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TURBULENCE

The power of two dimensions
Certain aspects of two-dimensional turbulence are remarkably similar to those 
found in critical percolation, and show conformal invariance. But there is both 
less, and more, to this observation than meets the eye.
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Turbulence in fl uids is one of those everyday 
natural phenomena for which we think we 
understand the underlying physics, but are 

nevertheless unable to make analytic predictions for 
the patterns we see when, for example, we stir our 
coff ee in the morning. On page 124 of this issue1, 
Denis Bernard et al. argue that, in two dimensions, 
some aspects of those patterns have much in common 
with those that appear in a simpler process called 
critical percolation. Th ey do this by comparing the 
results of extensive numerical simulations of two-
dimensional turbulence with some recent analytic 
results for percolation. Although these observations 
are fascinating and unexpected, they perhaps raise 
more questions than they answer.

Turbulence in a fl uid in three dimensions occurs 
when it is stirred on large length scales (for example, 
by a coff ee spoon). It can be shown that the viscosity, 
by which the energy is dissipated, is only eff ective 
at very short length scales. Th us there is a continual 
‘cascade’ of energy from large to small scales. Many 
years ago Kolmogorov argued that2, despite the 
fact that the underlying Navier–Stokes equations 
are deterministic, this cascade may be described 
statistically in terms of random velocity fl uctuations, 
with a power-law spectrum of their Fourier 
components. In two dimensions, the picture is slightly 
diff erent, and Kraichnan argued there should be an 
inverse energy cascade out to scales larger than that of 
the stirring3. In this regime, the vorticity is a random 
scalar quantity.

Percolation, on the other hand, is described much 
more simply. Imagine that we randomly colour the 
cells of a honeycomb lattice black or white. Each cell 
has a probability p of being white. If p is small, most 
of the cells will be black, with a few small islands, 
or clusters, of white. As p is increased, these white 
clusters grow larger until at a critical value pc (which 
for this example equals 1/2, the case shown in Fig. 1) 
there is a non-zero probability that one of these 
spans the whole region, no matter how large it is. 
Percolation itself is important as a model for random 
inhomogeneous systems — for instance, if the black 

clusters represent untapped oil beds, it is much easier 
to extract the oil if they percolate.

Th e most striking feature of Fig. 1 is its scale 
invariance: if it is slightly out of focus, so we cannot 
see the details of the lattice, and we then take a part of 
the region and blow it up so it is the same size as the 
original, statistically we could not tell the diff erence 
from the original. In two dimensions it turns out 
that an even stronger symmetry holds: if we blow up 
diff erent parts of the fi gure by diff erent magnifi cation 
factors (as long as angles are preserved) then 
statistically the picture once again looks the same. 
Th is property, called conformal invariance, is believed 
to be shared with other important physical systems 
— such as the clusters of spins that point in the same 
direction in certain simple ferromagnets at the Curie 
temperature. With this assumption, theoreticians 
have in the past few decades been able to derive many 
important properties of such systems.

Conformal invariance is much more powerful 
in two dimensions, when it is associated with the 
theory of analytic functions of a complex variable. Th e 
recent theoretical progress on percolation and related 
problems, which goes under the name of stochastic 
Loewner evolution (SLE) and was developed initially 
by the mathematicians Gregory Lawler, Oded 
Schramm and Wendelin Werner, relies very much 
on this property. Instead of the clusters themselves, 
the theory focuses on the properties of their 

Figure 1 An example of critical 
percolation. The cells of a 
honeycomb lattice have been 
randomly coloured black or 
white with equal probability. 
The picture is statistically 
conformally invariant, and the 
boundaries of the clusters 
seem to have the same 
statistics at large scales as the 
lines of zero vorticity in two-
dimensional turbulence.
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boundaries, which are fractal curves. It makes very 
detailed analytic predictions for some of their average 
properties — how the probability that one crosses the 
entire region from left  to right depends on the shape 
of the region, for example.

It is these predictions that Bernard et 
al. have tested against some features of the 
vorticity distribution in the inverse cascade of 
two-dimensional turbulence, with spectacular 
agreement1. Specifi cally, they consider colouring 
the regions of positive vorticity white, and the 
negative regions black. Th is produces pictures 
that, on large scales, look very much like Fig. 1, 
but are they really the same? By making numerical 
measurements on the curves that separate the black 
and white regions, taking statistical averages and 
comparing these with the predictions of SLE, these 
authors argue that they are.

Th is would seem to provide compelling evidence 
for the claim that at least some aspects of two-
dimensional turbulence are conformally invariant. 
But perhaps there is less to this than meets the eye. 
Suppose we take a simple random function for the 
vorticity — not necessarily that given by solving the 
Navier–Stokes equations — and think of its value 
as giving the height at that point in a mountainous 
landscape. Now imagine fl ooding this landscape and 
colouring the parts above the water level white, and 

the rest black. If the water level is high, there will be 
small disconnected islands, and if it is low, there will 
be disconnected lakes. Th ere is however a critical 
value of the sea level for which there is one large 
supercontinent and one large ocean. As long as the 
original random function has a gaussian distribution 
with only short-range correlations, it is believed 
that the large-scale properties of the coastlines 
correspond to percolation cluster boundaries and 
should be described by SLE. Perhaps, then, a simple 
explanation of the authors’ results is that they have 
used a very complicated way of generating a simple 
random landscape, and they tell us nothing about 
turbulence per se.

But this is an oversimplifi cation: as the authors 
point out, the correlations of the vorticity are not 
short-ranged but rather decay as the 4/3 power of 
the distance. Th e fact that lines of zero vorticity 
nevertheless seem to enjoy all the properties of 
simple percolation cluster boundaries, including 
conformal invariance, suggests that something much 
deeper is at work.
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