Statistical Field Theory and Applications:
o An Introduction for (and by) Amateurs. @

ENS
by Denis BERNARD & Jesper JACOBSEN

The XY model

The XY model is a statistical spin model with spin variables S;-, on each site 7 of the lattice
A, which are two component unit vectors, S = 1. The energy of a configuration [S] is defined
as E[S] = —3 ;) Si+Sj where the sum runs over neighboor points on A. Parametrising the unit

spin vectors S by an angle ©; defined modulo 27, we write the configuration energy as

E[S] = - cos(®; — ;).
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The partition function is Z = f[H d@i] exp (5 Z[i,j] COS(@l‘ - @])> with 8 = 1/]€BT the inverse
temperature.
Here is the solution of the problem on the XY model given in Section 9.1.

e JA- The XY model on a lattice: High temperature expansion

The aim of this section is to study the high temperature (5 < 1) behavior of the XY model.
It is based on rewriting the Boltzmann sums in terms of dual flow variables.

IA-1 Explain why we can expand e”“=® in series as e/ °® = I(8) (1 + 2 n0 tn(B)e®),
where I(3) and t,(8) are some real S-dependent coefficients. We set to(53) = 1.

IA-2 By inserting this series in the defining expression of the partition function and by
introducing integer variables up;; on each edge [ij] of the lattice A, show that the partition

function can be written as Z = I(8)Ne - Z with N, the number of edges and

Z= Z Ht“[m(ﬁ)’

[u], [Ou=0] [ij]

where the partition sum is over all configurations [u] of integer edge variables u[;; such that, for

any vertex ¢ € A, the sum of these variables arriving at 7 vanishes, i.e. > ; Uig] = 0.

Remark: The variables u are attached to the edge of the lattice and may be thought of as

‘flow variables’. The condition that their sum vanishes at any given vertex is a divergence free

condition. The divergence at a vertex i of a configuration [u] is defined as (Qu); :== > ;5 Uij)-
IA-3 Let ¢; and 72 be two points of A and <§21 512> be the two-point spin correlation function.

Explain why (S, - §,) = Re(e #®1~0:)),

Show that,
—i(©;, —O, L
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where the sum is over all integer flow configurations such that their divergence is equal to +1
at point 71, to —1 at point i, and vanishes at any other vertex.



IA-4 Show that t,(8) = t_n(8) ~ 2?;:“ as 8 — 0.
Argue, using this asymptotic expression for the t,(/3)’s, that the leading contribution to the spin
correlation functions at high temperature comes from flow configurations with ©v =0 or u = +1
on each edge of the lattice.

IA-5 Deduce that, at high temperature, the correlation function (5;1 : S-;Q> decreases expo-
nentially with the distance between the two points ¢; and is.

Show that the correlation length behaves as £ ~ a/log(2//) at high temperature.

Correction :

IA-1: €#°%9 ig a periodic function of © (with period 27) so that it can be represented as a Fourier series.
By reality, we have ¢,(3) = t_,(5).
TA-2 We insert the representation e”<® = [(8) 3" t,(8)e™® in the partition function to write

7 = [P Tt ).
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Integration of the ©;’s yields the constraint (u); := 3, uj;;) = 0.
IA-3 By reality (S}, - S;,) = Re(e~"(®1-©:2)) By definition

<67i(@i1*@i2)> = % X /[1:[ Z (Ht - e Uli) ) e~ H(Oi; =9iy)

[u] [24]
Integration over the ©;’s gives Z ufi;) = 0 for all i # iy, iz, but Z up, 5 = 1 and Z Uiy = — 1.
TA-4 By definition ¢,(8) = 027r gfr —inb gBeost  For small  we can expand e”°°? in Taylor series. The

first term of this series which contributes non-trivially to the integral is %(ﬂ cos @)™, Its integral yields
t,(B) = B"/2"n! as 8 — 0.

Since t,, ~ const. (3/2)"l the leading contribution to the correlation function is for u = 0 or |u| = 1 (and
the weight of configuration is independent of sign of w).

TA-5 Selecting the configuration with u = 0 or u = 1 on each lattice edge compatible with the divergence
constraints Z uy;) = 0 for all ¢ # iy, ig, but Z ufi,j) = 1 and Z ui,j) = —1 selects a path from 4; to iz.
The weight of such path ~ is proportional to (ﬁ/Z)d”(V) with d12( ) its length (measured as the number
of steps of the path). The leading contribution comes from the shortest path, and the correlation function

di12

decreases exponentially with the distance di2 between the two points as (5/2)*2. The correlation length

is thus a/log(2/8), asymptotically at high temperature. The high temperature phase is disordered.

e [B- Low temperature expansion

The aim of this section is to study the low temperature (8 > 1) behavior of the XY model.
It consists in expanding the interaction energy cos(©; —©;) to lowest order in the angle variables
so that we write the configuration energy as (up to an irrelevant additive constant)

—.

1 2
E[S] = const. + 5 Z(@z - 0;)
[i,5]
This approximation neglects the 2w-periodicity of the angle variables.

IB-1 Argue that the higher order terms in this expansion, say the terms proportional to
IC 0,)*, are expected to be irrelevant and can be neglected.
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IB-2 Write the expression of the partition function Z of the model within this approximation.
Explain why, in this approximation, the theory may be viewed as a Gaussian theory.
IB-3 Let Gg(x) be the two-point function of this Gaussian theory. Show that Gg(x) =

B~1G(z) with
+7/a d2 ip-x
= [ ook : ,
—n/a (2m/a)? 4 —2(cosap; + cosaps)

with p1, po the two components of the momentum p and a the lattice mesh.
IB-4 Let i1 and is be two points on A and z; and x5 be their respective Euclidean positions.
Let Cy(x1,22) = (e'(®17022)) with « integer. Show that
a2
Co(z1,22) = e (CO-Clre),

IB-5 Explain why G(z) is actually IR divergent! and what is the origin of this divergence,
but that G(0) — G(z) is finite for all . Show that

G(0) — G(z) = % log(|z|/a) + const. + O(1/|z]).

IB-6 Deduce that the correlation functions C, decrease algebraically at large distance ac-
cording to 2
Cola1, 29) ~ const. (a/|x1 — za])* />,

Compare with the high temperature expansion.
Correction :

IB-1 This expansion is a gradient expansion, the leading term is (VO)?. The other terms (VO)?, with
higher powers of the gradient, are irrelevant (when estimated using the leading Gaussian contribution
J(VO)?).

IB-2 In this approximation, the partition reads (up to an irrelevant multiplicative constant)

d@; _B o _0.)2
7 :/ L5 e 2@

i

This is a Gaussian theory.
IB-3 The two point function is given by the inverse of the quadratic form defining the action. Hence it is
B~1G(z) with G the Green function of the lattice Laplacian on (aZ?). Thus G(p), the Fourier transform
of G(z) is solution of

(4 — 2(cos apy + cosapz)) G(p) =1.

This yields the formula for G(z) given in the text?.

IB-4 The formula for C, follows from the fact that the theory is Gaussian (with a even translation
invariant two point function).

IB-5 The function G(x) is IR divergent because the (discrete) Laplacian has the constant function as
zero mode (the constant function is in the kernel of the Laplacian) and the inverse Laplacian does not
exist. For this inverse to exist one has to impose boundary conditions (say periodicity, or Dirichlet, etc.)
which eliminate the constant zero mode. The IR divergence of G(x) is of the form 5-log L with L the
linear size of system box (this can be seen by looking at the small momenta contribution to the integral:

!So that, when defining G(z), we implicitly assumed the existence of an IR cut-off, say |p| > 27 /L with L the
linear size of the box on which the model is considered.

2There is actually an IR divergence is this formula — due to constant zero mode of the Laplacian — so that we
implicitly assume an IR regularization.



ﬁ f\p\>27f/L é%.). This divergence cancels in the difference G(0) — G(x) (because this is independent

of the constant zero mode). Alternatively, we can write

/e g2y 1 —cos(p- x)
GO) - Gl) = /_Tr/a (27/a)? 4 — 2(cos apy + cosaps)’

which is explicitly convergent.

Since G(0) — G(x) only depends on |z|/a, the long distance behavior is identical to the continuous limit
(a — 0). In this limit G(0) — G(x) is (minus) a Green function of the 2D Euclidean Laplacian. Hence it
is equal to % log |z| up to an additive constant. Dimensional analysis then fixes the constant as in the
text.

IB-6 Direct application of the above formula.

e /I- The role of vortices in the XY field theory

The previous computations show that the model is disordered at high temperature but
critical at low temperature with temperature dependent exponents. The aim of this section is
to explain the role of topological configurations, called vortices, in this transition.

We shall now study the model in continuous space, the Euclidean plane R?, but with an
explicit short distance cut-off a. We shall consider the XY system in a disc of radius L.

In the continuous formulation, the spin configurations are then maps © from R? to [0, 27]
modulo 27. The above Gaussian energy is mapped into the action

So[0] = ;/an:(V@)Q,
with a coeflicient x proportional to j3.
I1-1 Argue that the coefficient x cannot be absorbed into a rescaling of the field variable ©7
I1-2 A vortex, centred at the origin, is a configuration such that ©F(z) = +Arg(z), with z
the complex coordinate on R?, or in polar coordinates?, @\jf(r, @) = to.
Show that ©F is an extremum of Sy in the sense that V20T = 0 away from the origin.
Show that fCo dOF = +27 for Cy a small contour around the origin.
II-3 Let ag be a small short distance cut-off and let D(ag) be the complex plane with small
discs of radius ag around the vortex positions cut out. Prove that, evaluated on @3, the action
So integrated over D(ag) (with an IR cut-off L) is

s = ;/(d% (VOE)? = 1k log [L/ao).
D

vortex
ao)

Give an interpretation of the divergence as ag — 0.
I1-4 What is the entropy of single vortex configurations? Show that the contribution of single
vortex configurations to the free energy is

1
e_F\EOBtex ~ const. (£)2 e—ﬂlﬁlog[L/aO]

ao

Conclude that vortex configurations are irrelevant for 7« > 2 but relevant for 7x < 2.

3We recall the expression of the gradient in polar coordinates: VO = (9,0, %(%@). The Laplacian is V2F =
%GT(TOT)F + T%&iF



Correction :

II-1 Since © is 2m-periodic we cannot rescale it to absorb the parameter x in a redefinition of © (unless
we redefine the periodicity).
I1-2 In polar coordinate V20 = 10,(r9,)0 + T%a;(a. Thus, V2OF = 0 away from the origin.

The gradient is VOF = +(0, ;). Hence, ¢, dOF =+ fo% do = 2.
11-3 Using (VOF)? = 7_%, we get (doing the integration using polar coordinate)

L
1n K 2rrdr
Svortex - 5 /ao TQ =TK IOg [L/G'O] .
The UV divergence (with ag — 0) is an echoe of the fact that the naive continuous limit we are using is
ill-defined near the core of the vortex at which the field © becomes singular.

II-4 The vortex center may be positioned at any position, with a typical size of diameter ag. Hence the

entropy of single vortex configuration is ~ log(L/ag)?. This yields the expression of F! given in the

vortex

text. And e~ Feohes is significantly large for 7k < 2 but negligeable for 7 > 2.

o [II- The XY field theory and the sine-Gordon model

The aim of this section is to analyse this phase transition using renormalization group argu-
ments via a mapping to the so-called sine-Gordon field theory.

(M)

We shall consider a gas of vortices. The field configuration ©y " for a collection of M vortices
of charges ¢, centred at positions z, is given by the sum of single vortex configuration:

M
@&M) = Z qa Arg(z — 24).

a=1
We shall admit that the action of such configuration is
(1) wb! K
Siortex = —2m(= Z dap log =)+ 2%(5)(2 log )+ Z Bec,
ab b

where €. is a ‘core’ energy (which is not taken into account by the previous continuous descrip-
tion).

o [ITA- The XY field theory: Mapping to the sine-Gordon theory

The aim of this section is to analyse this phase transition using renormalization group argu-
ments via a mapping to the so-called sine-Gordon field theory.
(M)

We shall consider a gas of vortices. The field configuration Oy
of charges ¢, centred at positions z, is given by the sum of single vortex configuration:

for a collection of M vortices

M
oM) — Z Ga Arg(z — 24).

a=1

We shall admit that the action of such configuration is

M
SO = —2m (= Z dadb log )+ 2m(S Z qb) log )+ Z Bec,
ab



where €. is a ‘core’ energy (which is not taken into account by the previous continuous descrip-
tion).

This mapping comes about when considering a gas of pairs of vortices of opposite charges
+, so that the vortex system is neutral (3, ¢, = 0). We denote azj (resp. z; ) the positions of
the vortices of charge + (resp. —).

The vortex gas is defined by considering all possible vortex pair configurations (with arbitrary
number of pairs) and fluctuations around those configurations. We set © = 652") + Osw and
associate to each such configuration a statistical weights e~ with action given by

S = S(Qn) [IE+ l‘~_] + So[asw]a

vortex(®j »

with Sp[fsw] the Gaussian action § J d%x (Vs )?. We still assume a short-distance cut-off a.

[z, x| for a collection of n pairs of vortices

(2n)
S J

vortex

IIIA-1 Write the expression of the action
at positions x;t, j=1-,n.

IITA-2 Argue that the partition function of the gas of vortex pairs is given by the product
Z = Zgw X Zyortex With Zgy, the partition function for the Gaussian free field 6g, and

=Y ([T T [ (laf — ot /)™ (fa; — o |/
vortex — ] ] — )
n!-n! o J e / Hw(’xj -z |/a)*™

n>0

with p = (%O)M e Pee,

IITA-3 The aim of the following questions is to express Zyortex as a path integral over an
auxiliary bosonic field ¢. Let Sk[¢p] = i [ d*z(Vp)? be a Gaussian action. Show that, computed
with this Gaussian action,

<ei27rg0(33)6—i27féo(y)> o #
w |l‘ _ y‘27m

Hint: The Green function associated to the action S,[¢] is G(z,y) = — o= log (|z — yl/a).
ITIA-4 What is the scaling dimension (computed with the Gaussian action S[¢]) of the

operators (V)2 and cos(27mp)?

Deduce that the perturbation cos(2my) is relevant for 7k < 2 and irrelevant for 7k > 2.

Is the the perturbation (Vi)? relevant or irrelevant?

IITA-5 Show that Zyortex can be written as the partition function of Gaussian bosonic field
with action Ssa[¢],

Zvortox = /[DSO] e_SSG[Lp]v

where the action Sya is defined as

Sucle] = / P[5 (Vo) ~ 2pcos(2me)].

This is called the sine-Gordon action.
Hint: Compute perturbatively the above partition function as a series in p while paying attention
to combinatorial factors.

Correction :



TITA-1 Vortices with charge + are at positions .73;_, those of charge — are at positions Ty withj=1,--- ,n.
Hence, the total sum of the charges vanishes, and

—al|x; — "
S\(,i?mx [xj', x| = —2mk Z log aol a | + 27k Z log ‘] + 2npf e..
1<j 1<j

TITA-2 Since the statistical weights of vortex configurations and of the spin waves GSW factorize, it is clear
that the partition function factorizes as Z = Zym X Zyortex- Next we rewrite Svortex in term of lattice
cut-off a: this amounts to replace ag by a in the log’s and to add the term —2n7x log(;-). The vortex

gas partition function is then

1 1 - = (2n)
Zvortex = E — X =X /(l | dej' I | dej_ ~Svorex|@] 7 I
Jj=1 Jj=1

n>0

where the factor # X # comes from the indistinguishability of the vortices of given charge. This proves
the claim.

ITIA-3 Since (¢(x)¢(0)) = — 4= log (|z—y|/a) (w.r.t the Gaussian theory with action S.le] = = [ d*z(V)?),
we get the result.

ITIA-4 W.r.t S,[], the operator cos(2mp) has scaling dimension 7&. It is relevant (in dimension D = 2)
for 7k < 2 and irrelevant for 7k > 2.

The operator (V¢)? has dimension 2 and it is marginal. Its RG behaviour depends on the details of the
perturbation. If this is only perturbing operator, it is exactly marginal. If (V¢)? is accompanied with
other perturbing operators, then it may be relevant or irrelevant depending on the OPE structure.
IITA-5 We expand the sine-Gordon partition function is Taylor series in u. By charge conservation, only
the even terms in the expansion are non-vanishing. Hence,

2n 2n
Zsg = Z ((2;5), ({/d%cos(?mo) )5,

n

where the expectations are computed using the Gaussian action S,.. In these expectations, only the
charge neutral combinations contribute. The terms of order 2n involve n operators et*?™%, with charge
+, and n operators e ~#2™%, with charge —. Integrating over the positions of these charges and taking into
account the combinatorial factor (corresponding to choose n amongst 2n) we get

_ (2M)2n 2n 1 2t g2 0 +i27 ) 7i27r ()
ZSG_; (2n)! \\n ) 220 (Hd &'z He o 35,

=1

This proves the result.

o The XY field theory: The renormalization group analysis

IIIB-1 We now study the renormalization group flow of the action Sso for x close to the
critical value k. = 2/m. We let k=1 = k1 — §k and write

Sualel = Sulel = [ o500 (Ve)? + 2ucos(my)]

Show that, to lowest order, the renormalization group equations for the coupling constants
0k and p are of the following form:

(6K) = €8y (8k) b + -



N

Figure 1: The XY RG flow.

with a and b some positive numerical constants.
Hint: Tt may be useful to first evaluate the OPE of the fields (V)2 and cos(27).

I1IB-2 We redefine the coupling constants and set X = a (0x) and Y = v/ab u such that the
RG equations now reads X = Y2 and Y = XVY.
Show that Y2 — X? is an invariant of this RG flow.
Draw the RG flow lines in the upper half plane Y > 0 near the origin.

IIIB-3 We look at the flow with initial condition X; < 0 and Y7.
Show that if Y[2 — X% < 0and X7 < 0, then the flow converges toward a point on the line Y = 0.
Deduce that for such initial condition the long distance theory is critical. Compare with section
I-B.

I1IB-4 Show that if YI2 — X% > 0 and X7 < 0, the flow drives X and Y to large values.
Let Y = Y12 — X% with Yy > 0. Show that the solution of the RG equations are

log (g) = ;0 [arctan (X;f)) — arctan ();01)}

IIIB-5 The initial condition X; and Y7 are smooth functions of the temperature 7" of the XY
model. The critical temperature T, is such that X; 4+ Y; = 0. We take the initial condition to
be near the critical line X7 + Y7 = 0 with X; < 0. We let X; = —Y7(1 4 7) in which 7 < 1 is
interpreted at the distance from the critical temperature: 7 o< (T — T¢).

For 7 > 0, we define the correlation length as the length ¢ at which X () is of order 1.
Why is this a good definition?
Show that

€/a ~ const. ¢©"t/VT

Correction :

ITIB-1 W.r.t to S, both operators (V¢)? and cos(27m¢) are marginal. To lowest order the beta-functions
are given by the OPE coefficients. These OPE are of the form:

(Vp)? x cos(2mp) = cos(2mp) + irrelevant
cos(2mp) x cos(2mp) = (V)? + irrelevant

This implies the structure of the beta-function given in the text. The coefficients are positive because
these OPE coefficients are positive (one also has to take into account the signs introduced when defining
the perturbed action).

IIIB-2 Y2 — X2 is proved to be a constant of the RG flow by computing its derivative.



See the picture for a representation of the flow lines.

HIB-3 If Y2 — X? < 0 and X; < 0, the picture shows that the flow converges to the axis Y = 0.
Alternatively, Y = XY implies that Y decreases until the flow reaches Y = 0 with X = —\/XI2 — Y12-
The large distance behaviour is critical because the theory at Y = 0 is a massless Gaussian theory which
is critical. It corresponds to the low temperature phase of the XY model discussed in section IB.

HIB-4 If Y2 — X? > 0 and X < 0, the picture shows that the flow drives X and Y to large values (along
the curve Y2 — X2 = const).

Using the fact that Y2 — X2 = Y2 is an invariant of the RG flow, the latter can be written as X = YE+X2,
or alternatively df = YOZdJi(XZ' The solution given in the text is checked by computing its ¢ derivative
(using that darctanx = da /(2% + 1).

IIIB-5 For X7 < 0 and X; = =Y;(1+7), we get Yy = Y7 \/?, and Yy — 0 as 7 — 0. At the length scale
¢ = £ the correlation length, X (¢) is of order one, as is its initial value X7, and thus X (¢)/Yy — oo and
X;/Yy = —o0 as 7 — 0. Hence, from the explicit solution above we get

log(¢/a) = /Yo = (n/ Y1) x (1/V27),

as claimed in the text.
The correlation diverges as & ~ e°"st/VT=Tc pear the transition. The transition is of infinite order. This
is the Kosterlitz-Thouless (KT) transition.



