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1 Exercise corrections

1.1 Chapter 2: Brownian motions and random paths

• Exercise 2.1: Random variables and generating functions.

Let X be a real random variable. Let its characteristic function (also called generating
function) be defined by

Φ(z) := E[eizX ] .

We assume henceforth z ∈ R.

(i) Show that Φ(z) is always well defined for X ∈ R and z ∈ R.

(ii) Define also the function
W (z) := log Φ(z)

or conversely Φ(z) = eW (z).

Expand Φ and W in powers of z and identify the first few Taylor coefficients.

(iii) Suppose that X is an integer-valued discrete random variable having the Poisson
distribution

P[X = n] =
λn

n!
e−λ

for n ∈ N, with parameter λ.

What are its mean, its covariance and its generating function?

(iv) Suppose now that X is a Gaussian variable with probability distribution density

P [X ∈ [x, x+ dx]] =
dx√
2πσ

e−
x2

2σ .

Verify that P is correctly normalised and compute its characteristic function.

• Exercise 2.2: Random Gaussian vectors.

Let ~X be an N -dimensional Gaussian random vector with real coordinates Xi, for
i = 1, . . . , N . By definition its probability distribution is

P(X)dNX = dNX

(
detG

(2π)N

)1/2

exp

(
−1

2
〈X|G|X〉

)
,

with 〈X|G|X〉 :=
∑

ij X
iGijXj , where the real symmetric form Gij is supposed to be

non-degenerate. Denote by Ĝ its inverse:
∑

j GijĜ
jk = δki .

(i) Verify that this distribution is normalised, that is:∫
dNX

(2π)N/2
e−

1
2
〈X|G|X〉 = (detG)−1/2 .
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(ii) For a vector U living in the dual space with respect to X, we define 〈U |X〉 =∑
i UiX

i. Show that the corresponding generating function is

E[ei〈U |X〉] = e−
1
2
〈U |Ĝ|U〉 .

(iii) Show that the mean E[Xi] = 0 and the covariance E[XiXj ] = Ĝij .

• Exercise 2.3: The law of large number and the central limit theorem.

The aim of this exercise is to prove (a simplified version of) the central limit theorem.
Let εk, with k = 1, . . . , n, be independent identically distributed (ii.d) variables. Each
εk = ±1 with equal probabilities.

In this case, the central limit theorem states that the sum Ŝn = 1√
n

∑
k εk converges

(to be precise, in law) in the n→∞ limit to a Gaussian variable.

(i) Prove that

E[eizŜn ] =
[

cos
( z√

n

)]n n→∞−→ e−
z2

2 ,

and conclude.
Hint: Recall the Taylor expansion cos( z√

n
) = 1− z2

2n + o( 1
n) and use limn→∞[1− y

n +

o( 1
n)]n = e−y (which can be proved by taking the logarithm).

• Exercise 2.4: Free random paths.

The scaling limit of free random paths has been treated in section 2.2 of the main text.
We recall that such paths are defined on a hypercubic lattice in D dimensions. Each step
can be written ±aej , where ej for j = 1, . . . , D is a basis of orthonormal vectors in RD,
and is associated with a Boltzmann weight (fugacity) µ. The partition function for paths
going from 0 to x is

Z(x) =
∑

Γ:0→x

µ|Γ| ,

where |Γ| denotes the length of the path Γ. It satisfies the difference equation

Z(x) = δx;0 + µ

D∑
j=1

(
Z(x+ aej) + Z(x− aej)

)
. (1)

(i) Compute the Fourier transform of Z(x) and prove that

Z(x) =

∫
BZ

dDk

(2π/a)D
eik·x

1− 2µ
∑

j cos(ak · ej)
, (2)

where BZ =
[
−π
a ,

π
a

]D
is the Brillouin zone of the square lattice.
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(ii) Let ∆dis. be the discrete Laplacian and write ∆dis. = Θ − 2D I with Θ the lattice
adjacency matrix and I the identity matrix. We view Θ as acting on functions via
(Θ · f)(x) =

∑D
j=1

(
f(x+ aej) + f(x− aej)

)
. Show that:

Z(x) = 〈x| 1

I− µΘ
|0〉,

with |x〉 the δ-function peaked at x, i.e. 〈y|x〉 = δy;x.
Give an expression of W free

N (x as matrix elements of powers of the matrix Θ and give
a geometrical interpretation of this formula.

(iii) Deduce from this formula that Z(x) converges for |µ| < µc with µc = 1/2D.

(iv) Prove the formula for the Green function G(x) given in the main text.

• Exercise 2.5: Computation of a path integral Jacobian determinants.

The aim of this exercise is to compute the determinant Det[∂t − A(t)] of the linear
map acting functions f(t) as follows f(t) → (Jf)(t) = f ′(t)− A(t)f(t) with A(t) a given
function. Instead of computing directly this determinant we factorize the derivation op-
erator and we write Det[∂t −A(t)] := Det[∂t]×Det[1−K]. The operator K is defined by
integration as follows:

K : f(t)→ (Kf)(t) =

∫ t

0
dsA(s)f(s),

for any function f defined on the finite interval [0, T ]. The aim of this exercise is thus to
compute the determinant Det[1−K] and to prove that

Det[1−K] = e−α
∫ T
0 dsA(s),

with α a parameter depending on the regularization procedure (α = 0 for Itô and α = 1
2

for Stratonovich conventions). This illustrates possible strategy to define and compute
functional –infinite dimensional– determinants.

To define the determinant Det[1 − K] we need to discretize it by representing the
integral of any function by a Riemann sum. Let us divide the interval [0, T ] in N sub-
interval [nδ, (n+1)δ] with n = 0, · · ·N−1 and δ = T/N . We will then take the limitN → 0.
To simplify notation we denote fn := f(nδ). There are many possible discretizations
but we shall only consider two of them (which correspond to the Itô and Stratonovich
conventions):

Ito :

∫ t

0
f(t)dt := lim

N→∞
δ
n−1∑
k=0

fk,

Stratonovich :

∫ t

0
f(t)dt := lim

N→∞
δ

n−1∑
k=0

1

2
(fk + fk+1).
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(i) Write the regularized action of the operator K on function f by writing the expres-
sion of (Kf)n.

(ii) Show that the operator 1−K is lower triangular and determine the diagonal entries
(which are convention dependent).

(iii) Deduce, by taking the large N limit, the formula for the determinant:

Ito : Det[1−K] = 1,

Stratonovich : Det[1−K] = e−
1
2

∫ T
0 dsA(s).

More general discretization are defined by sampling differently the Riemann sum
as follows:

∫ t
0 f(t)dt = limN→∞ δ

∑n−1
k=0((1 − α)fk + αfk+1). Following the same

strategy as above, it is then clear that Det[1−K] = e−α
∫ T
0 dsA(s).

• Exercise 2.6: Levy’s construction of the Brownian motion.

The path integral representation is actually closely related to an older (!) construction
of the Brownian motion due to P. Levy. The aim of this exercise is to present the main
point of Levy’s approach which constructs the Brownian paths by recursive dichotomy.

We aim at constructing the Brownian curves on the time interval [0, T ] starting point
x0. The construction is recursive:

(a) First, pick the end point xT with the Gaussian probability density dxT√
2πT

e−(xT−x0)2/2T

and draw (provisionally) a straight line from x0 to xT .

(b) Second, construct the intermediate middle point xT/2 at time T/2 by picking it
randomly from the Gaussian distribution centered around the middle of the segment
joining x0 to xT , and with the appropriate covariance to be determined. Then, draw
(provisionally) two straight lines from x0 to xT/2 and from xT/2 to xT .

(c) Next, iterate by picking the intermediate points at times T/4 and 3T/4, respectively,
from the Gaussian distribution centered around the middle point of the two segments
drawn between x0 and xT/2 and between xT/2 and xT , respectively, and with the
appropriate covariance. Then draw (provisionally) all four segments joining the
successive points x0, xT/4, xT/2, x3T/4 and xT/2.

(d) Iterate ad infinitum. . .

Show that this construction yields curves sampled with the Brownian measure.
Hint: This construction works thanks to the relation

(xi − x)2

2(t/2)
+

(x− xf )2

2(t/2)
=

(xi − xf )2

2t
+

(x− xi+xf
2 )2

2(t/4)

• Exercise 2.7: The over-damped limit of the noisy Newtonian particle.
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Consider Newton’s equation for a particle of mass m subject to a friction and random
forcing (white noise in time). That is, consider the SDEs:

dXt =
Pt
m
dt, dPt = −γ dXt + dBt,

with Xt the position and Pt the momentum. We are interested in the limit m → 0 (or
equivalently γ large). Let us set m = ε2 to match the Brownian scaling. Then show that:

(i) the process γXε
t converges to a Brownian motion Bt;

(ii) Y ε
t := ε Ẋε

t converges to a finite random variable with Gaussian distribution.

That is: Introducing the mass, or ε, is a way to regularize the Brownian curves in the
sense that Xε

t admits a time derivative contrary to the Brownian motion. But quantities
such as Y ε

t , which are naively expected to vanish in the limit ε → 0, actually do not
disappear because the smallness of ε is compensated by the irregularities in Ẋε

t as ε→ 0.
For instance E[1

2mẊ
2
t ] is finite in the limit m → 0. Such phenomena—the existence of

naively zero but nevertheless finite quantities due to the emergence of irregular structures
in absence of regularizing—are common in statistical field theory, and are (sometimes)
called ‘anomaly’.

• Exercise 2.8: SDEs with ‘multiplicative’ noise.

Generalize the results described above for a more general SDE of the form

dXt = a(Xt)dt+ b(Xt)dBt

with a(x) and b(x) smooth non constant functions. To deal with the small noise limit one
may introduce a small parametr ε by rescaling b(x) via b(x)→ ε b(x).

(i) Prove that the Fokker-Planck operator for SDEs reads

H = ∂x
(1

2
∂x b

2(x)− a(x)
)

(ii) Verify that the invariant measure (if normalizable) is

Pinv(x) dx = b−2(x) e−2s(x) dx, s(x) := −
∫ x

dy
a(y)

b2(y)
.

What is the invariant measure if the later is not normalizable?
What is then the physical interpretation of this new measure?

(iii) Show that the action of the path integral representation of these SDEs is

S =
1

2

∫ T

0
ds

(ẋs − a(xs))
2

b2(xs)
.

in the small noise limit ε� 1. Verify (by going back to the discret formulation) that
this way of writing the action is still valid away from the small noise limit provided
that one carefully defined the integrals.
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• Exercise 2.9: Multivariable SDEs

Generalize all these results for multivariable SDEs of the form dXi = ai(X) dt +
bij(X) dBj

t where Bj are Brownian motions with covariance E[Bi
tB

j
s ] = δijmin(t, s).
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1.2 Chapter 3: Statistical lattice models

• Exercise 3.1: Fermionic representation of the 2D Ising model

The aim of this exercise is to complete the study of the 2D Ising model presented in
the lecture notes. Recall the definition of the 2D Ising model given in the text.

(i) Prove—or argue—that the Ising model is described by the Hamiltonian

H = −γ
Nx∑
x=1

τ3
x − β

Nx∑
x=1

τ1
xτ

1
x+1 ,

where γ = e−2Ky and β = Kx are related to the anisotropic coupling constants
(Kx,Ky) in the completely anisotropic limit, Kx � 1 and Ky � 1.

(ii) Recall the Jordan-Wigner transformations given in the main text which construct
fermionic operators in terms of Pauli matrices via

ax = eiπ
∑x−1
y=1 τ

−
y τ

+
y τ+

x , a†x = e−iπ
∑x−1
y=1 τ

−
y τ

+
y τ−x .

Show that we may alternatively write

ax =
( x−1∏
y=1

τ zy
)
τ+
x , a†x =

( x−1∏
y=1

τ zy
)
τ−x .

Verify that they satisfy the canonical fermionic relation a†xay + aya
†
x = δx,y.

(iii) Show that the Hamiltonian becomes

H = −γ
Nx∑
x=1

τ3
x − β

Nx∑
x=1

τ1
xτ

1
x+1

= γ

Nx∑
x=1

(
a†xax − axa†x

)
− β

Nx∑
x=1

(
a†x − ax

)(
a†x+1 + ax+1

)
.

(iv) Complete the proof of the diagonalisation of the Ising hamiltonian and its spectrum.
Proof that, after an appropriate Bogoliubov transformation on the fermion operators,
the Ising hamiltonian can be written in the final form given in the main text, which
we recall here,

H =
∑
k>0

hk

(
c†kck − c−kc

†
−k

)
,

with single particle spectrum hk =
[
(γ − β)2 + 4γβ sin2(k/2)

]1/2
.

• Exercise 3.2: Spin operators, disorder operators and parafermions.
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The aim of this exercise—and the following two—is to study some simple consequences
of group symmetry in lattice statistical models.

Let us consider a lattice statistical model on a two dimensional square lattice Λ :=
a2Z2 with spin variables s on each vertex of the lattice. These variables take discrete or
continuous values, depending on the models. We consider neighbour spin interactions with
a local hamiltonian H(s, s′) so that the Boltzmann weight of any given configuration [c] is

W ([c]) :=
∏

[i,j]=edge

w[i,j], w[i,j] = e−H(si,sj),

where, by convention, [i, j] denotes the edge connecting the vertices i and j. Let Z :=∑
[c]W ([c]) be the partition function.
Let us suppose that a group G is acting the spin variables. We denote by R the

corresponding representation. Furthermore we assume that the interaction is invariant
under this group action so that, by hypothesis,

H(R(g) · s,R(g) · s′) = H(s, s′), ∀g ∈ G.

(i) Transfer matrix: Define and construct the transfer matrix for these models.

(ii) Spin operators: Spin observables, which we denote σ(i), are defined as the local in-
sertions of the spin variables at the lattice site i. That is: σ(i) is the function which
to any configuration associate the variable si.
Write the expectations of the spin observables 〈σ(i1) · · ·σ(iN )〉 as a sum over con-
figurations weighted by their Boltzmann weights.
Write the same correlation functions in terms of the transfer matrix.

(iii) Disorder operators: Disorder observables are defined on the dual lattice and are
indexed by group elements. Let Γ be a closed anti-clockwise oriented contour on the
square lattice Λ̃ dual to Λ –the vertices of Λ̃ are the center of the faces of Λ. Let `
denote an oriented edge of Γ. It crosses an edge of Λ and we denote by `− and `+

the vertices of this edge with `− inside the loop Γ. The disorder observable µg(Γ)
for g ∈ G is defined as

µΓ(g) := exp
(∑
`∈Γ

(H(s`− , s`+)−H(s`− , R(g)s`+)
)
,

Inserting µΓ(g) in the Boltzmann sum amounts to introduce a defect by replacing the
hamiltonian H(s`− , s`+) by its rotated version H(s`− , R(g)s`+) on all edges crossed
by Γ.
Write the expectations of disorder observables in terms of the transfer matrix.

• Exercise 3.3: Symmetries, conservation laws and lattice Ward identities

The aim of this exercise is to understand some of the consequences of the presence of
symmetries. The relations we shall obtain are the lattice analogue of the so-called Ward
identities valid in field theory.

10
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We consider the same two dimensional lattice model as in previous exercise. We recall
that we assume the Bolztmann weight to be invariant under a symmetry group G in the
sense that

H(R(g) · s,R(g) · s′) = H(s, s′), ∀g ∈ G.

(i) Let ik be points on the lattice Λ and Γ a contour as in previous exercise.. Show that
the group invariance implies that

〈µΓ(g)
∏
k

σ(ik)〉 =
∏

ik inside Γ

Rik(g) · 〈
∏
k

σ(ik)〉,

where Rik(g) denote the group representation R acting on the spins at site ik.

Show that µg(Γ) is invariant under any smooth continuous deformation of Γ as
long as the deformation does not cross points of spin insertions (it is homotopically
invariant).

We now look at the consequences of these relations for infinitesimal transformations.
Suppose that G is a Lie group and Lie(G) its Lie algebra. Let us give a name to
small variations of H by defining ∂XH. For g = 1 + εX + · · · with X ∈ Lie(G), we
set

H(s,R(g)s′)−H(s, s′) =: ε ∂XH(s, s′) + · · · .

For ` = [`−, `+] an oriented edge of Γ as in previous exercise and X ∈ Lie(G), we let

∗JX` := ∂XH(s`− , s`+),

They are specific observables, called currents, whose correlation functions are defined
as usual via insertion into the Bolztmann sums.

(ii) Show that the following equality holds:

〈
∑
`∈Γ

∗JX` ·
∏
i

σ(i)〉 = 〈
( ∑
ik inside Γ

Rik(X)
)
·
∏
i

σ(i)〉,

if some spin observables are inserted inside Γ.

(iii) Deduce that, if there is no observables inserted inside Γ, then the following equality
holds inside any expectation values:∑

`∈Γ

∗JX` = 0,

That is: The second of these two equations is a conservation law (i.e. it is the
analogue of the fact that

∫
∗J = 0 if ∗J is a closed form, or equivalently, if J is a

conserved current), the first tells about the consequences of this conservation law
when insertion of observables are taken into account. It is analogous to the Gauss
law in electrodynamics. They are called Ward identities in field theory.
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1.3 Chapter 4: From statistical models to field theories

• Exercise 4.1: Mean field from a variational ansatz

The aim of this exercise is to derive the Ising mean field approximation form a vari-
ational ansatz. We consider the Ising in homogeneous external field hi so that the con-
figuration energy is E[s] = −

∑
i,j Jijsisj −

∑
i hisi, with Jij proportional to the lattice

adjacency matrix. The Ising spins take values si = ±. Let Z[h] be its partition function.
(Note that we introduce the external magnetic field with a minus sign).

As an ansatz we consider the model of independent spins in an effective inhomogeneous
external field hoi with ansatz energy Eo[s] = −

∑
i h

o
i si , so that the ansatz Boltzmann

weights are Z−1
0 eβ

∑
i h
o
i si with Z0 the ansatz partition function.

(i) Show that Z0 =
∏
i[2 cosh(βhoi )].

(ii) Using a convexity argument, show that E0[e−X ] ≥ e−E0[X] for any probability mea-
sure E0 and measurable variable X.

(iii) Choose to be E0 the ansatz measure and X = β(E[s]− Eo[s]) to prove that

Z[h] ≥ Z0 e
−βE0[E[s]−βE0[Eo[s]],

or equivalently, F [h] ≤ F0−E0[Eo[s]−E[s]], with F [h] and F0 the Ising and ansatz
free energy respectively.

The best variational ansatz is that which minimizes F0 − E0[Eo[s]− E[s]].

(iv) Compute F0, E0[Eo[s]] and E0[E[s]] and show that the quantity to minimize is

F0[ho] +
∑
i

hoi m̄i −
∑
ij

Jijm̄im̄j −
∑
i

him̄i,

where m̄i = −∂F0[ho]
∂hoi

= tanh(βhoi ) is the local mean magnetization evaluated with

the ansatz measure. Show that this minimization problem reduces to the Ising mean
field equations.

• Exercise 4.2: Thermodynamic functions and thermodynamic potentials

The aim of this exercise is to recall a few basic fact about generating functions, ther-
modynamic functions and their Legendre transforms.

Let us consider a (generic) spin model and let E[{s}] be the energy of a spin configu-
ration {s} with local spin si. We measure the energy in unit of the temperature so that
the Boltzmann weights are e−β E[{s}]. Let Z[0] =

∑
{s} e

−β E[{s}] be the partition function.
In the following we set β = 1 (or alternatively include the β-dependence in the other
dimensionfull parameter).

(i) Give the expression of the energy Eh[{s}] in presence an external inhomogeneous
external field h.

12
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Show that the generating function for this spin correlation functions can written as
(with (s, h) =

∑
i sihi)

E[e(s,h)] =
Z[h]

Z[0]
,

Explain why the partition function Z[h] is the generating function for spin correla-
tions.

(ii) Let F [h] be the free energy and let W [h] = −
(
F [h]− F [0]

)
. Verify that

logE[e(s,h)] = W [h].

(iii) Let Γ(m) be the thermodynamic potential defined as the Legendre transform of
W [h]. Recall that

Γ(m) = (m,h∗)−W [h∗], with
∂W

∂h
[h∗] = m.

Verify that this transformation is inverted by writing

W [h] = (m∗, h)− Γ[m∗], with
∂Γ

∂m
[m∗] = h.

• Exercise 4.3: An alternative representation of the Ising partition function.

The aim of this exercise is to explicitly do the computation leading to the representation
of the Ising partition function in terms of a bosonic field. It uses a trick—representing
the interaction terms via a Gaussian integral over auxiliary varaibles—which find echoes
in many other problems.

(i) Prove the following representation of the Ising partition function given in the text
(without looking at its derivation given there):

Z =

∫
[
∏
k

dφk] e
−S[φ;h],

with the action

S[φ;h] = −1

4

∑
ij

φiJijφj +
∑
i

log[cosh(hi +
∑
j

Jijφj)].

(ii) Deduce what is the representation of the Ising spin variables si in terms of the
bosonic variables φi.

• Exercise 4.4: Mean field vector models

13
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We consider a theory with a vector order parameter ~m of dimension d. We denote by
D the dimension of the space. This theory is described by the Landau action

S[~m] =

∫
dDr

1

2

d∑
i=1

(~∂rmi)
2 +

a

2

d∑
i=1

m2
i +

b

4

(
d∑
i=1

m2
i

)2
 .

We suppose that the parameters take the form

a = a0t+O(t2) , a0 > 0 ,

b = b0 +O(t) , b0 > 0 ,

where t = (T − Tc)/Tc denotes the reduced temperature.

(i) What is the norm m of the system’s spontaneous magnetisation? We write ~m = m~e,
where ~e is the direction of the magnetisation.

(ii) We define the susceptibility—or correlation function—by

Gij(r − r′) =
δmi(r)

δhj(r′)

∣∣∣∣
h=0

.

Show that G is the inverse matrix of the Hessian (≡ the matrix of second derivatives)
of the action (in the d-dimensional space of components of the order parameter).
Compute the Fourier transform g−1(k) of G−1(r − r′).

(iii) We introduce the longitudinal projector

PLij = eiej

and the transverse projector
P Tij = δi,j − eiej .

Invert the matrix g−1(k) to obtain g(k). Deduce an expression for Gij(r−r′). What
are the correlation lengths of the two different modes?

(iv) Optional:What happens in the presence of an external field?

14
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1.4 Chapter 5: The renormalisation group and universality

• Exercise 5.1: Real-space renormalisation: Ising model on the triangular lattice

We consider the Hamiltonian of the two-dimensional Ising model

βH({Si}) = −N J0 − J1

N∑
〈i,j〉

SiSj − J2

N∑
i=1

Si, (3)

where the symbol 〈i, j〉 represents the pairs of nearest neighbours on the triangular lattice,
shown in Figure 1. The mesh size of the lattice is a.

In this exercise we consider a transformation of the renormalisation group in real space,
which consists of creating blocks of spins σα, where α indexes the block. The spins at
the three vertices of a black triangle in Figure 1, such as S1, S2, S3, form one block spin
according to the rule

σα = sign
(
S1 + S2 + S3

)
. (4)

It is seen that each spin S belongs to one and only one block α.

(i) What is the mesh size of the new triangular lattice formed by the blocks α? To each
configuration {σα} we associate all the configuration C({σα}) of the spins {Si} that
verify the definition (4). What is the number of elements in C?

(ii) We define a Hamiltonian H on the block spins {σα} by decimating the spins {Si}
that belong to C({σα}):

H({σα}) = − 1

β
log

 ∑
{Si}∈C({σα})

exp (−β H({Si}))

 .
Show that the Hamiltonian H(σ1, σ2, σ3) for the lattice of N = 9 spins Si (with
i = 1, 2, . . . , 9) shown in Figure 1 can be written in the form

−βH(σ1, σ2, σ3) = A123 +A12σ3 +A23σ1 +A13σ2

+ A1σ2σ3 +A2σ1σ3 +A3σ1σ2 +Aσ1σ2σ3 ,

where the A··· are constants.

(iii) Show next that the A··· are calculable starting from H({Si}) — at least in principle,
that is, by performing sums over a large number of terms. Argue that all the A··· are
non zero; in particular, the renormalised Hamiltonian H({σα}) contains interactions
which are not present in H({Si}). One may corroborate these arguments by explicit
computations using symbolic algebra software such as Mathematica or Maple.

(iv) We define the Hamiltonian

βH0({Si}) = −N J0 − J1

N/3∑
α=1

∑
<i,j>∈α

SiSj , (5)
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Figure 1: Block spins on the triangular lattice.

where the second sum is over pairs of nearest neighbour sites belonging to the same
block α. We also denote by 〈A〉0̃ the mean value of the observable A with the
Hamiltonian H0 for a fixed configuration {σα}:

〈A〉0̃ =
1

Z0̃

∑
{Si}∈C({σα})

A({Si}) exp (−βH0({Si}))

Z0̃ =
∑

{Si}∈C({σα})

exp (−βH0({Si})) .

Show that
exp (−βH({σα})) = Z0̃ 〈exp (−β(H −H0))〉0̃

Use the convexity of the exponential to deduce the following inequality

βH({σα}) ≤ − logZ0̃ + β〈H −H0〉0̃ . (6)

(v) Compute Z0̃. Show that

〈Si〉0̃ =
e3J1 + e−J1

e3J1 + 3 e−J1
σα ,

where α denotes the block containing the site i. Deduce from this the value of
〈H −H0〉0̃.

(vi) Establish the real-space renormalisation group transformation

J ′1 = 2 J1

(
e3J1 + e−J1

e3J1 + 3 e−J1

)2

, (7)

J ′2 = 3 J2

(
e3J1 + e−J1

e3J1 + 3 e−J1

)
, (8)

J ′0 = 3 J0 + log(e3J1 + 3 e−J1) , (9)

by approximating H by the upper bound (??). What are the fixed points (J∗1 , J
∗
2 )

of the flow in the space of the two coupling constants? Study their stability.
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(vii) Compute the critical exponents at the non-trivial fixed point determined in the
preceding question. One proceeds by linearisation of the renormalisation group flows
around the fixed point.

• Exercise 5.2: Correction to scaling.

The aim of this exercise is to understand how the irrelevant variables induce sub-
leading corrections to scaling behaviours. To simplify matter, let us suppose that the
critical system possesses only one relevant scaling variable, say ut with RG eigen-value
yt > 0, and one irrelevant variable, say uirr with RG eigen-value yirr < 0. (Of course
generic physical systems have an infinite number of irrelevant variables but considering
only one will be enough to understand their roles).

(i) By iterating RG transformations as in the main text, show that the singular part of
the free energy can be written as

fsing = |ut|D/yt ϕ±(u0
irr |ut||yirr|/yt),

where ϕ± are functions possibly different for ut > 0 or ut < 0, and u0
irr is the initial

value (before RG transformations) of the irrelevant coupling.

(ii) Argue (without formal proof) that the functions ϕ± may raisonably be expected to
be smooth. Under this assumption, prove that

fsing = |ut|D/yt
(
A0 +A1 u

0
irr |ut||yirr|/yt + · · ·

)
,

where A0 and A1 are non-universal constants.

• Exercise 5.3: Change of variables and covariance of RG equations.

Let us consider a theory with a finite number of relevant coupling constants that we
generically denote {gi}. Let us write the corresponding beta functions as (no summation
in the first term)

βi(g) = yig
i − 1

2

∑
jk

Cijkg
jgk + · · · .

(i) Prove that, if all yi are non-vanishing, then there exist a change of variables from
{gi} to {ui}, with ui = gi +O(g2), which diagonalizes the beta functions, up to two
loops, i.e. such that βi(u) = yiu

i +O(u3).

(ii) Prove that, if all yi are zero, then the second and third Taylor coefficient are invari-
ant under a change of variables from {gi} to {ui}, with ui = gi +O(g2).
That is: For marginal perturbation, the second and third loop beta function co-
efficients are independent on the renormalization scheme (alias on the choice of
coordinate in the coupling constant space).
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(iii) Let expand the beta functions to all orders in the coupling constants:

βi(g) = yig
i −
∑
n>0

∑
j1,··· ,jn

Cij1,··· ,jng
j1 · · · gjn .

Prove that, if there is no integers pi, pj such that piyi − pjyj ∈ Z, for i 6= j (in
such cases, one says they that there is non resonances), then there exists a change
of variables from {gi} to {ui}, with ui a formal power series in the gi’s, with ui =
gi+O(g2), which diagonalizes the beta functions as a formal power series in the ui’s.
That is: There exist scaling variables, at least as formal power series.
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1.5 Chapter 6: Free field theory

• Exercise 6.1: Translation invariance and the stress-tensor

The aim of this exercise is to see some aspect of the relation between translation invari-
ance and the stress-tensor. Let us consider classical scalar field theory with Lagrangian
L[φ, ∂φ] and action S[φ] =

∫
dDxL[φ, ∂φ]. Recall that maps extremalizing this action are

said to be solution of the classical equations of motion, which reads

∂µ

( ∂L
∂(∂µφ)(x)

)
=

∂L
∂φ(x)

.

These equations are the Euler-Lagrange equations.

(i) Consider an infinitesimal field transformation φ(x)→ φ(x)+ε(δφ)(x). Suppose that,
under such transformation the Lagrangian variation is δL[φ, ∂φ] = ε∂µG

µ so that
the action is invariant. Show that the following Noether current

Jµ = (δφ)
∂L

∂(∂µφ)
−Gµ,

is conserved on solutions of the equations of motion.

(ii) Let us look at translations x → x − ε a. How does a scalar field φ transforms
under such translation? Argue that if the Lagrangian density is a scalar, then δL =
ε aµ∂µL. Deduce that the action is then translation invariant and that associated
conserved Noether current is Jµa = Tµν aν with

Tµν =
∂L

∂(∂µφ)
(∂νφ)− δµν L.

This tensor is called the stress-tensor. It is conserved: ∂µT
µ
ν = 0.

(iii) Find the expression of the stress-tensor Tµν for a scalar field theory with action
S[φ] =

∫
dDx

(
1
2(∇φ)2 + V (φ)

)
.

• Exercise 6.2: Lattice scalar field and lattice Green function

Recall that lattice scalar free theory is defined by the action

S[φ] =
aD−2

2

∑
x

φx [(−∆dis + a2m2)]φx,

where φx are the value of the field at point x on the lattice and ∆dis discrete Laplacian on
that lattice. We here consider only D-dimensional square lattice of mesh size a, i.e. aZD.
Let us also recall that the Fourier transforms in aZD are defined by

φ̂k = aD
∑
n

e−ix·k φx, φx =

∫
BZ

dDk

(2π)D
eix·k φ̂k

where the integration is over the Brillouin zone, which is the hyper-cube BZ ≡ [−π
a ,

π
a ]D.
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(i) Verify that the Laplacian acts diagonally in the Fourier basis, with

(−∆dis + a2m2)k = 2
∑
α

(
η − cos(a kα)

)
,

with η = 1 + a2m2

2D and kα the component of the momentum k in the direction α.

(ii) Verify that in the Fourier basis the free field action reads

S[φ] =
1

2

∫
BZ

dDk

(2π/a)D
φ̂−k(−∆dis +m2)k φ̂k.

(iii) Deduce that in Fourier space, a scalar free field is thus equivalent to a collection of
i.i.d. Gaussian variables, indexed by the momentum k, with mean and covariance

〈φ̂k〉 = 0, 〈φ̂kφ̂p〉 =
1

(−a2∆dis +m2)k
(2π)D δ(k + p).

• Exercise 6.4: Fractal dimension of free paths

The fractal dimension Dfrac of a set embedded in a metric space may be defined through
the minimal numberNε of boxes of radius ε need to cover it byDfrac = limε→0 logNε/ log(1/ε).

(i) Prove that the fractal dimension of free paths is Dfrac = 2 using the fact that
the composite operator φ2, with φ a (massless) Gaussian free field, is the operator
conditioning on two paths emerging from its insertion point.

• Exercise 6.6: Two ways to compute the free energy

The aim of this exercise is to compute the free energy, or the partition function, of a
massless free boson in space dimension d = 1 at temperature T = 1/β. Let D = d + 1.
Recall that the partition function is defined as Z = Tr(e−βH) where the trace is over the
quantum Hilbert space with H the hamiltonian. Let us suppose that the quantum theory
is define dover an interval I of length L. We shall be interested in the large L limit.

(i) Argue (see Chapter 3) that the partition function is given by the Euclidean path
integral on the cylinder I× S1 with a radius β:

Z =

∫
φ(x,β)=φ(x,0)

Dφe−S[φ].

We shall compute the partition function by quantizing the theory along two different
channels (see Figure):
(a) either taking the direction S1 as time, this Euclidean time is then period with
period β;
(b) or taking the direction I as time, this time then runs from 0 to L with L→∞.
Global rotation invariance implies that this to way of computing gives identical
result. Let us check. On the way this will give us a nice relation about the Riemann
ζ-function.
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(ii) Explain why the first computation gives Z = e−βLF(β), where F the free energy.

(iii) Explain why the second computation gives Z = e−LE0(β,A) with E0(β) = β E0(β)
where E0 is the vacuum energy and E0 is the vacuum energy density (this is the
Casimir effect).

(iv) Show that the free energy density of a massless boson in one dimension is:

F =
1

β

∫
dk

2π
log(1− e−β|k|) =

1

β2

∫ ∞
0

dx

π
log(1− e−x).

(v) Compute the integral to write this free energy density as

F = − 1

πβ2
ζ(2).

We have introduce the so-called zeta-regularisation. Let ζ(s) :=
∑

n>0
1
ns . This

function was introduced by Euler. This series is convergent for <s > 2. It is defined
by analytic continuation for other value of s via an integral representation.

(vi) Show that the vacuum energy density is E0(β) = 1
β

∑
n

1
2

∣∣2nπ
β

∣∣.
(vii) This is divergent. Argue that a regularization based on analytic continuation gives

E0(β) =
2π

β2
ζ(−1).

(viii) Conclusion: A remarkable fact is that ζ(2) = π2

6 and that the analytic continuation
of ζ gives ζ(−1) = − 1

12 . Thus

F(β) = E0(β) = − π

6β2
.

Actually, we could reverse the logic: physics tells us that ζ(−1) has to be equal to
− 1

12 because E0 has to be equal to F .

• Exercise 6.7: Radial quantization (at least in 2D).

[... To be completed...]

• Exercise 6.8: Spanning trees of a graph

Let G = (V,E) be a graph with vertex set V and edge set E. The edges e ∈ E are
equipped with an arbitrary but fixed orientation. An example is shown in Fig. 2.

The discrete Laplacian of G is a matrix M of size |V | × |V | with elements mij . For
i 6= j, mij = −k if there are k = 0, 1, 2, . . . edges between the vertices i and j; and for
i = j, mii is the number of edges incident on the vertex i.

The incidence matrix of G is a matrix A0 of size |V |× |E| with elements aij . These are
aij = 1 if the edge j goes out of the vertex i; aij = −1 if the edge j goes into the vertex
i; and aij = 0 otherwise (i.e., if the edge j is not incident on the vertex i).
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1 2

34

2
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54

1

Figure 2: A graph G with 4 vertices and 5 oriented edges.

(i) Write A0 and M for the example in Fig. 2.

(ii) Show that, in the general case, M = A0 ·AT
0 .

(iii) Show that the rank of A0 is |V | − C, where C denotes the number of connected
components of G [Kirchhoff 1847].

We henceforth suppose that G is a connected graph, C = 1. The reduced incidence
matrix A is obtained from A0 by erasing its last row.

Define a spanning tree of G = (V,E) to be a sub-graph G′ = (V,E′) with E′ ⊆ E, so
that G′ is connected and has no cycles (i.e., the edges E′ generate no closed loop).

(iv) Show that if B is a square sub-matrix of A, either B is singular, or det(B) = ±1
[Poincaré 1901].

(v) Show that if the size of B is maximal (i.e., B is a (|V | − 1)× (|V | − 1) matrix), then
B is non-singular if and only if the edges corresponding to its columns generate a
spanning tree of G [Chuard 1922].

We recall the Binet-Cauchy theorem:
Let R be a p × q matrix and S a q × p matrix, with p ≤ q. Let R′ and S′ be p × p
sub-matrices of R and S respectively. Then,

det(R · S) =
∑

det(R′) · det(S′) ,

where the sum is over all possible ways of forming sub-matrices R′ and S′.

(vi) Prove the matrix-tree theorem: If A is the reduced incidence matrix of a graph G,
then det(A ·AT) equals the number of spanning trees of G.

(vii) Check this result for the example of Fig. 2.

One introduces a pair of fermionic fields (Grassmann variables) η1(i), η2(i) per vertex of
G. By definition, and two of these variables anticommute (ηη̃+ η̃η = 0) and one integrates
over them using the definitions

∫
dη 1 = 0 and

∫
dη η = 1. To lighten the notation, we

shall denote, for k = 1, 2, dηk ≡
∏|V |
i=1 dηk(i) and ηk ≡ [ηk(1), ηk(2), . . . , ηk(|V |)].
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(viii) Show that ∫
dη1dη2 eη1·M ·η2 = det(M) = 0.

Deduce that ∫
dη1dη2 η1(|V |)η2(|V |)eη1·M ·η2 (10)

is the number of spanning trees of G.
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1.6 Chapter 7: Interacting field theory: basics

• Exercise 7.1: The effective potential and magnetization distribution functions

The aim of this exercise to probability distribution function of the total magnetization
is governed by the effective potential — and this gives a simple interpretation of the
effective potential.

Let Mφ :=
∫
dDxφ(x) be the total magnetization. It is suppose to be typically exten-

sive so let mφ be the spatial mean magnetization, mφ = Vol.−1Mφ.

(i) Find the expression of the generating function of the total magnetization, E[ezMφ ],
in terms of the generating function W [·] of connected correlation functions.
Recall that if the source J(x) is uniform, i.e. J(x) = j independent of x, then W [J ]
is extensive in the volume: W [J(x) = j] = Vol. w(j).

(ii) Let P (m)dm be the probability density for the random variable mφ. Show that at
large volume, we have

P (m) ' e−Vol. Veff(m),

with Veff(m) the effective potential, defined as the Legendre transformed of w(j).

This has important consequence, in particular the most probable mean magnetiza-
tion is at the minimum of the effective potential, and phase transition occurs when
this minimum changes value.

• Exercise 7.2: Two-point correlation and vertex functions

Prove that the two-point connected correlation function and the two-point vertex func-
tion are inverse one from the other, that is:

Γ̂(2)(k) Ĝ(2)
c (k) = 1,

as mentioned in the text.

• Exercise 7.2bis: Ward identities for the stress-tensor

The aim of this exercise is to derive the Ward identities associated to translation
symmetry. This will allows us to make contact with the stress tensor.

We consider a scalar field φ in D-dimensional Euclidean flat space with action

S[φ] =

∫
dDx

[1
2

(∇φ)2 + V (φ)
]
.

Translations act on the field as φ(x) → φ(x − a) for any vector a. The infinitesimal
transformation is φ(x)→ φ(x)− εaµ(∂µφ)(x).

(i) Let us consider an infinitesimal transformation φ(x) → φ(x) − εµ(x)(∂µφ)(x) with
the space dependent vector fields ε(x).
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Prove that the variation of the action is (assuming that the boundary terms do not
contribute)

δS[φ] = −
∫
dDx (∂µεσ)(x)Tµσ(x) =

∫
dDx εσ(x) (∂µTµσ)(x),

with Tµσ(x) the so-called stress-tensor (gµσ is the Euclidean flat metric):

Tµσ(x) = ∂µφ∂σφ− gµσ
[1
2

(∇φ)2 + V (φ)
]
.

(ii) Prove that the stress tensor is conserved, that is: ∂µ Tµν(x) = 0 inside any correlation
functions away from operator insertions.

(iii) Prove the following Ward identities (here we use the notation ∂νj = ∂/∂yνj ):

〈(∂µ T νµ )(x)φ(y1) · · ·φ(yp)〉 =
∑
j

δ(x− yj) ∂νj 〈φ(y1) · · ·φ(yp)〉,

in presence of scalar field insertion of the form φ(y1) · · ·φ(yp).

(iv) Do the same construction but for rotation symmetry.

• Exercise 7.3: Generating functions Z[J ], W [J ] and Γ[ϕ] for a φ3-theory in D = 0.

We consider a very simple theory in dimension D = 0 with action

S[φ] =
1

2
φ2 +

g

3!
φ3. (11)

The partition function, with an external source J , is defined by

Z[J ] =

∫
dφ exp

[
−1

~
(
S[φ]− Jφ

)]
. (12)

The parameter ~ is an expansion parameter from the classical solution obtained in the
limit ~→ 0. This theory has a meaning only in perturbation theory (because the potential
φ3 is unbounded from below). We are going to study it perturbatively. By convention we
assume g > 0.

(i) We aim at calculating Z[J ] at one loop. We set φ = φc(J) +
√
~ χ where φc(J)

minimizes the action S[φ; J ] = S[φ]−Jφ in presence of an external source. Compute
φc(J) and the corresponding action S[φc; J ].

(ii) Compute Z[J ] at leading order up to O(~).

(iii) Compute W [J ] = ~ logZ[J ] up to O(~3/2) and expand in power of J up to order
J4 included. We set:

W [J ] =

∞∑
n=0

1

n!
W (n) Jn.

Determine W (n) for n = 0, 1, 2, 3, 4.
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Figure 3: Feynman diagrams with 1, 2, 3 et 4 external lines.

(iv) Compare the previous results with a direct computation via (connected) Feynman
diagrams up to order g4.

(v) We now define the effective action Γ[ϕ] via the Legendre transform:

Γ[ϕ] = Jϕ−W [J ], with ϕ =
∂W [J ]

∂J
.

Compute ϕ up to order J3 included and neglecting terms of order ~2 (i.e. up to two
loop diagrams). Invert this relation to get J as a series in ρ with

ρ = ϕ+
1

2
g~,

up to order ρ3 included. To do this series expansion, assume that both J and ρ are
small.

(vi) Show that the definition of Γ implies ∂Γ
∂ϕ = ∂Γ

∂ρ = J . Compute Γ[ρ], up to terms of

order ρ5 or ~3/2, by integrating J [ρ] with to respect to ρ.
Let

Γ[ρ] =
∞∑
n=1

1

n!
Γ(n) ρn.

Determine Γ(n) for n = 1, 2, 3, 4.
Show that these results coincide with the one particle irreducible (1-PI) diagrams.

• Exercise 7.4: Effective action and one-particle irreducible diagrams.

The aim of this exercise is to prove the equality between the effective action and the
generating function of 1-PI diagrams. To simplify matter, we consider a ‘field’ made of N
(N � 1) components φj , j = 1, · · · , N . We view φj as random variables.
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Let us define a ‘partition function’ Zε[J ] by

Zε[J ] =

∫
Dφe−ε

−1
[
Γ[φ]−(J,φ)

]
, with Dφ =

∏
j

dφj√
2πε

.

with J a source (J, φ) = Jjφ
j , and Γ[φ] an action which we define via its (formal) series

expansion (summation over repeated indices is implicit):

Γ[φ] =
1

2
Γ

(2)
jk φ

jφk −
∑
n≥3

1

n!
Γ

(n)
j1···jnφ

j1 · · ·φjn .

We shall compute this partition function in two different ways: via a saddle point
approximation or via a perturbation expansion.

(i) Justify that this integral can be evaluating the integral via a saddle-point when
ε→ 0.
Prove that

logZε =
1

ε
W [J ]

(
1 +O(ε)

)
,

where W [J ] is the Legendre transform of the action Γ: W [J ] = (J, φ∗)− Γ(φ∗) with
φ∗ determined via ∂Γ

∂φj
(φ∗) = Jj .

Hint : Do the computation formally which amounts to assume that the integral
converges and that there is only one saddle point.

Let us now compute Zε[J ] in perturbation theory. Let us decompose the action as
the sum of its Gaussian part plus the rest that we view as the interaction part:

Γ[φ] = 1
2Γ

(2)
jk φ

jφk − Γ̂[φ].

(ii) Write

Zε[J ] =

∫
Dφe−

1
2ε

Γ
(2)
jk φ

jφkeε
−1 Γ̂[φ] eε

−1 (J,φ).

We view J/ε as source, and we aim at computing the connected correlation function
using Feynman diagrams perturbative expansion.

Show that the propagator is εGjk with G = (Γ(2))−1 and the vertices are ε−1 Γ
(n)
j1···jn

with n ≥ 3.

(iii) Compute the two-, three- and four-point connected correlations G(n), n = 1, 2, 3, at
the level tree, defined by

Gj1···jn(n) =
∂n

∂Jj1 · · · ∂Jjn
logZε[J ]

∣∣∣
tree

.

Show that they are of order ε−1. Draw their diagrammatic representations (in terms
of propagators and vertices) and compare those with the representations of the con-
nected correlation functions in terms of 1-PI diagrams.
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(iv) Prove that, when ε → 0, the leading contribution comes only from the planar tree
diagrams and that all these diagrams scale like 1/ε. That is:

logZε[J ] =
1

ε

(
planar tree diagrams +O(ε)

)
.

Hint : Recall that, for a connected graph drawn on a surface of genus g (i.e. with g
handles, g > 0), one has V − E + L + 1 = 2 − g with V its number of vertices, E
its number of edges and L its numbers of loops (this is called the Euler characteris-
tics). Then, argue that each Feynman graph contributing to the N point connected
functions is weighted by (symbolically) (εG)E (−ε−1 Γ(n))Vint (ε−1 J)N with Vint +N
total number of vertices.

(v) By inverting the Legendre transform, deduce the claim that the effective action is
the generating function of 1-PI diagrams.

• Exercise 7.5: Computation of the one-loop effective potential

Prove the formula for the one-loop effective potential of the φ4-theory given in the
text. Namely

V eff
1−loop(ϕ) =

1

2!
AΛ ϕ

2 +
1

4!
BΛ ϕ

4 +
~

(8π)2

(
V ′′(ϕ)

)2
log[

V ′′(ϕ)

µ2
],

with

AΛ = m2
0 +

~g0

2

( Λ2

(4π)2
− m2

0

(4π)2
log(

Λ2

µ2
)
)

+O((~g0)2),

BΛ = g0 − ~g2
0

3

2(4π)2
log(

Λ2

µ2
) +O(g0(~g0)2)

with µ2 an arbitrary scale that we introduced by dimensional analysis.
Analyse this potential and conclude.

• Exercise 7.6: Computation of one-loop Feynman diagrams

[...To be completed...]

• Exercise 7.7: The O(N) vector model with N →∞ in D = 3

We study a model of N -component spins ~Φ governed by the Hamiltonian

H[~Φ] =
1

2

∫
d~x


N∑
α=1

(
∂Φα

∂~x

)2

+ r0

N∑
α=1

(Φα)2 +
u

12N

(
N∑
α=1

(Φα)2

)2
 .

The dimension of the embedding space is fixed as D = 3. In this exercise we shall compute
the critical exponents for large N , and more precisely, first for infinite N and then the
corrections to order 1/N .
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Figure 4: Some examples of “cactus” diagrams.

(i) Write the propagator and interaction vertex in Fourier space. Which diagrams con-
tribute to the correlation function

G(k) = 〈Φ̃α(−~k)Φ̃α(~k)〉 ?

Show that in the limit N →∞, the only surviving diagrams are of the “cactus” type
(see Figure 4), where the solid line represents the bare (free) propagator.

(ii) Deduce the implicit equation

1

G∞Φ (k)
= k2 + r0 +

u

6

∫
q<Λ

d3q

(2π)3
G∞Φ (q)

satisfied by the dressed propagator G∞Φ (k), where Λ denotes an ultraviolet cut-off.
(Hint: Formally sum up subclasses of diagrams in a geometric series.)

(iii) Interpret the identity (1.6). Use it to compute first the critical temperature and next
the exponents η∞ and ν∞ in the limit Λ → ∞. (Hint: The critical temperature is
such that the renormalised mass vanishes.)

(iv) We wish to recover this result by the saddle point method. By introducing a new
scalar field σ(~x), show that one may rewrite the partition function of the above
model in the form

Z =

∫
D~Φ(~x) Dσ(~x) exp

(
−H[~Φ, σ]

)
,

where

H[~Φ, σ] =
1

2

∫
d~x

{
N∑
α=1

(
∂Φα

∂~x

)2

+

(
r0 + i

√
u

3N
σ

) N∑
α=1

(Φα)2 + σ2

}
.

(v) Integrate over the fields ~Φ. Which effective action for the field σ does one arrive at?

(vi) In the limit N → ∞ one can obtain Z by computing the saddle point of the pre-
ceeding action. One supposes that this saddle point is uniform (that is, independent
of x). Show that we hence recover the implicit equation (1.6).
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Figure 5: Development of the self-energy.

(vii) Verify that the classical solution obtained is indeed a local minimum of the action.

(viii) We now use the action found in (v) as the starting point for computing the corrections
of order 1/N to the critical exponents. Write down the bare propagators of the fields
σ and ~Φ, as well as the interaction vertex.

In the following questions we focus on obtaining the propagator of σ in the N → ∞
limit. This step is necessary in order to go to the next order in the computation of the
Φ-propagator.

(ix) Show that in the limit N → ∞ the dressed propagator G∞σ (k) of σ satisfies the
implicit equation illustrated in Figure ??. (Here the solid line represents the propa-
gator of Φ and the dashed line that of σ. The presence of a point on a propagator
means that it is dressed.) Could this equation have been anticipated from the answer
to question (iv)?

(x) Compute the integral

I =

∫
d3q

(2π)3

1

(1− q)2
· 1

q2
=

1

8
,

where 1 represents a unit vector. (Hint: use polar coordinates.)

(xi) Deduce that at the critical temperature we have

G∞σ (k) ' 48

u
k (k → 0) .

The final stage of the exercise is now to obtain the propagator of Φ to order 1/N .

(xii) Show that the self-energy ΣN
Φ (k) of the dressed propagator GNΦ (k) of Φ is given by

Figure 5, where the first term represents the finite contribution for N →∞ that has
been studied in question (iv), while the second term is the sought-for contribution
at order 1/N .

(xiii) Infer that

ΣN
Φ (k)− ΣN

Φ (0) ' 8

3π2N
k2 ln k (k → 0) .

(xiv) Deduce the value of the exponent η to order 1/N .
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1.7 Chapter 8: Conformal field theory: basics

• Exercise 8.1: Conformal mappings in 2D.

(i) Verify that the map z → w = z−i
z+i is holomorphic map from the upper half plane

H = {z ∈ C, Imz > 0} to the unit disc D = {w ∈ C, |w| < 1} centred at the origin
0.

(ii) Similarly verify that the map w → z = ew/β is a holomorphic map from the cylin-
der with radius β to the complex z-plane with the origin and the point at infinity
removed.

• Exercise 8.2: The group of conformal transformations.

The aim of this exercise is to fill the missing steps in determining all infinitesimal
conformal transformations in the flat Euclidean space RD.

Let us recall a few basic facts from the lectures. A diffeomorphism x → y is called
conformal if it changes the metric by a space-dependent factor:

ĝµν(x) =

(
∂yσ

∂xν

)(
∂yρ

∂xν

)
gσρ(y(x)) := e2φ(x)gµν(x) . (13)

Here φ is called the conformal factor. Now apply this to an infinitesimal transformation
xµ → xµ + εξµ(x) + · · · , where ξµ(x) is the vector field generating conformal transfor-
mations. By developing the left- and right-hand sides of (13) to first order in the small
parameter ε and comparing we obtain

∂µξν + ∂νξµ = 2(δφ)δµν . (14)

Another useful relation is obtained by multiplying this by δνµ on both sides. We then get
∂νξν + ∂µξµ = 2(δφ)δνν = 2D(δφ), or in other words

D(δφ) = (∂µξ
µ) . (15)

We denote ∂ · ξ := ∂µξ
µ and the Euclidean Laplacian ∆ := ∂µ∂µ, with the summation

convention throughout.

(i) Take derivatives of the previous equation to deduce that D∆ξν = (2−D)∂ν(∂ · ξ),
with ∆ the Euclidean Laplacian.

(ii) Take further derivatives, either w.r.t ∂ν or w.r.t. ∂µ, to get two new equations:
(D − 1)∆(∂ · ξ) = 0, and 2(2−D) ∂µ∂ν(∂ · ξ) = D∆(∂µξν + ∂νξµ).

(iii) Deduce that (2 − D)∂µ∂ν(∂ · ξ) = 0, and hence that, in dimension D > 2, the
conformal factor δϕ(x) is linear in x.

Let us write δϕ(x) = k + bνx
ν with k and bν integration constantes. We thus have

∂µξν + ∂νξµ = 2(k + bσx
σ) δµν .

A way to determine ξ consists in getting information on the difference ∂µξν − ∂νξµ.
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(iv) By taking derivates of the previous equation w.r.t ∂σ and permuting the indices,
deduce that ∂ν(∂σξµ − ∂µξσ) = 2(bσδµν − bµδνσ), and hence, by integration, that

∂σξµ − ∂µξσ = 2(bσxµ − bµxσ) + 2θµσ,

where θσµ = −θµσ are new integration constants.

(v) Integrate the last equations to prove that

ξν(x) = aν + kxν + θνσx
σ + [(b · x)xν −

1

2
(x · x)bν ],

where aν are new, but last, integration constants.

(vi) Find the explicit formula for all finite –not infinitesimal– conformal transformations
in dimension D.
Hint: It is advantageous to consider (a) the flow generated by the above vector
fields ξ(x), i.e. to consider the one parameter family of transformations x→ yt such
that ∂tyt = ξ(yt) with initial condition yt=0 = x, and (b) to change coordinate to
Yt := yt

(yt·yt) .

(vii) Optional: Verify that the Lie algebra of the group of conformal transformation in
dimension D is isomorphic to so(D + 1, 1).

• Exercise 8.3: The two- and three-point conformal correlation functions.

The aim of this exercise is to fill the missing steps in determining the two and three
point function of conformal fields in conformal field theory. LetG(2)(x1, x2) = 〈Φ1(x1)Φ2(x2)〉
be the two point function of to scalar conformal fields of scaling dimension h1 and h2 re-
spectively.

(i) Prove that translation and rotation invariance implies that G(2) is a function of the
distance r = |x1 − x2| only.

(ii) Prove that dilatation invariance of the 2-point function demands that

[h1 + x1 · ∂1 + h2 + x2 · ∂2]G2(x1, x2) = 0.

Deduce that G2(x1, x2) = const. r−(h1+h2).

(iii) Prove that invariance under special conformal transformations (also called inver-
sions) implies that∑

j=1,2

[
hj(b · xj) + [(b · xj)xνj −

1

2
(xj · xj)bν ]∂xνj

]
G2(x1, x2) = 0.

Deduce that G(2)(x1, x2) vanishes unless h1 = h2.

Let us now look at the three point functions of scalar conformal fields. LetG(3)(x1, x2, x3) =
〈Φ1(x1)Φ2(x2)Φ3(x3)〉, be their correlation functions.
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(iv) Prove that invariance under infinitesimal conformal transformations demands that∑
j=1,2,3

[
hj D

−1(∂.ξ)(xj) + ξµ(xj)∂xµj

]
G(3)(x1, x2, x3) = 0,

for any conformal vector ξµ(x). See previous exercise.

(v) Integrate this set of differential equations to determine the explicit expression of
G(3)(x1, x2, x3) up to constant.

• Exercise 8.4: Diff S1 and its central extension.

The aim of this exercise is to study the Lie algebra Diff S1 of vector fields in the
circle and its central extension the Virasoro algebra. Let z = eiθ coordinate on the
unit circle. A diffeomorphism is on application θ → f(θ) from S1 onto S1. Using the
coordinate z, we can write it as z → f(z) so that it is, at least locally, identified with a
holomorphic map (again locally holomorphic). They act on functions φ(z) by composition:
φ(z)→ (f ·φ)(z) = φ(f−1(z)). For an infinitesimal transformation, f(z) = z+ ε v(z) + · · ·
avec ε� 1, the transformed function is

(f · φ)(z) = φ(z) + ε δvφ(z) + · · · , with δv φ(z) = −v(z) ∂zφ(z).

(i) Take v(z) = zn+1, with n integer. Verify that δvφ(z) = `nφ(z) with `n ≡ −zn+1∂z.
Show t [

`n, `m
]

= (n−m) `n+m.

This Lie algebra is called the Witt algebra.

(ii) Let us consider the (central) extension of the Witt algebra, generated by the `n and
the central element c, with the following commutation relations[

`n, `m
]

= (n−m)`n+m +
c

12
(n3 − n)δn+m;0, [c, `n] = 0.

Verify that this set of relation satisfy the Jacobi identity. This algebra is called the
Virasoro algebra.

(iii) Prove that this is the unique central extension of the Witt algebra.

• Exercise 8.5: The stress-tensor OPE in 2D CFT

Let φ be a massless Gaussian free field in 2D with two point function 〈φ(z, z̄)φ(w, w̄)〉 =
− log(|z − w|2/R2). Recall that the (chiral component of the) stress-tensor of a massless
2D Gaussian field is T (z) = −1

2 : (∂zφ)2(z) :.
(i) Prove, using Wick’s theorem, that it satisfies the OPE

T (z1)T (z2) =
c/2

(z1 − z2)4
+
[ 2

(z1 − z2)2
+

1

(z1 − z2)
∂z
]
T (z2] + reg.
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• Exercise 8.6: Transformation of the stress-tensor in 2D CFT.

Under a conformal transformation z → w = w(z), the transformation rules for the
stress tensor in two-dimensional CFT is

T (z)→ T̂ (w) =
[
z′(w)

]2
T (z(w)) +

c

12
S(z;w) , (16)

where z′(w) is the derivative of z with respect to w, while S(z;w) denotes the Schwarzian
derivative:

S(z;w) =

[
z′′′(w)

z′(w)

]
− 3

2

[
z′′(w)

z′(w)

]2

. (17)

(i) Let us consider two conformal transformations z → w = w(z) and w → ξ = ξ(w)
and their composition z → ξ = ξ(z). Prove that consistency of the stress-tensor
transformation rules demands that:

S(z; ξ) = S(w; ξ) + [ξ′(w)]2 S(z, w).

Verify this relation from the definition of S(z;w).

(ii) Use this formula to compute the stress-tensor expectation for a CFT defined over a
infinite cylinder of radius R. Show that

〈T (z)〉cylinder = −c π

12R2
.

• Exercise 8.7: Regularization of vertex operators

In the text, we use the connection with lattice model to argue for the anomalous
transformation of vertex operators in gaussian conformal field theory. The aim of this
exercise is to derive (more rigorously) this transformation within field theory (without
making connection with lattice models).

Let φ(z, z̄) a Gaussian free field normalized by 〈φ(z, z̄)φ(w, w̄)〉 = − log(|z − w|2/R2)
with R the IR cut-off tending to infinity. In order to regularized the field we introduce a
smeared version φε of φ defined by integrating it around a small circle, of radius ε, centred
at z:

φε(z, z̄) =

∫ 2π

0

dθ

2π
φ(zε(θ), z̄ε(θ)),

with zε(θ) be point on this circle, 0 < θ < 2π. The small radius ε play the role of UV
cutoff.

(i) Prove that (notice that we consider the smeared at the same central position z but
with two different cutoff ε and ε′)

〈φε(z, z̄)φε′(z, z̄)〉 = min(log(R/ε)2, log(R/ε′)2).

In particular 〈φε(z, z̄)2〉 = log(R/ε)2.
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(ii) Verify that 〈eiαφε(z,z̄)〉 = (ε/R)α
2
, for α real. Let us define the vertex operator by

Vα(z, z̄) = lim
ε→0

ε−α
2
eiαφε(z,z̄).

Argue that this limit exists within any expectation values.

(iii) Let us now consider a conformal transformation z → w = w(z) or inversely w →
z = z(w). Show that a small circle of radius ε̂, centred at point w, in the w-plane is
deformed into a small close curve in the z-plane which approximate a circle of radius
ε = |z′(w)| ε̂, centred at z(w).
Deduce that under such conformal transformation the vertex operator transforms as
follows:

V̂α(w, w̄) = |z′(w)|α2
Vα(z, z̄).

That is: the anomalous scaling transformation of the vertex operator arises from
the fact that the regularization scheme/geometry is not preserved by the conformal
transformations.
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1.8 Chapter 9: Scaling limits and the field theory renormalisation group

• Exercise 9.1: Explicit RG flows

The aim of this exercise is to study simple, but important, examples beta functions
and solutions of the Callan-Symanzik equation.

(i) Consider a field theory with only one relevant coupling constant g and suppose that
its beta function is β(g) = yg.
Show that the RG flow, solution of λ∂λg(λ) = β(g(λ)) is g(λ) = g1 λ

y.
Show that the RG mass scale, solution of β(g)∂gm(g) = m(g) is m(g) = m∗ g

1/y.
Consider the two point function G(r; g) of a scaling field Φ of scaling dimension ∆,
i.e. G(r, g) = 〈Φ(r)Φ(0)〉g. Prove (using the Callan-Symanzik equation) that

G(r; g) = r−2∆ F (m(g)r),

with m(g) the RG mass scale defined above.

(ii) Consider a field theory with only one marginal coupling constant g and suppose that
its beta function is β(g) = cg2 (c > 0 corresponds to marginally relevant, c < 0 to
marginally irrelevant).
Prove that the RG flow, solution of λ∂λg(λ) = β(g(λ)) is g(λ) = gµ/(1−cgµ log(λ/µ)).
Notice that gλ → 0+, if c < 0, while gλ flows up if c > 0, as λ → ∞ (with
gµ > 0 initially). Prove that the RG mass scale, solution of β(g)∂gm(g) = m(g) is
m(g) = m∗ e

−1/cg.
Notice that this mass scale is non perturbative in the coupling constant.
Consider the two point function G(r; g) of a scaling field Φ whose matrix of anoma-
lous dimension is γ(g) = ∆ + γ0g. Prove (using the Callan-Symanzik equation) that
G(r/λ; g(λ)) = Z(λ)2G(r, g) with

Z(λ) = const. λ∆ [g(λ)]γ0/c.

Deduce from this that, in the case marginally irrelevant perturbation (i.e. c < 0)
and asymptotically for r large,

G(r; ga) ' const. r−2∆ [log(r/a)]−2γ0/c.

This codes for logarithmic corrections to scaling.

• Exercise 9.2: Anomalous dimensions and beta functions

(i) Prove the relation γσα(g) = Dδσα− ∂αβσ(g) between the matrix of anomalous dimen-
sions and the beta functions.

(ii) Give two proofs of the formula γσα(g) = ∆αδ
σ
α+SD

∑
i g
iCσiα for the matrix of anoma-

lous dimensions to first order in perturbation theory (Here gi are the perturbative
coupling constant and SD the volume of the D-dimensional unit sphere): one proof
comes from using the previous result, the second proof comes from analysing the
perturbative expansion of the correlation functions.
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• Exercise 9.3: Renormalisation of φ3 in D = 6: One-particle irreducible functions

In this exercise and the following, we consider the φ3 action of the scalar field φ defined
by

S[φ] =

∫
ddx

[
1

2

(
∂φ

∂x

)2

+
1

2
m2φ2 +

1

6
gmε/2φ3

]
,

where ε = 6− d.
In this first part, we shall compute the one-particle irreducible functions Γ(n) for n =

1, 2, 3.

(i) What is the dimension of φ and of the coupling constant g? Determine the superficial
degree of (ultra-violet) divergence of Γ(n) to L loops. For which values of d the theory
is renormalisable, super-renormalisible, non-renormalisable?

(ii) We first work in d = 6 dimensions. Which Feynman diagrams are superficially diver-
gent? Is their number finite or infinite? Same question for one-particle irreducible
diagrams.

(iii) Compute Γ(1), Γ(2)(p,−p) and Γ(3)(p1, p2,−p1 − p2) to one-loop order. To this end,
use dimensional regularisation and the formulae

1

a1 a2
=

∫ 1

0
dx

1

[a1x+ a2(1− x)]2

1

a1 a2 a3
= 2

∫ 1

0
dx

∫ 1−x

0
dy

1

[a1x+ a2y + a3(1− x− y)]3
,

as well as ∫
ddq

(2π)d
1

(q2 + 2~q.~k + p2)n
=

Γ(n− d
2)

(4π)d/2Γ(n)
(p2 − k2)

d
2
−n.

(iv) Give expressions for Γ(1), Γ(2) and Γ(3), neglecting terms of order ε. To this end, use
the following propreties of the Euler Γ function:

Γ(x+ 1) = x Γ(x)

Γ(x) =
1

x
+ ψ(1) +O(x) (x→ 0)

ψ(x) =
d

dx
log Γ(x).

Express the results in terms of the two functions

f1(u) =

∫ 1

0
dx[1 + ux(1− x)] log[1 + ux(1− x)]

f2(u, v, w) =

∫ 1

0
dx

∫ 1−x

0
dy log[1 + ux(1− x) + vy(1− y) + 2wxy].
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(v) Show that the divergence of Γ(3) to one-loop order can be formally eliminated by
redefining the coupling constant as follows:

g = g̃

(
1− g̃2

(4π)3ε

)
.

Verify that by replacing 1/ε by log(Λ/m) in the above formula, one recovers the
divergent part corresponding to a regularisation of the theory by an ultra-violet
cut-off Λ.

• Exercise 9.4: Current-current perturbations and applications.

[...To be completed...]

• Exercise 9.5: Disordered random bound 2D Ising model.

[...To be completed...]
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1.9 Chapter 10: Miscellaneous applications

• Exercise 10.1: The XY model

The XY model is a statistical spin model with spin variables ~Si, on each site i of the
lattice Λ, which are two component unit vectors, ~S2

i = 1. The energy of a configuration

[~S] is defined as E[~S] = −
∑

[ij]
~Si · ~Sj where the sum runs over neighboor points on Λ.

Parametrising the unit spin vectors ~Si by an angle Θi defined modulo 2π, we write the
configuration energy as

E[~S] = −
∑
[ij]

cos(Θi −Θj).

The partition function is Z =
∫

[
∏
i
dΘi
2π ] exp

(
β
∑

[i,j] cos(Θi −Θj)
)

with β = 1/kBT the

inverse temperature.
Here is the solution of the problem on the XY model given in Section 9.1.

IA- The XY model on a lattice: High temperature expansion

The aim of this section is to study the high temperature (β � 1) behavior of the XY
model. It is based on rewriting the Boltzmann sums in terms of dual flow variables.

IA-1 Explain why we can expand eβ cos Θ in series as eβ cos Θ = I(β)
(
1+
∑

n6=0 tn(β)einΘ
)
,

where I(β) and tn(β) are some real β-dependent coefficients. We set t0(β) = 1.
IA-2 By inserting this series in the defining expression of the partition function and by

introducing integer variables u[ij] on each edge [ij] of the lattice Λ, show that the partition

function can be written as Z = I(β)Ne · Ẑ with Ne the number of edges and

Ẑ =
∑

[u], [∂u=0]

∏
[ij]

tu[ij]
(β),

where the partition sum is over all configurations [u] of integer edge variables u[ij] such that,
for any vertex i ∈ Λ, the sum of these variables arriving at i vanishes, i.e.

∑
j u[ij] = 0.

Remark: The variables u are attached to the edge of the lattice and may be thought
of as ‘flow variables’. The condition that their sum vanishes at any given vertex is a
divergence free condition. The divergence at a vertex i of a configuration [u] is defined as
(∂u)i :=

∑
j u[ij].

IA-3 Let i1 and i2 be two points of Λ and 〈~Si1 · ~Si2〉 be the two-point spin correlation
function.
Explain why 〈~Si1 · ~Si2〉 = Re〈e−i(Θi1−Θi2 )〉.
Show that,

〈e−i(Θi1−Θi2 )〉 =
1

Ẑ
·

∑
[u]

[∂u=δ·;i1−δ·;i2 ]

∏
[ij]

tu[ij]
(β),

where the sum is over all integer flow configurations such that their divergence is equal to
+1 at point i1, to −1 at point i2, and vanishes at any other vertex.

IA-4 Show that tn(β) = t−n(β) ' βn

2nn! as β → 0.
Argue, using this asymptotic expression for the tn(β)’s, that the leading contribution to
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the spin correlation functions at high temperature comes from flow configurations with
u = 0 or u = ±1 on each edge of the lattice.

IA-5 Deduce that, at high temperature, the correlation function 〈~Si1 · ~Si2〉 decreases
exponentially with the distance between the two points i1 and i2.
Show that the correlation length behaves as ξ ' a/ log(2/β) at high temperature.

IB- Low temperature expansion

The aim of this section is to study the low temperature (β � 1) behavior of the XY
model. It consists in expanding the interaction energy cos(Θi−Θj) to lowest order in the
angle variables so that we write the configuration energy as (up to an irrelevant additive
constant)

E[~S] = const.+
1

2

∑
[i,j]

(Θi −Θj)
2 + · · · .

This approximation neglects the 2π-periodicity of the angle variables.
IB-1 Argue that the higher order terms in this expansion, say the terms proportional

to
∑

[i,j](Θi −Θj)
4, are expected to be irrelevant and can be neglected.

IB-2 Write the expression of the partition function Z of the model within this approx-
imation.
Explain why, in this approximation, the theory may be viewed as a Gaussian theory.

IB-3 Let Gβ(x) be the two-point function of this Gaussian theory. Show that Gβ(x) =
β−1G(x) with

G(x) =

∫ +π/a

−π/a

d2p

(2π/a)2

eip·x

4− 2(cos ap1 + cos ap2)
,

with p1, p2 the two components of the momentum p and a the lattice mesh.
IB-4 Let i1 and i2 be two points on Λ and x1 and x2 be their respective Euclidean

positions. Let Cα(x1, x2) = 〈eiα(Θi1−Θi2 )〉 with α integer. Show that

Cα(x1, x2) = e
−α

2

β

(
G(0)−G(x1−x2)

)
.

IB-5 Explain why G(x) is actually IR divergent1 and what is the origin of this diver-
gence, but that G(0)−G(x) is finite for all x. Show that

G(0)−G(x) =
1

2π
log(|x|/a) + const.+O(1/|x|).

IB-6 Deduce that the correlation functions Cα decrease algebraically at large distance
according to

Cα(x1, x2) ' const. (a/|x1 − x2|)α
2/2πβ.

Compare with the high temperature expansion.

II- The role of vortices in the XY field theory

1So that, when defining G(x), we implicitly assumed the existence of an IR cut-off, say |p| > 2π/L with
L the linear size of the box on which the model is considered.

40



D. Bernard & J. Jacobsen Exercise Book: Statistical Field Theory

The previous computations show that the model is disordered at high temperature
but critical at low temperature with temperature dependent exponents. The aim of this
section is to explain the role of topological configurations, called vortices, in this transition.

We shall now study the model in continuous space, the Euclidean plane R2, but with
an explicit short distance cut-off a. We shall consider the XY system in a disc of radius
L.

In the continuous formulation, the spin configurations are then maps Θ from R2 to
[0, 2π] modulo 2π. The above Gaussian energy is mapped into the action

S0[Θ] =
κ

2

∫
d2x(∇Θ)2,

with a coefficient κ proportional to β.
II-1 Argue that the coefficient κ cannot be absorbed into a rescaling of the field variable

Θ?
II-2 A vortex, centred at the origin, is a configuration such that Θ±v (z) = ±Arg(z),

with z the complex coordinate on R2, or in polar coordinates2, Θ±v (r, φ) = ±φ.
Show that Θ±v is an extremum of S0 in the sense that ∇2Θ±v = 0 away from the origin.
Show that

∮
C0
dΘ±v = ±2π for C0 a small contour around the origin.

II-3 Let a0 be a small short distance cut-off and let D(a0) be the complex plane with
small discs of radius a0 around the vortex positions cut out. Prove that, evaluated on Θ±v ,
the action S0 integrated over D(a0) (with an IR cut-off L) is

S
(1)
vortex =

κ

2

∫
D(a0)
d2x (∇Θ±v )2 = πκ log

[
L/a0

]
.

Give an interpretation of the divergence as a0 → 0.
II-4 What is the entropy of single vortex configurations? Show that the contribution

of single vortex configurations to the free energy is

e−F
(1)
vortex ' const.

( L
a0

)2
e−πκ log[L/a0]

Conclude that vortex configurations are irrelevant for πκ > 2 but relevant for πκ < 2.

IIIA- The XY field theory: Mapping to the sine-Gordon theory

This mapping comes about when considering a gas of pairs of vortices of opposite
charges ±, so that the vortex system is neutral (

∑
a qa = 0). We denote x+

j (resp. x−j )
the positions of the vortices of charge + (resp. −).

The vortex gas is defined by considering all possible vortex pair configurations (with
arbitrary number of pairs) and fluctuations around those configurations. We set Θ =

Θ
(2n)
v + θsw and associate to each such configuration a statistical weights e−S with action

given by

S = S
(2n)
vortex[x+

j , x
−
j ] + S0[θsw],

2We recall the expression of the gradient in polar coordinates: ∇Θ = (∂rΘ,
1
r
∂φΘ). The Laplacian is

∇2F = 1
r
∂r(r∂r)F + 1

r2
∂2
φF .
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with S0[θsw] the Gaussian action κ
2

∫
d2x(∇θsw)2. We still assume a short-distance cut-off

a.

IIIA-1 Write the expression of the action S
(2n)
vortex[x+

j , x
−
j ] for a collection of n pairs of

vortices at positions x±j , j = 1, · · · , n.
IIIA-2 Argue that the partition function of the gas of vortex pairs is given by the

product Z = Zsw × Zvortex with Zsw the partition function for the Gaussian free field θsw

and

Zvortex =
∑
n≥0

µ2n

n! · n!
×
∫

(
n∏
j=1

d2x+
j

n∏
j=1

d2x−j )

∏
i<j(|x

+
i − x

+
j |/a)2πκ(|x−i − x

−
j |/a)2πκ∏

i,j(|x
+
i − x

−
j |/a)2πκ

,

with µ =
(
a0
a

)πκ
e−βεc .

IIIA-3 The aim of the following questions is to express Zvortex as a path integral over
an auxiliary bosonic field ϕ. Let S̃κ[ϕ] = 1

2κ

∫
d2x(∇ϕ)2 be a Gaussian action. Show that,

computed with this Gaussian action,

〈ei2πϕ(x)e−i2πϕ(y)〉S̃κ =
1

|x− y|2πκ
.

Hint: The Green function associated to the action S̃κ[ϕ] is G(x, y) = − κ
2π log

(
|x− y|/a

)
.

IIIA-4 What is the scaling dimension (computed with the Gaussian action S̃κ[ϕ]) of
the operators (∇ϕ)2 and cos(2πϕ)?
Deduce that the perturbation cos(2πϕ) is relevant for πκ < 2 and irrelevant for πκ > 2.
Is the the perturbation (∇ϕ)2 relevant or irrelevant?

IIIA-5 Show that Zvortex can be written as the partition function of Gaussian bosonic
field with action SsG[ϕ],

Zvortex =

∫
[Dϕ] e−SsG[ϕ],

where the action SsG is defined as

SsG[ϕ] =

∫
d2x
[ 1

2κ
(∇ϕ)2 − 2µ cos(2πϕ)

]
.

This is called the sine-Gordon action.
Hint: Compute perturbatively the above partition function as a series in µ while paying
attention to combinatorial factors.

IIIB- The XY field theory: The renormalization group analysis

IIIB-1 We now study the renormalization group flow of the action SsG for κ close to
the critical value κc = 2/π. We let κ−1 = κ−1

c − δκ and write

SsG[ϕ] = S̃κc [ϕ]−
∫
d2x
[1

2
(δκ)(∇ϕ)2 + 2µ cos(2πϕ)

]
Show that, to lowest order, the renormalization group equations for the coupling con-

stants δκ and µ are of the following form:

˙(δκ) = `∂` (δκ) = b µ2 + · · ·
µ̇ = `∂` µ = a (δκ)µ+ · · ·
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Figure 6: The XY RG flow.

with a and b some positive numerical constants.
Hint: It may be useful to first evaluate the OPE of the fields (∇ϕ)2 and cos(2πϕ).

IIIB-2 We redefine the coupling constants and set X = a (δκ) and Y =
√
ab µ such

that the RG equations now reads Ẋ = Y 2 and Ẏ = XY .
Show that Y 2 −X2 is an invariant of this RG flow.
Draw the RG flow lines in the upper half plane Y > 0 near the origin.

IIIB-3 We look at the flow with initial condition XI < 0 and YI .
Show that if Y 2

I −X2
I < 0 and XI < 0, then the flow converges toward a point on the line

Y = 0.
Deduce that for such initial condition the long distance theory is critical. Compare with
section I-B.

IIIB-4 Show that if Y 2
I −X2

I > 0 and XI < 0, the flow drives X and Y to large values.
Let Y 2

0 = Y 2
I −X2

I with Y0 > 0. Show that the solution of the RG equations are

log
( `
a

)
=

1

Y0

[
arctan

(X(`)

Y0

)
− arctan

(XI

Y0

)]
.

IIIB-5 The initial condition XI and YI are smooth functions of the temperature T of
the XY model. The critical temperature Tc is such that XI + YI = 0. We take the initial
condition to be near the critical line XI + YI = 0 with XI < 0. We let XI = −YI(1 + τ)
in which τ � 1 is interpreted at the distance from the critical temperature: τ ∝ (T − Tc).
For τ > 0, we define the correlation length as the length ξ at which X(`) is of order 1.
Why is this a good definition?
Show that

ξ/a ' const. econst./
√
τ .
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