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The XY model

The XY model is a statistical spin model with spin variables ~Si, on each site i of the lattice
Λ, which are two component unit vectors, ~S2

i = 1. The energy of a configuration [~S] is defined

as E[~S] = −
∑

[ij]
~Si · ~Sj where the sum runs over neighboor points on Λ. Parametrising the unit

spin vectors ~Si by an angle Θi defined modulo 2π, we write the configuration energy as

E[~S] = −
∑
[ij]

cos(Θi −Θj).

The partition function is Z =
∫

[
∏
i
dΘi
2π ] exp

(
β
∑

[i,j] cos(Θi−Θj)
)

with β = 1/kBT the inverse

temperature.
Here is the solution of the problem on the XY model given in Section 9.1.

• IA- The XY model on a lattice: High temperature expansion

The aim of this section is to study the high temperature (β � 1) behavior of the XY model.
It is based on rewriting the Boltzmann sums in terms of dual flow variables.

IA-1 Explain why we can expand eβ cos Θ in series as eβ cos Θ = I(β)
(
1 +

∑
n 6=0 tn(β)einΘ

)
,

where I(β) and tn(β) are some real β-dependent coefficients. We set t0(β) = 1.
IA-2 By inserting this series in the defining expression of the partition function and by

introducing integer variables u[ij] on each edge [ij] of the lattice Λ, show that the partition

function can be written as Z = I(β)Ne · Ẑ with Ne the number of edges and

Ẑ =
∑

[u], [∂u=0]

∏
[ij]

tu[ij](β),

where the partition sum is over all configurations [u] of integer edge variables u[ij] such that, for
any vertex i ∈ Λ, the sum of these variables arriving at i vanishes, i.e.

∑
j u[ij] = 0.

Remark: The variables u are attached to the edge of the lattice and may be thought of as
‘flow variables’. The condition that their sum vanishes at any given vertex is a divergence free
condition. The divergence at a vertex i of a configuration [u] is defined as (∂u)i :=

∑
j u[ij].

IA-3 Let i1 and i2 be two points of Λ and 〈~Si1 · ~Si2〉 be the two-point spin correlation function.
Explain why 〈~Si1 · ~Si2〉 = Re〈e−i(Θi1−Θi2 )〉.
Show that,

〈e−i(Θi1−Θi2 )〉 =
1

Ẑ
·

∑
[u]

[∂u=δ·;i1−δ·;i2 ]

∏
[ij]

tu[ij](β),

where the sum is over all integer flow configurations such that their divergence is equal to +1
at point i1, to −1 at point i2, and vanishes at any other vertex.
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IA-4 Show that tn(β) = t−n(β) ' βn

2nn! as β → 0.
Argue, using this asymptotic expression for the tn(β)’s, that the leading contribution to the spin
correlation functions at high temperature comes from flow configurations with u = 0 or u = ±1
on each edge of the lattice.

IA-5 Deduce that, at high temperature, the correlation function 〈~Si1 · ~Si2〉 decreases expo-
nentially with the distance between the two points i1 and i2.
Show that the correlation length behaves as ξ ' a/ log(2/β) at high temperature.

Correction :

IA-1: eβ cos Θ is a periodic function of Θ (with period 2π) so that it can be represented as a Fourier series.
By reality, we have tn(β) = t−n(β).
IA-2 We insert the representation eβ cos Θ = I(β)

∑
n tn(β)einΘ in the partition function to write

Ẑ =

∫
[
∏
i

dΘi

2π
]
∏
[ij]

(∑
u[ij]

tu[ij]
(β) eiu[ij]Θ

)
,

=

∫
[
∏
i

dΘi

2π
]
∑
[u]

(∏
[ij]

tu[ij]
(β) eiu[ij]Θ

)
.

Integration of the Θi’s yields the constraint (∂u)i :=
∑
j u[ij] = 0.

IA-3 By reality 〈~Si1 · ~Si2〉 = Re〈e−i(Θi1−Θi2 )〉. By definition

〈e−i(Θi1−Θi2 )〉 =
1

Ẑ
×
∫

[
∏
i

dΘi

2π
]
∑
[u]

(∏
[ij]

tu[ij]
(β) eiu[ij]Θ

)
· e−i(Θi1−Θi2 ).

Integration over the Θi’s gives
∑
j u[ij] = 0 for all i 6= i1, i2, but

∑
j u[i1j] = 1 and

∑
j u[i2j] = −1.

IA-4 By definition tn(β) =
∫ 2π

0
dθ
2π e

−inθ eβ cos θ. For small β we can expand eβ cos θ in Taylor series. The

first term of this series which contributes non-trivially to the integral is 1
n! (β cos θ)n. Its integral yields

tn(β) ' βn/2nn! as β → 0.

Since tu ' const. (β/2)|u| the leading contribution to the correlation function is for u = 0 or |u| = 1 (and

the weight of configuration is independent of sign of u).

IA-5 Selecting the configuration with u = 0 or u = ±1 on each lattice edge compatible with the divergence

constraints
∑
j u[ij] = 0 for all i 6= i1, i2, but

∑
j u[i1j] = 1 and

∑
j u[i2j] = −1 selects a path from i1 to i2.

The weight of such path γ is proportional to (β/2)d12(γ) with d12(γ) its length (measured as the number

of steps of the path). The leading contribution comes from the shortest path, and the correlation function

decreases exponentially with the distance d12 between the two points as (β/2)d12 . The correlation length

is thus a/ log(2/β), asymptotically at high temperature. The high temperature phase is disordered.

• IB- Low temperature expansion

The aim of this section is to study the low temperature (β � 1) behavior of the XY model.
It consists in expanding the interaction energy cos(Θi−Θj) to lowest order in the angle variables
so that we write the configuration energy as (up to an irrelevant additive constant)

E[~S] = const.+
1

2

∑
[i,j]

(Θi −Θj)
2 + · · · .

This approximation neglects the 2π-periodicity of the angle variables.
IB-1 Argue that the higher order terms in this expansion, say the terms proportional to∑

[i,j](Θi −Θj)
4, are expected to be irrelevant and can be neglected.
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IB-2 Write the expression of the partition function Z of the model within this approximation.
Explain why, in this approximation, the theory may be viewed as a Gaussian theory.

IB-3 Let Gβ(x) be the two-point function of this Gaussian theory. Show that Gβ(x) =
β−1G(x) with

G(x) =

∫ +π/a

−π/a

d2p

(2π/a)2

eip·x

4− 2(cos ap1 + cos ap2)
,

with p1, p2 the two components of the momentum p and a the lattice mesh.
IB-4 Let i1 and i2 be two points on Λ and x1 and x2 be their respective Euclidean positions.

Let Cα(x1, x2) = 〈eiα(Θi1−Θi2 )〉 with α integer. Show that

Cα(x1, x2) = e
−α

2

β

(
G(0)−G(x1−x2)

)
.

IB-5 Explain why G(x) is actually IR divergent1 and what is the origin of this divergence,
but that G(0)−G(x) is finite for all x. Show that

G(0)−G(x) =
1

2π
log(|x|/a) + const.+O(1/|x|).

IB-6 Deduce that the correlation functions Cα decrease algebraically at large distance ac-
cording to

Cα(x1, x2) ' const. (a/|x1 − x2|)α
2/2πβ.

Compare with the high temperature expansion.

Correction :

IB-1 This expansion is a gradient expansion, the leading term is (∇Θ)2. The other terms (∇Θ)p, with
higher powers of the gradient, are irrelevant (when estimated using the leading Gaussian contribution∫

(∇Θ)2).
IB-2 In this approximation, the partition reads (up to an irrelevant multiplicative constant)

Z =

∫
[
∏
i

dΘi

2π
] e−

β
2

∑
[i,j](Θi−Θj)

2

.

This is a Gaussian theory.
IB-3 The two point function is given by the inverse of the quadratic form defining the action. Hence it is
β−1G(x) with G the Green function of the lattice Laplacian on (aZ2). Thus Ĝ(p), the Fourier transform
of G(x) is solution of (

4− 2(cos ap1 + cos ap2)
)
Ĝ(p) = 1.

This yields the formula for G(x) given in the text2.
IB-4 The formula for Cα follows from the fact that the theory is Gaussian (with a even translation
invariant two point function).
IB-5 The function G(x) is IR divergent because the (discrete) Laplacian has the constant function as
zero mode (the constant function is in the kernel of the Laplacian) and the inverse Laplacian does not
exist. For this inverse to exist one has to impose boundary conditions (say periodicity, or Dirichlet, etc.)
which eliminate the constant zero mode. The IR divergence of G(x) is of the form 1

2π logL with L the
linear size of system box (this can be seen by looking at the small momenta contribution to the integral:

1So that, when defining G(x), we implicitly assumed the existence of an IR cut-off, say |p| > 2π/L with L the
linear size of the box on which the model is considered.

2There is actually an IR divergence is this formula – due to constant zero mode of the Laplacian – so that we
implicitly assume an IR regularization.
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1
(2π)2

∫
|p|>2π/L

d2p
(p)2 .). This divergence cancels in the difference G(0)−G(x) (because this is independent

of the constant zero mode). Alternatively, we can write

G(0)−G(x) =

∫ +π/a

−π/a

d2p

(2π/a)2

1− cos(p · x)

4− 2(cos ap1 + cos ap2)
.

which is explicitly convergent.

Since G(0)−G(x) only depends on |x|/a, the long distance behavior is identical to the continuous limit

(a→ 0). In this limit G(0)−G(x) is (minus) a Green function of the 2D Euclidean Laplacian. Hence it

is equal to 1
2π log |x| up to an additive constant. Dimensional analysis then fixes the constant as in the

text.

IB-6 Direct application of the above formula.

• II- The role of vortices in the XY field theory

The previous computations show that the model is disordered at high temperature but
critical at low temperature with temperature dependent exponents. The aim of this section is
to explain the role of topological configurations, called vortices, in this transition.

We shall now study the model in continuous space, the Euclidean plane R2, but with an
explicit short distance cut-off a. We shall consider the XY system in a disc of radius L.

In the continuous formulation, the spin configurations are then maps Θ from R2 to [0, 2π]
modulo 2π. The above Gaussian energy is mapped into the action

S0[Θ] =
κ

2

∫
d2x(∇Θ)2,

with a coefficient κ proportional to β.
II-1 Argue that the coefficient κ cannot be absorbed into a rescaling of the field variable Θ?
II-2 A vortex, centred at the origin, is a configuration such that Θ±v (z) = ±Arg(z), with z

the complex coordinate on R2, or in polar coordinates3, Θ±v (r, φ) = ±φ.
Show that Θ±v is an extremum of S0 in the sense that ∇2Θ±v = 0 away from the origin.
Show that

∮
C0
dΘ±v = ±2π for C0 a small contour around the origin.

II-3 Let a0 be a small short distance cut-off and let D(a0) be the complex plane with small
discs of radius a0 around the vortex positions cut out. Prove that, evaluated on Θ±v , the action
S0 integrated over D(a0) (with an IR cut-off L) is

S
(1)
vortex =

κ

2

∫
D(a0)
d2x (∇Θ±v )2 = πκ log

[
L/a0

]
.

Give an interpretation of the divergence as a0 → 0.
II-4 What is the entropy of single vortex configurations? Show that the contribution of single

vortex configurations to the free energy is

e−F
(1)
vortex ' const.

( L
a0

)2
e−πκ log[L/a0]

Conclude that vortex configurations are irrelevant for πκ > 2 but relevant for πκ < 2.

3We recall the expression of the gradient in polar coordinates: ∇Θ = (∂rΘ,
1
r
∂φΘ). The Laplacian is ∇2F =

1
r
∂r(r∂r)F + 1

r2
∂2
φF .
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Correction :

II-1 Since Θ is 2π-periodic we cannot rescale it to absorb the parameter κ in a redefinition of Θ (unless
we redefine the periodicity).
II-2 In polar coordinate ∇2Θ = 1

r∂r(r∂r)Θ + 1
r2 ∂

2
φΘ. Thus, ∇2Θ±v = 0 away from the origin.

The gradient is ∇Θ±v = ±(0, 1
r ). Hence,

∮
C0
dΘ±v = ±

∫ 2π

0
dφ = ±2π.

II-3 Using (∇Θ±v )2 = 1
r2 , we get (doing the integration using polar coordinate)

S
(1)
vortex =

κ

2

∫ L

a0

2π rdr

r2
= πκ log

[
L/a0

]
.

The UV divergence (with a0 → 0) is an echoe of the fact that the naive continuous limit we are using is

ill-defined near the core of the vortex at which the field Θ becomes singular.

II-4 The vortex center may be positioned at any position, with a typical size of diameter a0. Hence the

entropy of single vortex configuration is ' log(L/a0)2. This yields the expression of F
(1)
vortex given in the

text. And e−F
(1)
vortex is significantly large for πκ < 2 but negligeable for πκ > 2.

• III- The XY field theory and the sine-Gordon model

The aim of this section is to analyse this phase transition using renormalization group argu-
ments via a mapping to the so-called sine-Gordon field theory.

We shall consider a gas of vortices. The field configuration Θ
(M)
v for a collection of M vortices

of charges qa centred at positions xa is given by the sum of single vortex configuration:

Θ(M)
v =

M∑
a=1

qa Arg(z − za).

We shall admit that the action of such configuration is

S
(M)
vortex = −2π(

κ

2
)
∑
a6=b

qaqb log
( |xa − xb|

a0

)
+ 2π(

κ

2
)(
∑
b

qb)
2 log

( L
a0

)
+
∑
a

βεc,

where εc is a ‘core’ energy (which is not taken into account by the previous continuous descrip-
tion).

• IIIA- The XY field theory: Mapping to the sine-Gordon theory

The aim of this section is to analyse this phase transition using renormalization group argu-
ments via a mapping to the so-called sine-Gordon field theory.

We shall consider a gas of vortices. The field configuration Θ
(M)
v for a collection of M vortices

of charges qa centred at positions xa is given by the sum of single vortex configuration:

Θ(M)
v =

M∑
a=1

qa Arg(z − za).

We shall admit that the action of such configuration is

S
(M)
vortex = −2π(

κ

2
)
∑
a6=b

qaqb log
( |xa − xb|

a0

)
+ 2π(

κ

2
)(
∑
a

qb)
2 log

( L
a0

)
+
∑
a

βεc,
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where εc is a ‘core’ energy (which is not taken into account by the previous continuous descrip-
tion).

This mapping comes about when considering a gas of pairs of vortices of opposite charges
±, so that the vortex system is neutral (

∑
a qa = 0). We denote x+

j (resp. x−j ) the positions of
the vortices of charge + (resp. −).

The vortex gas is defined by considering all possible vortex pair configurations (with arbitrary

number of pairs) and fluctuations around those configurations. We set Θ = Θ
(2n)
v + θsw and

associate to each such configuration a statistical weights e−S with action given by

S = S
(2n)
vortex[x+

j , x
−
j ] + S0[θsw],

with S0[θsw] the Gaussian action κ
2

∫
d2x(∇θsw)2. We still assume a short-distance cut-off a.

IIIA-1 Write the expression of the action S
(2n)
vortex[x+

j , x
−
j ] for a collection of n pairs of vortices

at positions x±j , j = 1, · · · , n.
IIIA-2 Argue that the partition function of the gas of vortex pairs is given by the product

Z = Zsw × Zvortex with Zsw the partition function for the Gaussian free field θsw and

Zvortex =
∑
n≥0

µ2n

n! · n!
×
∫

(
n∏
j=1

d2x+
j

n∏
j=1

d2x−j )

∏
i<j(|x

+
i − x

+
j |/a)2πκ(|x−i − x

−
j |/a)2πκ∏

i,j(|x
+
i − x

−
j |/a)2πκ

,

with µ =
(
a0
a

)πκ
e−βεc .

IIIA-3 The aim of the following questions is to express Zvortex as a path integral over an
auxiliary bosonic field ϕ. Let S̃κ[ϕ] = 1

2κ

∫
d2x(∇ϕ)2 be a Gaussian action. Show that, computed

with this Gaussian action,

〈ei2πϕ(x)e−i2πϕ(y)〉S̃κ =
1

|x− y|2πκ
.

Hint: The Green function associated to the action S̃κ[ϕ] is G(x, y) = − κ
2π log

(
|x− y|/a

)
.

IIIA-4 What is the scaling dimension (computed with the Gaussian action S̃κ[ϕ]) of the
operators (∇ϕ)2 and cos(2πϕ)?
Deduce that the perturbation cos(2πϕ) is relevant for πκ < 2 and irrelevant for πκ > 2.
Is the the perturbation (∇ϕ)2 relevant or irrelevant?

IIIA-5 Show that Zvortex can be written as the partition function of Gaussian bosonic field
with action SsG[ϕ],

Zvortex =

∫
[Dϕ] e−SsG[ϕ],

where the action SsG is defined as

SsG[ϕ] =

∫
d2x
[ 1

2κ
(∇ϕ)2 − 2µ cos(2πϕ)

]
.

This is called the sine-Gordon action.
Hint: Compute perturbatively the above partition function as a series in µ while paying attention
to combinatorial factors.

Correction :
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IIIA-1 Vortices with charge + are at positions x+
j , those of charge − are at positions x−j with j = 1, · · · , n.

Hence, the total sum of the charges vanishes, and

S
(2n)
vortex[x+

j , x
−
j ] = −2πκ

∑
i<j

log
[ |x+

i − x
+
j ||x

−
i − x

−
j |

a0 a0

]
+ 2πκ

∑
i≤j

log
[ |x+

i − x
−
j |

a0

]
+ 2nβ εc.

IIIA-2 Since the statistical weights of vortex configurations and of the spin waves θsw factorize, it is clear

that the partition function factorizes as Z = Zrm × Zvortex. Next we rewrite S
(2n)
vortex in term of lattice

cut-off a: this amounts to replace a0 by a in the log’s and to add the term −2nπκ log( aa0 ). The vortex
gas partition function is then

Zvortex =
∑
n≥0

1

n!
× 1

n!
×
∫

(

n∏
j=1

d2x+
j

n∏
j=1

d2x−j ) e−S
(2n)
vortex[x+

j ,x
−
j ],

where the factor 1
n! ×

1
n! comes from the indistinguishability of the vortices of given charge. This proves

the claim.
IIIA-3 Since 〈ϕ(x)ϕ(0)〉 = − κ

2π log
(
|x−y|/a

)
(w.r.t the Gaussian theory with action S̃κ[ϕ] = 1

2κ

∫
d2x(∇ϕ)2),

we get the result.
IIIA-4 W.r.t S̃κ[ϕ], the operator cos(2πϕ) has scaling dimension πκ. It is relevant (in dimension D = 2)
for πκ < 2 and irrelevant for πκ > 2.
The operator (∇ϕ)2 has dimension 2 and it is marginal. Its RG behaviour depends on the details of the
perturbation. If this is only perturbing operator, it is exactly marginal. If (∇ϕ)2 is accompanied with
other perturbing operators, then it may be relevant or irrelevant depending on the OPE structure.
IIIA-5 We expand the sine-Gordon partition function is Taylor series in µ. By charge conservation, only
the even terms in the expansion are non-vanishing. Hence,

ZsG =
∑
n

(2µ)2n

(2n)!
〈
[ ∫

d2x cos(2πϕ)
]2n
〉S̃κ ,

where the expectations are computed using the Gaussian action S̃κ. In these expectations, only the
charge neutral combinations contribute. The terms of order 2n involve n operators e+i2πϕ, with charge
+, and n operators e−i2πϕ, with charge −. Integrating over the positions of these charges and taking into
account the combinatorial factor (corresponding to choose n amongst 2n) we get

ZsG =
∑
n

(2µ)2n

(2n)!

(
2n
n

)
1

22n

∫
(

n∏
j=1

d2x+
j d

2x−j ) 〈
∏
j

e+i2πϕ(x+
j ) e−i2πϕ(x−

j )〉S̃κ .

This proves the result.

• The XY field theory: The renormalization group analysis

IIIB-1 We now study the renormalization group flow of the action SsG for κ close to the
critical value κc = 2/π. We let κ−1 = κ−1

c − δκ and write

SsG[ϕ] = S̃κc [ϕ]−
∫
d2x
[1

2
(δκ)(∇ϕ)2 + 2µ cos(2πϕ)

]
Show that, to lowest order, the renormalization group equations for the coupling constants

δκ and µ are of the following form:

˙(δκ) = `∂` (δκ) = b µ2 + · · ·
µ̇ = `∂` µ = a (δκ)µ+ · · ·
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Figure 1: The XY RG flow.

with a and b some positive numerical constants.
Hint: It may be useful to first evaluate the OPE of the fields (∇ϕ)2 and cos(2πϕ).

IIIB-2 We redefine the coupling constants and set X = a (δκ) and Y =
√
ab µ such that the

RG equations now reads Ẋ = Y 2 and Ẏ = XY .
Show that Y 2 −X2 is an invariant of this RG flow.
Draw the RG flow lines in the upper half plane Y > 0 near the origin.

IIIB-3 We look at the flow with initial condition XI < 0 and YI .
Show that if Y 2

I −X2
I < 0 and XI < 0, then the flow converges toward a point on the line Y = 0.

Deduce that for such initial condition the long distance theory is critical. Compare with section
I-B.

IIIB-4 Show that if Y 2
I −X2

I > 0 and XI < 0, the flow drives X and Y to large values.
Let Y 2

0 = Y 2
I −X2

I with Y0 > 0. Show that the solution of the RG equations are

log
( `
a

)
=

1

Y0

[
arctan

(X(`)

Y0

)
− arctan

(XI

Y0

)]
.

IIIB-5 The initial condition XI and YI are smooth functions of the temperature T of the XY
model. The critical temperature Tc is such that XI + YI = 0. We take the initial condition to
be near the critical line XI + YI = 0 with XI < 0. We let XI = −YI(1 + τ) in which τ � 1 is
interpreted at the distance from the critical temperature: τ ∝ (T − Tc).
For τ > 0, we define the correlation length as the length ξ at which X(`) is of order 1.
Why is this a good definition?
Show that

ξ/a ' const. econst./
√
τ .

Correction :

IIIB-1 W.r.t to S̃κc both operators (∇ϕ)2 and cos(2πϕ) are marginal. To lowest order the beta-functions
are given by the OPE coefficients. These OPE are of the form:

(∇ϕ)2 × cos(2πϕ) =⇒ cos(2πϕ) + irrelevant

cos(2πϕ)× cos(2πϕ) =⇒ (∇ϕ)2 + irrelevant

This implies the structure of the beta-function given in the text. The coefficients are positive because
these OPE coefficients are positive (one also has to take into account the signs introduced when defining
the perturbed action).
IIIB-2 Y 2 −X2 is proved to be a constant of the RG flow by computing its derivative.

8



See the picture for a representation of the flow lines.
IIIB-3 If Y 2

I − X2
I < 0 and XI < 0, the picture shows that the flow converges to the axis Y = 0.

Alternatively, Ẏ = XY implies that Y decreases until the flow reaches Y = 0 with X = −
√
X2
I − Y 2

I .
The large distance behaviour is critical because the theory at Y = 0 is a massless Gaussian theory which
is critical. It corresponds to the low temperature phase of the XY model discussed in section IB.
IIIB-4 If Y 2

I −X2
I > 0 and XI < 0, the picture shows that the flow drives X and Y to large values (along

the curve Y 2 −X2 = const).
Using the fact that Y 2−X2 = Y 2

0 is an invariant of the RG flow, the latter can be written as Ẋ = Y 2
0 +X2,

or alternatively d`
` = dX

Y 2
0 +X2 . The solution given in the text is checked by computing its ` derivative

(using that d arctanx = dx/(x2 + 1).
IIIB-5 For XI < 0 and XI = −YI(1 + τ), we get Y0 = YI

√
2τ , and Y0 → 0 as τ → 0. At the length scale

` = ξ the correlation length, X(`) is of order one, as is its initial value XI , and thus X(`)/Y0 →∞ and
XI/Y0 → −∞ as τ → 0. Hence, from the explicit solution above we get

log(ξ/a) = π/Y0 = (π/YI)× (1/
√

2τ),

as claimed in the text.

The correlation diverges as ξ ' econst/
√
T−Tc near the transition. The transition is of infinite order. This

is the Kosterlitz-Thouless (KT) transition.
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