k∞ = p] = |〈p|ψ0〉|2.

Of course these are von Neumann’s rules for momentum measurement.

Remark 1:

To sum up this tiny exercice: Parallelising random walks yields the simplest possible quantum

stochastic processes. That one is reduced to a classical stochastic process – quantum trajecto-

ries – when extracting information by measuring observables on the output coins. Measuring

the spin coins in the preferred direction yields back the classical random walks. But measur-

ing in any other direction produces quantum trajectories describing progressive non-demolition

measurements of the momentum operator.

4 Continuous monitoring and quantum trajectories.

4.1 From repeated interactions and measurements

The continuous limit of repeated POVMs can be formulated when the time lapse between two

successive POVMs is small compare to any other time scales. In such case, the successive

information obtained via the repeated POVMs becomes a continuous random signal. Taking

the continuous limit of repeated POVMs involves two facets:

– Writing the time continuous evolution equations for the system density matrix, these equations

are driven by the random output signals;

– Describing what is the statistics of these random signals and what stochastic process they

generate.

Recall the discrete evolution equation of the system density matrix under repeated POVMs:

ρ→
Fi ρF

†
i

π(i)
, with probability π(i) = Tr(Fi ρF

†
i ).

To simplify let us assume that we are dealing with a doublet of POVMs (i.e. the probes form

two level systems) so that the probe measurement outputs are either + or − (i.e. the index i

above takes only the two possible values ±). We then label the elements of the POVM by F±,

with F ∗+F+ +F ∗−F− = I. To take the continuous limit we have to assume that the system density

matrix is only slightly modified at each step, so that there should exist a small parameter, say

ε, such that when ε = 0 the density matrix is not modified. There is then two cases:

– either F ∗±F± are both non zero and proportional to the identity at ε = 0;

– or one of the two F ∗±F± vanishes and the other one is equal to the identity at ε = 0.

The first case leads to SDEs driven by a Brownian motion whereas the second case yields SDEs

driven by a Poisson process. To simplify matter we shall deal with the first case only (which is

actually more generic).
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Scaling limit of POVM

Assuming that F± ∝ I at ε = 0, we look for an expansion of F± in power of
√
ε (by

convention), F± = f±
(
I+ · · ·

)
, with |f±|2 = p± and p+ + p− = 1, such that F †+F+ +F †−F− = I.

To simplify matter let us suppose that f+ = f− = 1/
√

2 and hence p+ = p− = 1/2 (the

symmetric case). Solving pertubatively in
√
ε the constraints F †+F+ + F †−F− = I (see below)

yields the possible form of F±:

F± =
1√
2

[
I±
√
εN − ε(iH ±M +

1

2
N †N) +O(ε3/2)

]
with H hermitian but not necessarily N and M . This is the most general expansion for F±
solutions of the unitary constraint F †+F+ +F †−F− = I around the symmetric solution F± = I/

√
2

such that the scaling limit exists.

Indeed, the general solution to F †+F+ + F †−F− = I in the neighborhood of F± = I/
√

2 is

F± = 1√
2

[I ±
√
εN± − ε(±M± + 1

2N
†
±N±) + · · · with < (N+) = < (N−) and < (M+) = < (M−)

(here 2< (N) = N +N †). Not all of these solutions lead to a consistent scaling limit. Existence

of the scaling limit (see below) requires N+ = N− and this limit only depends on the difference

M+ −M−. Since M± have identical hermitian part, only the difference of their anti-hermitian

components matters in the scaling limit, i.e. M± = K± iH± with K and H± hermitian and the

scaling limit depends only on H := (H+ +H−)/2.

Let us now see what happens to the one-step transformation ρ → F± ρF
†
±/π(±), which

occurs with probability π(±) = Tr(F± ρF
∗
±†). We have to compute the expansion F± ρF

†
± and

Tr(F± ρF
†
±) in power of

√
ε. The results are (for M = 0):

F± ρF
†
± =

1

2

[
ρ±
√
ε
(
Nρ+ ρN †

)
+ ε
(
− i[H, ρ] + LN (ρ)

)
+O(ε3/2)

]
Tr(F± ρF

†
±) =

1

2

[
1±
√
εTr

(
Nρ+ ρN †

)
+O(ε3/2)

]
with LN , a so-called Lindbladian, is defined by

LN (ρ) = NρN † − 1

2
(N †Nρ+ ρN †N).

Below, ε (not
√
ε) shall be identified with dt. Notice that the

√
ε-terms come with a ± sign,

so that they depends on what is going to be the measurement outputs, or equivalently, they

depend son the randomness of the signals. On contrary the ε-terms are independent of ± and

hence independent of the output randomness.

Recall that by averaging the POVM, we get the completely positive map Φ : ρ → Φ(ρ) =

F+ρF
∗
+ + F−ρF

∗
−. Hence its continuous limit is (one can check that the M -dependent terms

cancel)

Φ(ρ)|ε→0 = ρ+ ε
(
− i[H, ρ] + LN (ρ)

)
+ · · ·

From this equation we learn that Lindbladians are the generators of completely positive maps

(think about ε as the time interval dt). This is quite general.

Definition-Proposition (Lindblad, .....) “Lindladian”:

Let H be a Hilbert space and let ρ denote quantum states on H. Let H be hermitian and La be
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set of bounded operators on H. Lindblad operators are linear maps on quantum states defined

by

L(ρ) = −i[H, ρ] +
∑
a

[
LaρL

†
a −

1

2
(L†aLaρ+ ρL†aLa)].

– Lindblad operators are generators of CP-maps in the sense that the maps Φt := etL form a

one parameter group of CP-maps.

– Reciprocally, any one parameter group of CP-maps, depending continuously on this parameter,

can be written in such exponential form.

– Notice that the decomposition of L in terms of H and La is not unique: L is invariant under

shifts La → La +ma and H → H + i
2(ma −m†a) or under unitary linear transformations of the

La’s.

Remark 1:

Recall that POVM can be viewed as resulting from the system-probe interaction plus the mea-

surement. If those probes are prepared in a state |ϕ〉, the operator F± are F± = 〈±|U |ϕ〉 where U

is the system-probe evolution operator. This can written as U = e−i(δt)Ĥ with δt the interaction

duration and Ĥ the system-probe hamiltonian which can be decomposed as Ĥ = Hs+Hp+Hint

with Hint the interaction hamiltonian and Hs (resp. Hp) the system (resp. probe) hamiltonian.

If we take δt as small parameter, i.e. we choose ε = δt, we have to rescale the interaction

hamiltonian according to Hint = 1√
ε
Hi for the continuous limit to exist (so that the interaction

as a non-trial effect). Then (up to an irrelevant constant term)

F± := 〈±|U |ϕ〉 = 〈±|ϕ〉
[
I− i
√
ε 〈±|Hi|ϕ〉 − ε

(
iHs +

1

2
〈±|H2

i |ϕ〉
)

+ · · ·
]
.

The continuous scaling limit exists only if 〈+|Hi|ϕ〉 + 〈−|Hi|ϕ〉 = 0. This corresponds to the

previous expansion with the identification (when 〈±|ϕ〉 6= 0)

p± = |〈±|ϕ〉|2 = 1/2, N = −i〈+|Hi|ϕ〉 = i〈−|Hi|ϕ〉, H = Hs.

Remark 2:

One may of course generalizes the previous discussion to higher dimensional cases with POVMs

defined by a bigger set of operators F̂s satisfying
∑

s F̂
†
s F̂s = I. Recall that CP-map is then

defined by ρ → Φ(ρ) =
∑

s F̂sρF̂
†
s . Suppose that this CP-map is close to the identity and that

the F̂s’s admit an expansion as the form F̂s = usI +
√
ε N̂s + ε M̂s, with us complex numbers

and Ns, Ms operators. It is then a simple algebraic exercice to find the conditions imposed by

demanding that Φ is close to the identity and the POVM condition. The first relation is that∑
s |us|2 = 1, so that the numbers |us|2 define a probability measure by setting ps := |us|2, with∑
s ps = 1. Let us denote by Eo this probability measure. The elements F̂s of the POVM are

then viewed as random operator F̂ distributed according to Eo. Let us assume for simplicity

that none of these probabilities vanishes so that we can factorize them by defining F̂s = us Fs.

The CP-map Φ then reads

ρ→ Φ(ρ) =
∑
s

ps (FsρF
†
s ) = Eo[FρF †], with Eo[F †F ] = I.

For Φ close to the identity, F = I +
√
εN + εM + · · · , the conditions on N and M are

Eo[N ] = ib, b ∈ R; Eo[M +
1

2
N †N ] = −iH, H† = H.
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The CP-map then becomes Φ(ρ) = ρ+ εL(ρ) + · · · with a Lindbladian L given by

L(ρ) = −i[H, ρ] + Eo[NρN † − 1

2
(N †Nρ+ ρN †N)].

Recall that here the N are viewed as random operator distributed according to Eo.

Remark 3:

The case in which one of the product F †±F± vanishes (the case we didn’t study) corresponds to

preparing the probes in eigenstates of the measured observable. Suppose, to fix the idea, that

the probes are prepared in the eigenstate |+〉. Then, the probe measurement outputs will be +

with very high probability because the probes are only slightly modified by the system-probe

interaction. This means that the histogram of output signals we are going to observe are made

of long series of pluses interrupted with a small number of −. As consequence the signals we

get in the scaling limit are discontinuous, with random jumps. The evolution equations are

going to be driven by these discontinuous random signals, not by Brownian motions. The case

we did study correspond to the cases in which the probes are prepared in states which are not

eigenstates of the measured observable.

Quantum trajectory SDEs

The aim is now to arrive at the evolution equations for quantum systems under continuous

monitoring via repeated POVMs (which we assume to be a doublet for simplicity). These are

known as quantum trajectory SDEs:

Proposition-Definition (Belavkin, Barchielli, Milburn-Wiseman,...) “Quantum Trajectories”:

Let ρ be the system density matrix under continuous monitoring via doublet of POVMs. Its time

evolution is governed by the following non-linear SDEs (in Itô form):

dρt =
(
− i[H, ρt] +

∑
a

LMa(ρt)
)
dt+ LN (ρt)dt+DN (ρt)dBt

where Bt is a standard normalized Brownian motion, dB2
t = dt. Here H† = H is a hamiltonian,

LMa are Lindblad operators, LM (ρ) = MρM † − 1
2(M †Mρ + ρM †M), and LN is a Lindblad

operator and DNa so-called stochastic innovation term, with

LN (ρ) = NρN † − 1

2
(N †Nρ+ ρN †N),

DN (ρ) = Nρ+ ρN † − ρTr(Nρ+ ρN †)

The operator N is called the measurement operator and the measured observable is N + N †.

Solutions of these SDEs are called “quantum trajectories”.

We can decompose dρ as

dρ = (dρt)syst + (dρt)meas.

The first two terms (dρt)syst :=
(
− i[H, ρt] +

∑
a LMa(ρt)

)
dt is a deterministic evolution which

will be present without any monitoring (it depends whether the system evolution is hamiltonian

or dissipative, i.e. it depends whether the system is isolated or open). The two last terms

(dρt)meas := LN (ρt)dt + DN (ρt)dBt code for the back action of the monitoring on the system

evolution.

22



The quantum trajectories were originally introduced in quantum optics via continuous mon-

itoring of electromagnetic modes coupled to atomic systems [?], there were independently in-

troduced as efficient tools to simulate dissipative systems [?]. The approach based on iterated

interactions was developed in [?, ?, ?].

The fact that the SDEs is driven by a Brownian motion is intuitively easy to grasp. The

information we get on the system by the repeated POVMs is a series of pluses and minus (in the

case of doublet of POVMs as we are deal with here). Series of (+−−+−+ · · · ) are in one-to-one

correspondance with classical random walks, whose scaling limits are Brownian samples. The

statistics of the continuous signal obtained from the scaling limit of these series is not identical

to that of a Brownian motion because it depends on the system state: its evolution is driven

by a Brownian motion but contains extra drifts which are system dependent. However, any

realization of the Brownian is in one-to-one correspondance with a sample of the output signal.

If we don’t keep track of the information provided by the output signals, we only have access

at the mean state. As consequence – since E[dBt] = 0 and because we are using the Itô form –

the mean density matrix ρ̄ = E[ρ] satisfies:

dρ̄t =
(
− i[H, ρ̄t] +

∑
a

LMa(ρ̄t)
)
dt+ LN (ρ̄t)dt.

This is a linear noiseless equation in a Lindblad form. The net effect is to add an extra Lindblad

term, namely LN , to the bare system evolution. This was expected – say from the similar

remark valid in the discrete setting – and it reflects that the series of probes – or the apparatus

monitoring the system – behaves as a passive reservoir if we don’t keep record of the information.

Averaging over Brownian samples or tracing over probe degrees of freedom are equivalent.

We can actually reverse the logic: to get what equations describe the evolution of the system

in contact with a Markovian reservoir one may look at the evolution of system under continuous

monitoring and only keep track of part of the information thus extracted, say by looking only

at a fraction of the outputs. This is the strategy we shall adopt in the following proof of the

quantum trajectory equations.

Remark 1:

A few words on generalization with more Brownian motions, alias bigger probe Hilbert spaces.......

..............

Hint for a proof

Here we give hints for a proof, more rigorous proof can be found somewhere else [?, ?].

The point we would like to describe is why and how randomness arises solely from Quantum

Mechanics (i.e. its only encoded into the rules for randomness in Quantum Mechanics, no extra

noise is added). If the POVM is close to the identity as above, its effect on the system is small

and we can take the scaling limit ε → 0 and n → ∞ with t = nε fixed. Let ρt be the system

density matrix at time t (naively such that ρn = ρt=nε).

The information from the doublet of POVMs we get is a series of pluses and minuses. Let us

denote the output of the n-th POVM by sn = ± and define their scaled sum Xn =
√
ε
∑

k≤n sk.

Their statistical behaviors are coded into the frequencies of occurrences Nn(±) after n steps
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– Nn(±) is the number of times ± appeared as outputs. At large n, Nn(±) ' n/2 + · · · , by

the law of large number. The sub-leading term in Nn(+) is opposite to that in Nn(−) because

Nn(+) +Nn(−) = n and their difference is (Xn −X0)/
√
ε. Hence, at large n,

√
ε
(
2Nn(±)− n

)
= ±(Xn −X0) + · · ·

Recall that from step n to step n+ 1 the density matrix evolves randomly as:

ρn → ρn+1 =
F± ρn F

†
±

πn(±)
, with proba πn(±) = Tr(F± ρn F

∗
±).

or alternatively, because Xn+1 −Xn = sn+1
√
ε with sn+1 = ±,

ρn+1 =
1

2
(ρ(+)
n + ρ(−)

n ) +
1

2
√
ε

(ρ(+)
n − ρ(−)

n )(Xn+1 −Xn),

where we define ρ
(±)
n :=

F± ρn F
†
±

πn(±) . In the scaling limit we may Taylor expand ρ
(±)
n :

ρ(+)
n + ρ(−)

n = 2ρn + 2ε
[
− i[H, ρn] + LN (ρn)−DN (ρn)UN (ρn)

]
+ · · ·

ρ(+)
n − ρ(−)

n = 2
√
εDN (ρn) + · · ·

where UN (ρ) = Tr(Nρ+ρN †). Hence, ρ
(±)
n are deterministic (non random) variables conditioned

on the n first outputs. All the extra randomness at step n + 1 is encoded into the variation

Xn+1 −Xn.

Because sn are outputs of quantum measurement, the statistics of Xn+1 −Xn, conditioned

on the n first outputs, is determined by the system density at step n according to the rules of

Quantum Mechanics. Its means and its second moment are thus:

E[Xn+1 −Xn|Fn] =
√
εE[sn+1|Fn] =

√
ε (πn(+)− πn(−)) = εTr(Nρn + ρnN

†) + · · · ,
E[(Xn+1 −Xn)2|Fn] = εE[s2

n+1|Fn] = ε.

Recall now that we identified ε = dt. The first equation above gives the drift in the variation dXt.

The second gives the fluctuations which are Gaussian to leading order. This (naively/physically)

implies that in the scaling limit the output signal Xt satisfies the SDEs

dXt = Tr(Nρt + ρtN
†) dt+ dBt.

Inserting this into the difference equation ρn+1−ρn yields the SDE for the system density matrix

given above.

Remark 1:

In the course of the above derivation we deduce the continuous equation for the (rescaled) output

signal Xt. Hence, the quantum trajectory equations form actually a pair of SDEs, one giving

the time evolution of the system density matrix, the other giving sense to the signal in the

continuous limit:

dρt = −i[H, ρt] dt+ LN (ρt)dt+DN (ρt)dBt,

dXt = Tr(Nρt + ρtN
†) dt+ dBt.
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Notice that Xt is slave to the density matrix ρt.

Remark 2:

The proof given above is not mathematically rigorous because it implicitly assumes the existence

of the scaling limit with the property that the continuous process interpolates the discrete one

such that ρn = ρ(t=nε) and Xn = X(t=nε) in law. Another way to obtain the scaling limit consists

in decomposing the process ρn as a sum of a martingale Mn plus a predictable process On. This

is called a Doob decomposition. It consists in writing

ρn = On +Mn,

with Mn a Fn-measurable martingale – i.e. E[Mn|Fn−1] = Mn−1 – and On a Fn−1-measurable

process. Such decomposition is always possible. Indeed it is enough to define Mn :=
∑n

k=1 πk
with πk := ρk − E[ρk|Fk−1], which by construction is a martingale, and to set On := ρn −Mn,

which by construction is Fn−1-measurable. In the scaling limit the martingale (resp. predictable)

contribution is going to converge to the noisy source (resp. the drift) of the SDEs. This helps

making the proof rigorous because there are theorems characterizing continuous martingales –

they are integrals of the Brownian motion – and those theorems are enough to identify that the

scaling limit of Mn is
∫ t

0 dt
′DN (ρt′)dBt′ .

Another way to make the proof rigorous consists at looking at the generator of the semi-groups

associated to the discrete process and prove that it converges toward that of the time continuous

process.

4.2 Basics examples and properties

We shall use simple Qu-bit systems to discover/present typical behaviors of quantum trajectories.

The density matrix for a Qu-bit may be parametrized as

ρ =

(
Q U
U∗ 1−Q

)
,

in a specified basis | ↓↑〉. Let σx, σy, σz be the Pauli matrices in that basis.

Continuous non-demolition measurements

Here we look at the non-demolition measurement of σz, with no extra evolution. The quan-

tum trajectory SDE is then dρ = Lmeas(ρ) dt + Dmeas(ρ) dBt, with Bt a normalized Brownian

motion, and

Lmeas(ρ) = −γ
2

32
[σz, [σz, ρ]] and Dmeas(ρ) =

γ

4

(
{σz, ρ} − 2ρ tr(ρσz)

)
,

with γ2 the measurement rate. We did not write a term associated to a hamiltonian evolution,

but we could have provided that the hamiltonian is proportional to σz. Actually, non-demolition

measurements are characterized by the fact that the measured observable commutes with hamil-

tonian.

For the diagonal matrix element Q this SDE reads

dQt = γ Qt(1−Qt) dBt,

25



with dBt a standard Brownian motion. This equation is simply the scaling limit of the discrete

equations for repeated indirectement measurements. It is clear that Qt is a martingale, because

there is no drift term in its evolution. By the convergence martingale theorem, it converges to

one of the fixed points of the SDE, i.e to Q∞ = 0 or Q∞ = 1. Since Qt is a martingale and the

convergence is in L!, we have E[Q∞] = Q0 and hence

Q∞ = 1 with proba Q0, Q∞ = 0 with proba 1−Q0.

The convergence is exponentially fast with a time scale of order γ−2.

Actually, this SDE can be solved explicitly. The solution is

Qt =
Q0 e

γBt− γ
2

2
t+At

Q0 e
γBt− γ

2

2
t+At + (1−Q0)

,

with At = γ2
∫ t

0 dsQs. This is the scaling limit of the exact solution we wrote for discrete

repeated non-demolition POVMs.

Remark 1:

The parameter γ, and hence the typical time to collapse, code for - or is directly related to - the

interaction strength between the system and the monitoring system (the probes).

Qu-bit in thermal contact

Here we monitor a system in contact with a thermal bath by observing continuously its

hamiltonian. We model the contact with the thermal bath by a Lindblad equation (i.e. we

assume Markovianity). The SDE is then dρ = (dρ)syst+(dρ)meas. For a Qu-bit, with hamiltonian

h = ω σz diagonal in the basis | ↓↑〉, the thermal relaxation is (dρ)syst = −i[h, ρ]dt+Ltherm(ρ) dt

with

Ltherm(ρ) = λp
(
σ−ρσ+ −

1

2
{σ+σ−, ρ}

)
+ λ(1− p)

(
σ+ρσ− −

1

2
{σ−σ+, ρ}

)
,

where the first term codes for transitions from | ↓〉 to | ↑〉 at rate λp and the second for transitions

from | ↑〉 to | ↓〉 at rate λ(1 − p). The term associated to the σz-measurement at a rate γ−2 is

(dρ)meas = Lmeas(ρ) dt+Dmeas(ρ) dBt with Lmeas and Dmeas as above.

For the diagonal matrix element Q this reads

dQt = λ(p−Q)dt+ γ Qt(1−Qt) dBt.

This equation decouples for the other ones so that we can restrict ourselves to diagonal density

matrices ρ = Q| ↓〉〈↓ | + (1 − Q)| ↑〉〈↑ |. The convention is that the system is in state | ↓〉 for

Q = 1 and in state | ↑〉 for Q = 0.

There is a competition between the drift term λ(p − Q)dt, which codes for the thermal

relaxation, and the noisy term γ Qt(1−Qt)dBt, which codes the effect of the monitoring. There

are two natural time scales: the thermal relation time τtherm := λ−1 and the typical measurement

time τmeas := γ−2. Hence the control parameter is their ratio tautherm/τmeas = γ2/λ. Efficient

monitoring corresponds to γ large.
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The change in the typical quantum trajectories, solution of the above SDE, when γ increases

– that is when the strength of monitoring procedure increases – is depicted in Figure.... We see

an evolution from almost unperturbed exponential relaxation towards thermal equilibrium for

γ small, with Qt ' p, to jumpy trajectory for γ large, with Qt jumping and hesitating between

the extreme values 0 and 1.

We are interested in the limit of strong measurement γ →∞, that is τmeas � τtherm.

Proposition “Thermal quantum jumps”:

In the limit γ →∞ of very efficient monitoring, we have :

— The invariant measure of the thermal quantum trajectory SDE has a limit:

. limγ→∞ dPstat = [(1− p)δ(Q) + pδ(1−Q)] dQ.

— The limits of the mean time T↓ (resp. T↑) the trajectories spend near Q ' 1 (resp. Q ' 0)

are:

. limγ→∞ T↓ = 1/λ(1− p) and limγ→∞ T↑ = 1/λp.

The first statement means that at strong monitoring the long time mean behavior of the

quantum trajectory coincides with the Gibbs state. The second statement expresses an ergodicity

property since T↑/T↓ = p/(1− p) = e−β in the large γ limit, as expected. These statements are

true only at large γ.

Proof.

This proposition can be proved using standard tools from classical probability theory. Every

relevant quantity can be exactly computed, with a grain of brute force, because the SDE is

one dimensional. For a SDE of the form dQt = f(Qt)dt+ g(Qt)dBt, the invariant measure – if

normalizable – is dPstat = e−2h(Q)dQ/g2(Q) with h(Q) such that ∂h(Q) = −f(Q)/g2(Q). We can

apply this formula for the quantum trajectory SDE with f(Q) = λ(p−Q) and g(Q) = γQ(1−Q).

We then have to take the limit γ →∞. Since the limit is a distribution this is done by testing

this stationary measure against test functions. Choosing tests function with support on one of

the two half sides of the interval [0, 1] allows to prove that the support of the stationary measure

localises at the two extremities of the interval.

Let 0 < Qi < Qf < 1. Let Ti→f be the first instance the process started at Qi hits Qf
before hitting 0. This is a stopping time. Standard formula from probability theory based on

using martingales tells that, in the case the process escapes the interval [0, Qf ] from Qf with

probability one, its mean is

E[Ti→f ] = 2

∫ Qf

Qi

dQe2h(Q)

∫ Q

0
dPstat.

The mean time T↓ (resp. T↑) is then obtained from this formula by taking the limit Qi → 0+

(resp. 1−) and Qf → 1− (resp. 0+) after the large γ limit. �

Remark 1:

One may get finer information than the second statement by looking for the distribution of the

random stopping time Ti→f . For 0 < Qi < Qf < 1, this distribution is the following at large γ:

lim
γ→∞

P[λTi→f ∈ B] =
Qi
Qf

I 0∈B +
(

1− Qi
Qf

) p

Qf

∫
B
e
−s p

Qf ds,

For Qi → 0+ and Qf → 1− we get that this limit distribution has e−sppds for density. Hence
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the time to go from | ↓〉 to | ↑〉 is exponentially distributed with mean 1/λp. That is: the jumps

are Poisson like.

However, for finite Qi and Qf we see that the distribution possesses two contributions: a Dirac

peak at zero and a exponential tail with a Qf -dependent slop. The meaning of this formula is

the following: in the large γ limit, starting from Qi, either with probability Qi
Qf

it takes no time

for the trajectory to reach Qf , or with probability 1 − Qi
Qf

it takes an exponential time with

parameter λp
Qf

to reach Qf . As we shall explain later, this is linked to aborted quantum jumps

surviving the strong monitoring limit.

Remark 2:

Notice that the jumps are not built in the SDE but are generated by it. They appear at large

measurement rate. For finite γ the jumps are not instantaneous. They last a typical time of

order 4γ−2 log(γ2/λ). They become instantaneous only in the infinite γ limit.

Rabi oscillations on a Qu-bit

Here we monitor the system observable σz for a Qu-bit with hamiltonian ωσx. That is: we

observe continuously an observable not commuting with the system hamiltonian. The system

evolution is again dρ = (dρ)sys + (dρ)meas with the measurement part as before, (dρ)meas =

Lmeas(ρ) dt+Dmeas(ρ) dBt relative to the measurement of σz at a rate γ−2. The system evolution

is hamiltonian

(dρ)sys = −iω[σx, ρt] dt

with Rabi frequency ω. The quantum trajectory SDEs are:

dQt = ω Ut dt+ γQt(1−Qt) dBt,

dUt = −ω (Qt −
1

2
) dt− γ2

8
Ut dt− γUt(Qt −

1

2
) dBt

where Qt and Ut parametrize the density matrix as above. The first term is the effect of the Rabi

oscillation, the second that of the monitoring. It is easy to verify that these equations imply an

exponential purification of the state. For instance, if ∆t = Qt(1−Qt)− |Ut|2 is the determinant

of the density matrix, then its expectation decreases exponentially fast: E[∆
1/2
t ] = ∆

1/2
0 e−γ

2t/8.

There are again two processes in competition: the hamiltonian evolution which yields to

a precession of the spin and the monitoring which projects the spin on the pointer states. If

γ2 � ω the system undergoes Rabi oscillations – because the measurement process is not efficient

enough to project the state during a Rabi period. On contrary, if ω � γ2 the measurement

process wins over the Rabi oscillation so that the system state is projected onto one of the two

σz-eigenstates | ↑↓〉 with jumps from to the other induced by the Rabi hamiltonian.

By solving explicitly the quantum trajectory SDEs one can show that, asymptotically for

large γ, the mean time between successive jumps is

T̄jump = γ2/4ω2 ∝ τ2
Rabi/τmeas.

It diverges when γ → ∞, inversionally to the measurement laps time τmeas = γ−2 as expected

from the Zeno effect.
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Remark 1:

The system evolution dρ preserves pure states – actually mixed states are exponentially purified.

So we can restrict the analysis to pure state. The system evolution also preserves a reality

condition so we restrict to states of the form |ψt〉 = cos(θt/2)| ↑〉+sin(θt/2)| ↓〉, which correspond

to Qt = 1
2(1 + cos θt) and Ut = 1

2 sin θt. This reduces the evolution equation to a single SDE for

Qt or θt:

dθt = −(ω + 2γ sin θt cos θt) dt− 2γ sin θt dBt.

Again, as for any one variable SDEs one can compute exactly many of its properties. The mean

time between jumps, say from | ↑〉 to | ↓〉 is defined as the first time the system reaches | ↓〉, i.e.

θ = π, starting from the state | ↑〉, i.e. from θ = 0. Standard tools of probability theory allow

to compute exactly its probability distribution, and in particular its mean, in a way similar to

those use in case of thermal quantum jumps. This is the result quoted above.

4.3 Applications to quantum control and feedback

By construction, and because we continuously get information, system monitoring obviously

opens the route to feedback and quantum control. One can find many examples of quantum

control in the literature, and we will here only give a few examples.

Dissipative driving

Dissipative dynamics can be used to drive quantum system towards a given target state

because, at late time, a quantum system under the influence of dissipative dynamics converges

towards invariant states. Hence one may imagine coupling the quantum system to an auxiliary

reservoir manufactured so that the dynamical interaction possesses the target state as only

invariant state. This type of control does not use any information extracted from the system. It

only requires preparing the dynamics appropriately. Actually most of old processes for quantum

state preparation may be viewed as examples of this procedure with the macroscopic preparation

apparatus driving the system to its target.

More clever construction.........

Flux control via indirect measurement

Another way to control quantum systems may be based on adapting the monitoring process

in a way depending on the information acquired on the system. This is peculiar to quantum

mechanics and is grounded into the fact that any extraction of information from a quantum

system back-act on it. For instance, the quantum Zeno effect provides a way to freeze a system

into a given sub-space – an eigen-space of the measured observable.

Another example consists in using that hamiltonian and dissipative channels do not react in

the same way to quantum monitoring (one is Zeno frozen, the other not). Hence by changing the

strength at which we monitor a quantum system we may open or close a hamiltonian channel

while leaving free any dissipative channels. Let us give an example. Consider an electronic

double quantum dot in contact with two reservoirs, one coupled to the left dot the other to

the right dot. See Figure.... The respective dot-reservoir couplings are dissipative. The two

dots are coupled unitarly though the tunnel effect. To simplify, let us assume that the Coulomb
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interaction is strong enough that the double dot system is occupied by one electron at most.

So the electron can be either on the left or on the right dot or absent, and any system state is

combinaison of those three states. Imagine now that we monitor the number of electron on the

left and the right dot. We may decide to change the strength of the monitoring depending on

the information we get on the electron position. Say: if, based on this information, we estimate

that there is an electron on the left dot, we may decide to measure more strongly and, on

contrary, if we estimate that there is no electron on the left dot we keep measuring (to still get

some information) but mildly. When measuring strongly we Zeno freeze the hamiltonian tunnel

channel in-between dots but not the dissipative channel from dot to reservoir. The effect is then

to reduce the probability to jump from the left to the right dot when an electron is present on

the left dot, while preserving its probability to jump from the dot to the reservoir, and without

modifying the probability of inter-dot transition when the electron is on the right dot. As a

consequence, this produces a net electron flux from the right reservoir to the left reservoir, even

if the two reservoir were at identical chemical potential.

This double dot measurement control is an example of mesoscopic Maxwell daemon. Closing

or not the tunnel channel in-between dots by changing the monitoring strength is analogous to

opening or closing the inter-compartiment door in Maxwell daemon thought experiments.

Stochastic feedback using measurement signals

Another feedback procedure consists in back acting on the system in a manner depending on

the information gathered by the monitoring process. If during a time interval dt we extract the

data dXt we may act on the system, either unitarly or dissipatively, with a CP map depending

on dXt. The complete evolution of the system during a time laps dt then decomposes into two

sucessive steps:

– First, the system state ρt evolves under monitoring into the state ρ̂t+dt, and the data dXt is

extracted;

– Second, a dXt-dependent feedback map acts on ρ̂t+dt to produce the system state ρt+dt.

Notice that this way of processing avoid any acausality because we back-act on the system after

we have got the information on dXt.

Let Lsys be the Lindbladian coding for the evolution in absence of monitoring and feedback,

and N the measurement operator of the monitoring process. Then ρ̂t+dt = ρt + (Lsys(ρt) +

LN (ρt))dt+DN (ρt)dBt. Let now ΦdXt be the feedback CP-map. Then the system state at time

t+ dt reads:

ρt+dt = ΦdXt

(
ρt + (Lsys(ρt) + LN (ρt))dt+DN (ρt)dBt

)
.

When dealing with this formula one has to recall that dXt is driven by the Brownian motion

dBt through dXt = UN (ρt)dt + dBt. Hence, dXtdBt = dt so that one has to pay attention to

expand it to sufficient order to take Itô’s rules into account.

The simplest case is when the feedback action is unitary with a hamiltonian depending

linearly on dXt. That is: ΦdXt(ρ) = e−ihdXt ρ eihdXt with h hermitic. Then, because dX2
t = dt,

ΦdXt(ρ) = ρ− i[h, ρ] dXt + LH(ρ) dt,

with LH the Lindblad operator associated to h. Hence the system state evolution is ρt+dt−ρt =:
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dρt with

dρt =
(

(Lsys(ρt) + LN (ρt))dt+DN (ρt)dBt

)
+
(
LH(ρ) dt− i[h, ρ] dBt

)
− i[h, Nρ+ ρN †]dt.

It naturally splits in three parts: The first two are the evolutions induced by the monitoring and

the feedback map, respectively, and the third is due to the correlations between the feedback

and the monitoring.

– A few words on examples of applications.........

– An example based on (semi-classical) gravity. Just a few words........

Remark 1:

It is clear that this simple example can be generalized to more complicated feedback procedures.

The feedback map ΦdXt has to be a CP-map – a quantum channel – and has to be equal to the

identity map in absence of information, that is ΦdXt(ρ) = ρ for dXt = 0. Hence, assuming that it

depends smoothly on dXt we may Taylor expand: ΦdXt(ρ) = ρ+dXt Lfeed(ρ)+ 1
2dtΦ(2)(ρ)+· · · ,

using dX2
t = dt. The first term in this Taylor expansion has to be a Lindbladian because Φ is a

CP-map.

Remark 2:

Here the feedback loop is classical in the sense that we use the classical information extracted

from the system to back act on it. There exists another class of quantum control procedure,

sometimes called coherent control, in which one control or drive a quantum system by coupling

it to another quantum system, called the ancilla, without reading any classical information. The

coupling to the ancilla can be hamiltonian or dissipative.

4.4 Open quantum Brownian motion

In the same way as the Brownian motion can be viewed as the scaling limit of classical random

walks, the open quantum Brownian motion (OQBM) is obtained from a limit of open quantum

walks in which space and time are simultaneously scaled in the diffusive way: δx2 ∼ δt→ 0.

Continuous limit of OQWs

Recall that the dynamics of the mean (extended) density matrix of OQW is coded into the

CP-map P. Namely, recall that if
∑

x ρ̄n(x) ⊗ |x〉〈x| := E[ρn ⊗ |xn〉〈xn|] is the mean density

matrix of an OQW (xn, ρn), then its evolution reads

ρ̄n+1(x) = P(ρ̄n)(x) =
∑
y

Byxρ̄n(y)B∗yx,

with Bxy the transition matrices of the OQW.

As before we first restrict to homogeneous OQW on the line. In the continuous limit, we

write ρ̄t =
∫
dx ρ̄t(x)⊗ |x〉〈x|, with ρ̄t(x) the mean density matrix on the internal Hilbert space

and Tr(ρ̄t(x)) the probability density to find the quantum walker at position x at time t. At

each time step δt, it is updated according to the above open OQW rule which in this simple

case reads,

ρ̄t+δt(x) = F− ρ̄t(x+ δx)F †− + F+ ρ̄t(x− δx)F †+,
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We are interested in the scaling limit. The transition matrices are Bx;x±1 =: F± with F ∗+F+ +

F ∗−F− = I, and we assume that the follwing Taylor expansion around the trivial symmetric

solution (with M = 0) holds true:

F± =
1√
2

[
I±
√
εN − ε(iH +

1

2
N †N) +O(ε3/2)

]
As before, we identify ε with δt, and as for classical walks, we scale δx2 = δt. Taylor expansion

then yields :

∂tρ̄t(x) = −i
[
H, ρ̄t(x)

]
+

1

2
∂2
xρ̄t(x)−

(
N∂xρ̄t(x) + ∂xρ̄t(x)N †

)
+ LN (ρ̄t(x)),

with LN (ρ) := NρN † − 1
2(N †Nρ + ρN †N) as before. This is the equation defining the open

quantum Brownian motion map. It mixes pieces from diffusive Fokker-Planck equation and from

Lindbladian quantum evolution. It is a natural extension of the heat equation incorporation

internal degrees of freedom. It has interesting consequences with, in particular, a cross-over

between ballistic and diffusive behavior depending on the form of transition matrix N .

The OQBM dynamical map can of course be written in an operator form:

∂tρ̄t = L(ρ̄t) := −i[H, ρ̄t]−
1

2
[P, [P, ρ̄t]]− i

(
N [P, ρ̄t] + [P, ρ̄t]N

†)+ LN (ρ̄t),

with P = −i∂x the momentum operator (which here commutes with N) which is the generator

of translations. It is valid for non-diagonal density matrices.

A few words on the microscopic derivation........

A few words on possible ’physically realistic’ realization........

Remark 1:

The above OQBM dynamical map can be written in a Lindblad form by presenting L in the

form

L(ρ̄t) = −i
[
H, ρ̄t

]
+
(
P ρ̄t P† −

1

2
(P†P ρ̄t + ρ̄t P†P)

)
,

with P := P + iN and H := H + 1
2(PN +N †P ). As a consequence the OQBM equation is well

defined in the sense that the Linbldad operator L has the required positivity property to formally

generate a completely positive map (to make this statement more precise mathematically would

require talking about domain operators, etc). In this sense it does not suffer from problems with

complete positivity as do Markovian approximations of Caldeira-Leggett models.

Remark 2:

In the discrete setting, we saw that repeated POVMs and OQWs are one and the same. One

may wonder if this identification resists to the scaling limit? That is: one may wonder what is

relation between quantum trajectories of quantum states under continuous monitoring and the

OQBM dynamical map? Recall that when deriving the SDEs for quantum trajectories we also

derive the SDEs for the output signals Xt:

dρt = −i[H, ρt] dt+ LN (ρt)dt+DN (ρt)dBt,

dXt = Tr(Nρt + ρtN
†) dt+ dBt.
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If one goes back to the derivation of those equations, one sees that the scaling used to defined

Xt is the same diffusive scaling as for OQBM. Hence (Xt, ρt) are the quantum trajectories of

the open quantum Brownian motion. Hence, the OQBM mean density matrix is obtained by

averaging over quantum trajectory samples. That is: starting from quantum trajectories (Xt, ρt)

– including both the system state ρt and the output signal Xt – we get the mean OQBM density

matrix through an averaging procedure:

ρ̄t =

∫
dx ρ̄t(x)⊗ |x〉〈x| := E

[
ρt ⊗ |Xt〉〈Xt|

]
.

or alternatively,
∫
dx ρ̄t(x)f(x) = E[ ρt f(Xt) ], for any test function f(x). It is a simple matter

of computing using Itô rules to prove that the quantum trajectory SDEs imply the OQBM

equations for the mean density matrix. In other words, OBQM and simple quantum trajectory,

including the output signal, are different reincarnation of one and the same entity.

Generalization to higher dimensions

Of course OQBM can generalized to any dimension and with inhomogeneous hamiltonian and

transition matrices. The coordinates xν , ν = 1, · · · , D, then refer to points in a D dimensional

space, that we take be the standard flat space RD for simplicity. The total Hilbert space is

H⊗ L2(RD) with H the internal Hilbert space as before. The hamiltonian H is supposed to be

x-dependent. There is one transition matrix Nν per direction and those are also x-dependent.

As for OQW there are different descriptions, either at the level of quantum trajectories,

sample by sample, or at the mean level with a mean density matrix obtained by averaging over

quantum trajectories. Similarly to the 1D case, the Lindblad equation for the density matrix

ρ̄t =
∫
dx ρ̄t(x)⊗ |x〉〈x| is:

∂tρ̄t(x) = −i
[
H(x), ρ̄t(x)

]
+

1

2
Gµν∂µ∂ν ρ̄t(x)− ∂µ

(
(Nµρ̄t)(x) + (ρ̄tN

µ†)(x)
)

+ LN(x)(ρ̄t(x)),

with Lindbladian LN (ρ) = Gµν
(
NµρNν†− 1

2(Nν†Nµρ+ρNν†Nµ)
)
. Here Gµν is a metric which

we take to be constant and GµνG
νσ = δσµ . In operator form this Lindblad equation reads

∂tρ̄t = −i
[
H, ρ̄t

]
− 1

2
Gµν

[
Pµ, [Pν , ρ̄t]

]
− i
[
Pµ, N

µρ̄t + ρ̄tN
µ†]+ LN (ρ̄t).

with Pµ := −i∂/∂xµ, the translation operator in the µ-direction, and Nµ operator acting di-

agonally on position state with Nµ(|φ〉 ⊗ |x〉) = (Nµ(x)|φ〉) ⊗ |x〉. Notice that one has to pay

attention to the order of the operators which matters if H and N are inhomogeneous.

The quantum trajectories are

dρt =
(
− i[H(Xt), ρt] + LN(Xt)(ρt)

)
dt+Dµ(ρt) dB

µ
t ,

dXµ
t = Uµ(ρt) dt+ dBµ

t ,

with Bν Brownian motions, dBµ
t dB

ν
t = Gµν dt, and non-linear diffusion coefficient GµνDν(ρ) =

(Nµρ+ ρ Nµ†)− ρUµ(ρ) with potential Uµ(ρ) = Tr(Nµρ+ ρ Nµ†), similarly as in 1D. They of

course correspond to quantum trajectories for monitoring with higher dimensional multiplets of

POVMs.
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Notice that the Hamiltonian, the Lindbladian and the diffusion coefficients entering the SDEs

for the internal density matrix is evaluated the position Xt of the quantum trajectories. This is

very reminiscent of feedback procedure.

5 Strong indirect continuous monitoring

As seen on simple examples, quantum trajectories jump from one pointer states to another

when the measure strength is big enough. The presence of jumps has a simple explanation:

even though the measurement is strong enough to recursively project the system state onto one

of the pointer states, the system evolution still acts to push away the system from those pointer

states.

When the measurement strength increases two phenomena appears:

– The quantum states are projected on the pointer states, the quantum trajectories jump from

one pointer states to another and the system evolution naively reduces to a quantum Markov

chain on pointer states;

– These jumpy trajectories are always dressed with aborted jumps, called spikes, and those

survive the limit of infinitely strong measurement.

These two results may seem to be incompatible: The first one implies that under strong

monitoring the system state is one of the pointer states with probability one, whereas the second

one says that time to time the system goes away from the pointer states. The resolution of this

paradox is that the aborted jumps have a time duration vanishing in the strong monitoring

limit (and don’t form a dense set). Hence, at a fixed given time, the quantum trajectory is not

going to be on one of the aborted jumps and the system state is one of the pointer state with

probability one. This indicates that the limit to the Markov chain is a weak limit: only the

correlation functions of the quantum trajectories converge to those of a Markov chain but the

trajectories themselves do not converge almost surely to those of Markov chain.

5.1 The quantum jump Markov chains

We here explain in which sense quantum trajectories reduce to quantum Markov chains on

pointer states and how to compute the jump rates from the microscopic data.

The strong monitoring limit

We consider a general quantum system – not a Qu-bit as before – but with a finite dimensional

Hilbert space, whose dynamics are prescribed by a Lindbladian Lsys. In absence of monitoring

the system evolution would be dρt = Lsys(ρt) dt. Suppose now that an observable is continuously

measured at a rate γ2. As previously explained the density matrix then evolves according to:

dρt = Lsys(ρt) dt+ γ2LN (ρt) dt+ γ DN (ρt) dBt,

where Bt is a standard Wiener process, and N is the measurement operator with O = N +N †

the measured observable. For simplicity we assume that N is hermitian so that O = 2N , but the

generalization is simple. In such case LN (ρ) = −1
2 [N, [N, ρ]] and DN (ρ) = Nρ+ρN−2ρTr(Nρ).
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We shall write everything in the basis where N is diagonal, N =
∑

k νk|k〉〈k|. The states

|k〉 are the pointer states. Let Qi be the diagonal coefficients of ρ in the pointer basis – the

so-called probabilities – and Uij be the non diagonal coefficients of ρ – the so-called phases –,

Qi := 〈i|ρ|i〉, Uij := 〈i|ρ|j〉, i 6= j.

We are interested in the limit of very efficient monitoring, that is γ →∞. In this limit, and

as observed in the case of a Qu-bit, the quantum trajectories spend much of their time close to

the pointer states, and jump time to time in-between pointer states. The jumps from state |i〉
to |j〉 occur at a rate depending on the microscopic dynamics. These rates, which we denote

mi
j , may be characterized by the looking at the behavior of the mean probabilities Qi := E[Qi]

obtained by averaging over quantum trajectories through

∂tQj =
∑
i

Qim
i
j .

The jump rates may be evaluated by looking at the mean probabilities, but we can be more

precise and claim that the times in between jumps are exponentially distributed, so that the

quantum trajectories are statistically equivalent to a Markov chain. This says something about

the multipoint correlations of the quantum trajectories Qi at different times – not just about

the mean. However, a finer structure survives the strong monitoring limit beyond the Markov

chain description.

Some care has to be taken to formulate this statement. Indeed, as seen in the case of a

Qu-bit, dissipative and hamiltonian dynamical channels do not behave in the same way in the

large γ limit. If Lsys is generated by a simple hamiltonian, a continuous strong measurement will

tend to Zeno freeze the system in one of the pointer states for an arbitrary long time, i.e. when

γ → ∞ all the jump rates will go to 0. Hence, to get meaningful predictions in this limit we

need to adequately rescale the different parts of the hamiltonian dynamics to keep finite jump

rates in the large γ limit. Such a rescaling is not required for all parts of the dynamics because

jumps that emerge from a dissipative coupling cannot be Zeno frozen.

We consequently split the Lindbladian in four different super-operators: A that sends the

probabilities to the probabilities, B the phases to the probabilities, C the probabilities to the

phases and D the phases to the phases.

∂tρt = Lsys(ρt) ⇐⇒
notation

{
∂tQi = A(Q)i +B(U)i
∂tUij = C(Q)ij +D(U)ij

,

with A(Q)i = AkiQk, B(U)i = Bkl
i Ukl, C(Q)ij = CkijQk, and D(U) = Dkl

ijUkl (summation over

repeated indices is implicit). A good rationale for the differences in their rescaling is that as

the strong measurement will tend to shrink the phases they will obviously need a differentiated

treatment from the probabilities. We now claim that A needs no rescaling, that C and B need

to scale like γ and D like γ2. In what follow, we thus write :

A = A, B = γB, C = γC, D = γ2D.

For such a scaling to be consistent with the complete positivity of the map generated by Lsys

in the large γ limit, B and C have to be associated to an Hamiltonian flow and D needs to be
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diagonal: Dklij = −dij δki δlj . We should also add that the above equation only gives the dominant

terms in an expansion in power of γ and that the sub-leading corrections may in general be

needed for compatibility with the complete positivity of the map associated to Lsys. We just

claim that they have no impact on the large γ limit as expected and omit them for clarity.

Proposition (Bauer-Bernard-Tilloy) “Markov Quantum Jumps”:

With the previous notations, when γ →∞ the finite dimensional distributions of the conditioned

density matrix ρt converge to those of a finite state Markov process on the projectors associated

to the measurement eigenvectors. The jump rate from state |i〉 to state |j〉 reads in terms of the

rescaled coefficients as:

mi
j = Aij + 2Re

∑
k<l

CiklBklj
∆kl

(1)

with ∆kl := 1
2 |νk − νl|

2 + dkl.

Proof

The proof of this proposition is interesting because it requires dealing with SDEs in the strong

noise limit which is not so familiar – the weak noise limit is more familiar. It may have applica-

tions in other physical noisy contexts. Here we only give hints on the strategy of the proof. This

strategy consists in analysis the large γ limit of the probability kernel Kt(ρ0, dρ) to go from a

given density matrix ρ0 to another density matrix ρ, up to dρ, after a time t. As for any process

driven by SDEs, this kernel verifies a Kolmogorov or Fokker-Planck equation ∂tKt = KtD where

D is the second order differential operator associated to the SDEs. This differential operator

codes for the Itô derivative of any function of the process,

df(ρt) = (Df)(ρt) dt+ (· · · )dBt.

First, without writing D explicitly one can notice that because of Itô’s formula the coefficients

in front of the noise terms come squared, so that D only contains terms of order 0 and 2 in γ.

As a result we may write

D = D0 + γ2D2,

where D2 is the differential operator associated to the measurement process.

Second, to compute Kt = etD0+tγ2D2 for large γ we may use the following argument. Any second

order operator associated to well defined SDEs is a non-positive operator, so that when γ is very

large, even after a small amount of time, only the functions in the kernel of D2 are going to play

a role in etγ
2D2 at very large γ. These functions, which are martingales for the measurement

process (because they are in the kernel of D2) are in one-to-one correspondance with the pointer

states.

Third, the idea is then to perform a perturbative expansion around those remaining eigen-

functions and compute the jump rate between them. �

Remark 1:

It may be worth noticing that the previous proposition only talks about the multipoint corre-

lation functions. Only these correlation functions converge to those of a Markov chains. The

proposition does not claim that sample by sample the quantum trajectories converge to those

of a Markov chain, a statement which is incorrect.
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Remark 2:

The reader may wonder how these results, written in terms of A,B, C and D, may be related

to the generators of the Lindbladian. It is actually easy to verify that the most general scaling

that can be written is the following:

Lsys(ρ) =− i[γH + γ2Hdiag, ρ] +
∑
a

LMa(ρ) + γ2
∑
b

L
Mdiag
b

(ρ) + subleading terms

where LM denotes as above the Lindblad generator associated to M and where the superscript

”diag” means that the corresponding matrix has to be diagonal, H (without superscript) is any

self-adjoint matrix and the Na (without superscript) can be any matrix. The subleading terms

in γ are irrelevant for the jump rate computation.

5.2 A finer structure: quantum spikes

Let us consider a Qu-bit in thermal contact with a diagonal density matrix ρ = Q| ↓〉〈↓ |+ (1−
Q)| ↑〉〈↑ | with 0 ≤ Q ≤ 1. The SDEs for a continuous monitoring of the energy, diagonal in the

pointer states | ↓↑〉, is:

dQ = λ(p−Q) dt+ γ Q(1−Q) dWt,

with λ the thermal relaxation rate and γ2 the measurement rate.

What are quantum spikes?

As previously explained, the multipoint correlations of these quantum trajectories coincide

with a two state Markov chain, with rates λp and λ(1 − p). However, as it is clear from the

figure Figure... those quantum trajectories are dressed with multiples aborted jumps, which

are not present in Markov chain trajectories. We call them “quantum spikes”. The aim of the

following is to give a more precise characterization of those spikes.

Quantum spikes are aborted quantum jumps, that is they are excursions of quantum trajec-

tories starting close to 0 say and moving rapidly upwards before returning close to 0, or starting

close to 1 and moving downwards. A more precise way to define them consists in first defin-

ing the excursions at finite measurement rate γ and then taking the limit γ → ∞. Excursions

emerging from 0 are defined as the limit when ε→ 0 of portions of quantum trajectories between

its starting point at ε and the first time it reaches ε/2. That is: they are portions of quantum

trajectories between two points approaching 0, but we have to take two different initial and final

points because, as for Brownian motion, quantum trajectories visiting a given point at time to
visit this point an infinite number of times in any time open time interval including to.

Proposition (Bauer-Bernard-Tilloy) “Quantum Spikes”:

At large measurement strength γ, the trajectories of Qt can be reconstructed from the data of

two Poisson point processes on [0, 1]×R+, one attached to the point Q = 0 and the other to the

point Q = 1, with respective intensity
dν0 = λp dt ·

[
δ(1−Q)dQ+

dQ

Q2

]
,

dν1 = λ(1− p) dt ·
[
δ(Q)dQ+

dQ

(1−Q)2

]
.
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These processes code for the positions of the local maxima (ν0) and the local minima (ν1) of the

quantum spikes.

Proof.

A few elements of proof are given below. More precisely, what is presented is a set of character-

izing consistent checks based on computing directly relevant statistical properties of quantum

spikes and comparing them with know results obtained from the large γ limit of the quantum

trajectory SDEs. �

Let us explain how the reconstruction procedure works in this simple case. Figure... Sup-

pose that the trajectory starts at Q = 0 at t = 0 and one wants to construct all spikes (of

heights bigger than a given threshold σ) which emerge from Q = 0. Given a realization of the

two Poisson processes one first looks only at the process attached to Q = 0. On a finite time

interval [0, T ] there is a finite number of points above σ, i.e. there is finite number of points

in [σ, 1] × [0, T ]. By construction, these points are the positions and the time coordinates of

the maxima of the spikes emerging from 0. The first instance at which one of this point is at 1

corresponds to the first jump from Q = 0 to Q = 1. One then reconstructs the spikes emerging

from Q = 1 by implementing the same procedure but using the points of the Poisson process

associated to Q = 1 as the minima of the spikes. Again the first instance at which one of these

points is at 0 corresponds to the next jump from Q = 1 to Q = 0. And the procedure starts

again.

Remark 1:

Also true in the Rabi case...... And this is more surprising........

And more difficult to prove for higher dimensional quantum trajectories.......

Remark 2:

Although we do not present the complete proof, there is a simple argument telling why the

intensity of the Poisson process in the variable Q has the same form in all cases, independently

of the nature of the Liouvillian dynamics. This intensity is determined, up to a proportionality

coefficient, by the probability that Qt, the diagonal component of the density matrix, starting

at Qi ∈ [σ,Q], escapes at Q from the interval [σ,Q], in the limit σ → 0 (after the limit γ →∞
has been taken). Now, at fixed σ, Qi, Q away from 0 and 1 and large γ, the process dominating

these events is that generated by the measurement process. Because they are martingales for the

measurement process, the diagonal components of the density matrix Qt are Brownian motion

up to a random time parameterisation. These escape probabilities are thus that of the Brownian

motion and equal to Qi−σ
Q−σ . They converge to Qi

Q in the limit σ → 0. These escape probability

are universal and so are the intensities of the Poisson processes.

Comparing the spikes and quantum trajectories statistics

Instead of proving this proposition we show that how properties of quantum trajectories valid

in the large γ limit can be recovered using the spike Poisson processes. Actually the computation

we are about to present are enough to fully determine the intensities of these processes.

Recall that when studying quantum trajectories of a Qu-bit in thermal contact we pointed

out two results: one about the distribution of the time interval between two jumps and another

about the distribution of the maximum height of the excursions. Namely:
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(i) The time duration between two successive jumps is a Poisson variable with mean 1/λp for

jumps from Qi = 0 to Qf = 1, and 1/λ(1− p) for jumps from Q = 1 to Q = 0;

(ii) For 0 < σ < Qi < Q < 1, the probability for a quantum trajectory starting at Qi to reach

the height Q before going back to σ is Qi/Q in the limit σ → 0.

The last statement is a claim about the distribution of the maximum height of the spikes

starting from 0 conditioned to be bigger than Qi. These statements have been proved directly

from analyzing the quantum trajectory SDEs. Their proofs in [?] involve a limit γ → ∞ at

fixed σ, Qi and Q. We are thus extending them by then taking the limit σ → 0 after the limit

γ →∞.

Recall that a Poisson point process on measurable spaceM with intensity ν is characterised

by the following properties: (a) For any measurable set U ⊂M, the number NU of points in U

is a Poisson variable with mean ν(U); (b) For any family U1, U2, · · · , Un of disjoint measurable

sets in M, the random numbers NU1 , NU2 , · · · , NUn are independent random variables.

The first point (i) is easy to verify. Suppose that the trajectory is at Q = 0 at time t = 0.

The probability that the first jump occurs at time t, up to dt, is the probability that the sample

of the process associated to Q = 0 contains no point in {1}× [0, t] and a point in {1}× [t, t+ dt]

with dt with small. This probability is:

P
[
N{1}×[0,t] = 0, N{1}×[t,t+dt] = 1

]
= e−ν0({1}×[0,t]) · ν0({1} × [t, t+ dt])e−ν0({1}×[t,t+dt])

= e−λptλp dt.

To prove the second point (ii) consider a sample for which a spike started at zero goes above

Qi and compute the probability that this spike goes further above Q. This is the probability

that, conditioned on having a point on {[σ, 1]× [0, δt]} with δt vanishingly small, the sample of

the process associated to the vertex Q = 0 contains no point in [Qi, Q]× [0, δt] and one point in

[Q, 1]× [0, δt]. This probability is:

P
[
N[QI ,Q]×[0,δt] = 0, N[Q,1]×[0,δt] = 1

∣∣N[Qi,1]×[0,δt] = 1
]∣∣
δt→0

=
ν0([Q, 1]× [0, δt])

ν0([Qi, 1]× [0, δt])

∣∣∣
δt→0

=
Qi
Q

Notice that, reciprocally, these two computations completely fix the intensity of the point process

to be dν0 = λp[δ(Q)+dQ/Q2], including the relative weight of the δ(1−Q)dQ and dQ/Q2 terms.

The third propriety of the quantum trajectory of thermal Qu-bit which we mentioned earlier

and that we would like to verify using the description in terms spikes is the following:

(iii) For 0 < Qi < Q < 1, the limit for γ → ∞ of the distribution of the first instance that a

trajectory starting at Qi reaches the point Q is

dPexcur :=
Qi
Q
δ(t)dt+ (1− Qi

Q
)
λp

Q
e
−λp
Q
t
dt.

This result is appropriate to deal with the maxima emerging from 0, and there is a twin

formula for the minima emerging from 1. The formula (iii) can be derived from the spikes’

description. One needs to compute the distribution of the first time the trajectory reaches Q

starting at Qi. Conditioning to start at Qi amounts to condition the spikes’ process to have
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a point in [Qi, 1] × [0, δt] with δt vanishingly small. We aim at computing the distribution of

the random time it takes before a next spike going above Q occurs. There are two possibilities.

Either the initial spike above Qi is actually above Q, so that the occurrence time is zero. This

happens with probability

P
[
N[Q,1]×[0,δt] = 1

∣∣N[Qi,1]×[0,δt] = 1
]∣∣
δt→0

=
ν0([Q, 1]× [0, δt])

ν0([Qi, 1]× [0, δt])
=
Qi
Q
.

Or the next spike above Q differs from the initial spike above Qi. The probability that its

occurrence time is t, up to dt, is then

P
[
N[Qi,Q]×[0,δt] = 1, N[Q,1]×[0,t] = 0, N[Q,1]×[t,t+dt] = 1

∣∣N[Qi,1]×[0,δt] = 1
]∣∣
δt→0

=
ν0([Qi, Q]× [0, δt]) ν0([Q, 1]× [t, t+ dt])

ν0([Qi, 1]× [0, δt])
e−ν0([Q,1]×[0,t])

∣∣∣
δt→0

= e
−λp
Q
t (

1− Qi
Q

)λp
Q
dt.

Summing up the two above contributions gives the distribution dPexcur for this stopping time,

as it should.

Hence, the spikes’ description of the quantum trajectories at infinitely strong monitoring

gives an efficient way to compute fine structures of those trajectories beyond the Markov chain

description.

An explicit construction at infinite γ

Here we take an alternative route and present a different approach to directly reconstruct

the process in the infinite strong measurement limit. This construction is based on using the

reflected Brownian motion parametrized not with the usual time but with its local time – i.e.

the time the Brownian motion spends in 0 or 1. This provides another way to take the large

noise limit in SDE, which may have potential applications in other contexts.

We have to deal with the SDE dQt = λ(p − Qt)dt + γQt(1 − Qt)dBt when γ → ∞. Let us

first look at the linear version of it,

dXt = λpdt+ γXtdBt.

From what we know about quantum trajectories, we expect that Xt is always positive, and that

its trajectories for γ →∞ are formed with spikes emerging from the real axis – these are simply

obtained by zooming the quantum trajectories of Qt close to zero.

Alternatively, for γ large, the drift term is negligible as soon as Xt 6= 0. Hence away from

zero, Xt is a martingale – because dXt = γXtdBt – and hence a Brownian motion up time

reparametrisation. Let us use that time to parametrize Xt. That is, let us define the new ‘time’

τ by dτ := γ2X2
t dt = (dXt)

2 and set Zτ = Xt with the time t viewed as an implicit function τ .

By construction

dZτ =
λp

γ2Z2
τ

dτ + dWτ = λp dtτ + dWτ ,

where dWτ = γXtdBt is a Brownian motion with respect to τ . Again, in the limit γ → ∞ the

first term does not matter when Zτ 6= 0 and away from zero Zτ behaves like a Brownian motion.

This first term plays a role when Zτ is close to zero and, because it is repulsive, it reflects Zτ
away from the real axis and ensures that Zτ stays positive.

40



So we have to find a process which stays positive, is reflected on the real axis, and behaves

like the Brownian motion away from zero. This process has to be the reflected Brownian motion

which is equivalent to its absolute value, i.e. it is to be |Ŵτ | for some Brownian motion Ŵτ .

Recall the Tanaka formula for the Itô derivative of the absolute value of the Brownian motion

d|Ŵτ | = δ(Ŵτ )dτ + sign(Ŵτ )dŴτ =: dL(0)
τ + dWτ ,

where we defined Wτ by dWτ = sign(Ŵτ )dŴτ , and the “local time” at zero L
(0)
τ by dL

(0)
τ =

δ(Ŵτ )dτ , which is the time spend at the origin by the Brownian motion Ŵτ .

Hence, by identifying Zτ with the reflected Brownian |Ŵτ | we got the identification dL
(0)
τ =

λp dt = λp
γ2Z2

τ
dτ . That is: up to a proportionality coefficient, the original time t is the local time

of the Brownian motion Ŵτ . Since we started from Xt = Zτ , we get that Xt is equivalent (in

law) to a reflected Brownian but parametrized by its local time at zero.

It is clear pictorially Figure... that this produces spiky trajectories because the time t is

flat when the trajectory is away from the zero.

It is also clear that the distribution of these spikes form a Poisson process with intensity

dν = λp dtdz/z2. Indeed, in the τ -parametrization, a spike of height at least zo corresponds to

a Brownian excursion stasted at the origin and going above zo before coming back to the origin.

The probability for such an event is proportional to 1/zo and hence the intensity – which is the

zo-derivative of this probability – is proportional to dzo/z
2
o .

For the complete quantum trajectories, not the linear version, we have to consider a Brownian

motion Ŵτ on the trip [0, 1] × R+ reflected on the two boundaries of the strip, the lower at 0

and the upper at 1. We can then claim

Claim “Reconstructed spiky trajectories”:

The quantum trajectories Qt, for a Qu-bit in contact with a thermal bath, are equivalent in law

to a Brownian motion Ŵτ reflected at 0 and 1 but parametrized by its local times via the relation

t =
1

λp
L(0)
τ +

1

λ(1− p)
L(1)
τ ,

with L
(0)
τ and L

(1)
τ the local times at 0 and 1 respectively.

The arguments presented above give good (physical) evidences for this proposition but a

complete proof would require a more mathematically rigorous approach. The generalization of

this proposition for higher dimensional system (bigger than a Qu-bit) is yet unclear.

Remark 1:

One may naively argue in favor of the proposition as follows. Let us change time parametrization

in the quantum trajectory SDE in a manner similar as for the linearized version by defining

a new time τ by dτ := (dQt)
2 = γ2Q2

t (1 − Qt)
2dt. Let Zτ := Qt and Wτ the Brownian

motion, with respect to τ , defined via dWτ := γQt(1 − Qt)dBt, with dW 2
τ = dτ . We have

dZτ = λp
γ2Z2

τ (1−Zτ )2
dτ + dWτ . In the limit γ →∞, the drift has a relevant contribution only for

Zτ close to 0 or 1, so that we may write

dZτ '
λp

γ2Z2
τ

dτ − λ(1− p)
γ2(1− Zτ )2

dτ + dWτ = dL(0)
τ − dL(1)

τ + dWτ ,
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with the identification dL
(0)
τ ' λp

γ2Z2
τ
dτ and dL

(1)
τ ' λ(1−p)

γ2(1−Zτ )2
dτ as in the linear version. Now

recall the relation between the new and original time parametrisation, dτ = γ2Q2
t (1 − Qt)2dt,

or equivalently dt = dτ
γ2Z2

τ (1−Zτ )2
. Again this is non flat only for Zτ close to 0 or 1, and we get:

dt ' dτ

γ2Z2
τ

+
dτ

γ2(1− Zτ )2
=

1

λp
dL(0)

τ +
1

λ(1− p)
dL(1)

τ ,

as suggested in the proposition.

Remark 2:

In the linear case, the construction can be made rigorous using a result due to Skorohod. This

result claims that given a continuous function x(t) defined for t ≥ 0, with x(0) = z ≥ 0, there

exists a unique non-decreasing continuous function l(t) such that the function y(t) := x(t) + l(t)

is positive and such that l(t) is constant outside the set {t; y(t) = 0}. That is: l(t) increases

only when y(t) = 0. An explicit solution is given by

l(t) = max
[
0,max0≤s≤t[−x(s)]

]
.

In the case in which x(t) is the Brownian motion Bt started at z, another result due to Levy

states that the process y(t) is equivalent in law to the reflected Brownian motion |B(t)|, and l(t)

is the local time L
(0)
t at 0 thanks to the Tanaka relation d|Bt| = dLt + sign(Bt) dBt.

5.3 Applications/illustrations

– Operator localised on spikes [à voir?...]...

– Entropy balance....

6 Quantum stochastic processes

6.1 Quantum noises and Fock spaces

6.2 Quantum stochastic differential equations

6.3 From quantum SDE to quantum trajectories

6.4 An out-of-equilibrium application.....
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