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Abstract
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1. Introduction

Branching Brownian motion (BBM) is a point process consisting of particles moving and
reproducing stochastically. In this work, we study the tail behavior of the distance between
the two rightmost particles in BBM. To do so, we rely on the close relationship between BBM
and the Fisher–KPP equation, a reaction–diffusion PDE.

We consider a BBM beginning from a single particle at the position x = 0 at time t = 0,
with branching occurring at rate 1. At each branching event, the particle splits into a random
number of particles. Let pk denote the probability of k offspring in a given branching event.
We assume that p0 = p1 = 0, so that

∞∑
k=2

pk = 1.

We let N denote the expected number of offspring:

N =

∞∑
k=2

kpk < ∞,

and we assume that the offspring distribution has a higher moment:
∞∑

k=2

k1+β pk < ∞ for some β ∈ (0, 1). (1.1)

To simplify the diffusion constant in the Fisher–KPP equation below, we assume that the vari-
ance of each individual Brownian motion is 2t (rather than t). Let x1(t) � x2(t) � . . . � xn(t)

denote the positions of the particles that exist at time t � 0. Here, n(t) is the total number
of particles present at time t. Note that n(t) is itself random. It is well known from works of
Bramson in [4, 5] and Lalley and Sellke [15] that the maximal particle x1(t) is typically at
distance O(1) from the position

m(t) = c∗t −
3

2λ∗
log(t + 1) (1.2)

as t →∞, with

c∗ = 2
√

N − 1, λ∗ =
√

N − 1. (1.3)

See also Roberts [21] for a more recent shorter proof. This result does not depend on the
precise nature of branching, so both the spreading speed c∗ and the logarithmic correction in
(1.2) depend only on the expected number of offspring N.

These probabilistic results transfer to PDEs via an identity of Ikeda, Nagasawa, and
Watanabe [11–13] and McKean [17]: the cumulative distribution function of the maximal
particle

H(t, x) = P[x1(t) � x] (1.4)

satisfies the Fisher–KPP equation [8, 14]

∂tH = ∂2
x H + f (H), (1.5)

with the initial condition

H(0, x) = 1(−∞,0](x). (1.6)
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The nonlinear reaction in (1.5) has the form

f (u) = 1 − u −
∞∑

k=2

pk(1 − u)k. (1.7)

Bramson’s results on BBM imply that there is a constant x0 ∈ R such that

H (t, x + m(t)) → U(x − x0) as t →+∞ (1.8)

uniformly on R. Here, U(x) is a Fisher–KPP traveling wave, so that U(x − c∗t) is a solution
to (1.5) moving with speed c∗. The function U(x) satisfies

−c∗U
′ = U′′ + f (U), U(−∞) = 1, U(+∞) = 0 (1.9)

and has the asymptotics

U(x) ∼ xe−λ∗x as x →+∞,

U(x) = 1 − Aeγ∗x + O
(
e(γ∗+c)x

)
as x →−∞

(1.10)

for

γ∗ =
√

N −
√

N − 1

and some constants A > 0 and c > 0. Any translate of a solution to (1.9) is also a solution, and
Uchiyama [22] showed that each resembles Cxe−λ∗x as x →∞ for some C > 0 depending
on the translation. We select the unique shift of the wave such that the pre-factor C is one,
as in the first line of (1.10). The second line in (1.10) follows from elementary phase-plane
analysis.

More generally, let u(t, x) solve (1.5)

∂tu = ∂2
x u + f (u) (1.11)

with non-negative bounded initial data

u(0, x) = φ(x)

such that φ 	≡ 0 and φ|(L0,∞) = 0 for some L0 ∈ R. Assume that the nonlinearity
f : [0, 1] → [0,∞) is C1,β , so that f ′ exists and is β-Hölder continuous for some β ∈ (0, 1).
Moreover, assume that f satisfies the Fisher–KPP assumptions

f (0) = f (1) = 0, f |(0,1) > 0, and f (u) � f ′(0)u for all u ∈ (0, 1).

(1.12)

Then, there exists a constant s[φ] ∈ R (depending also on f ) known as the Bramson shift
corresponding to φ such that

u (t, x + m(t)) → U(x − s[φ]) as t →+∞ (1.13)

uniformly on compact sets, with c∗ = 2
√

f ′(0) and λ∗ =
√

f ′(0) in the definition (1.2) of m(t).
In particular, (1.8) states that

s
[
1(−∞,0]

]
= x0. (1.14)
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This result is due, in increasing degrees of precision, to Fisher [8], Kolmogorov, Petrovskii,
and Piskunov [14], Uchiyama [22], and Bramson [4, 5]. For more recent developments,
see [9, 10, 16, 19, 20].

It is straightforward to check that f (u) defined in (1.7) satisfies the Fisher–KPP property
(1.12) with

f ′(0) = N − 1 and f ′(1) = −1. (1.15)

Note, however, that the Fisher–KPP property is far more general: there exist many Fisher–KPP
reactions that do not correspond to any branching process. Convergence in (1.13) holds for all
nonlinearities of Fisher–KPP type, not just ‘probabilistic’ ones. One reflection of the rigidity
of the class of probabilistic nonlinearities is that they satisfy

f ′(1) = −1, (1.16)

and the Fisher–KPP property is not related to f ′(1). Also, probabilistic nonlinearities are
concave, which is not necessary for (1.12).

For later use, we introduce the decomposition

f (u) = (N − 1)u − F(u), (1.17)

so that F denotes the ‘nonlinear’ part of the reaction f . By (1.12) and (1.15), F(0) = 0,
F′(0) = 0 and F(u) > 0 for all u ∈ (0, 1]. When f is probabilistic, f ′′ � 0 and (1.16) imply
that F and F′ are increasing and

0 = F′(0) < F′(u) < F′(1) = N for all u ∈ (0, 1). (1.18)

The connection between BBM and the Fisher–KPP equation runs deeper than (1.4) and
(1.5). Consider the measure-valued process that characterizes the BBM seen from the position
m(t):

Xt =

n(t)∑
k=1

δxk(t)−m(t),

recalling that n(t) is the total number of particles alive at time t and x1(t) � x2(t) � · · · �
xn(t)(t) are the positions of those particles. The works [1, 3, 6] show that the centered point
process Xt converges in law to a limit X :

Xt
law−−→X =

∑
k�1

δχk as t →∞. (1.19)

In fact, the proof in [1] makes use of the fact that various functionals ofXt solve the Fisher–KPP
equation. In the literature, X is often called the limiting extremal process (see [2, 3]).

In this paper, we examine the distance between the two leading particles x1(t) and x2(t).
More precisely, we study the distance after the limit t →+∞:

d12 = χ1 − χ2.

The main result of this paper is the tail asymptotics of the random variable d12.
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Theorem 1.1 As a →∞, we have

P(d12 > a) =
Aγ∗

2λ2
∗
√
π

(
a

2
√

N

)3
√

N/(2λ∗)

e−(
√

N+
√

N−1)(a+x0)
[
1 + O

(
a−1/2

)]
(1.20)

with A as in (1.10).

To prove theorem 1.1, we relate the distance x1(t) − x2(t) to a derivative of the Fisher–KPP
equation with respect to its initial data. The bulk of the proof is a detailed study
of this derivative.

Weaker versions of the above result were already known. In [6], Derrida and the sec-
ond author predicted the exponential order of (1.20) for binary BBM. Cortines, Hartung and
Louidor confirmed this conjecture [7, theorem 1.4], again in the binary case N = 2:

lim
a→∞

a−1 log P(d12 > a) = −
(√

2 + 1
)
. (1.21)

(The limit given in [7] is in fact −
(√

2 + 2
)

, since the authors use Brownian motion of

variance t rather than 2t.) We note that their results easily extend to non-binary BBM. How-
ever, neither [6] nor [7] discuss the sub-exponential behavior of P(d12 > a). In particular,
the algebraic pre-factor a3

√
N/(2λ∗) in theorem 1.1 is new. In appendix A, we present the prob-

abilistic heuristics from [6, 7] and discuss their potential extension to (1.20). We emphasize
that our own approach is primarily analytic, in contrast with the probabilistic focus of [6, 7].

More broadly, [6] is one of the main motivations for our study. It lays out numerous fas-
cinating connections between the Bramson shifts of certain Fisher–KPP solutions and fine
properties of BBM. Some of these predictions have been addressed elsewhere [18], but many
have not yet been proven rigorously.

We close with a word on notation: throughout the paper, we let C > 0 and c > 0 be constants
which may change from line to line. We think of C as large and c as small. These constants
may depend on the branching probabilities {pk}k�2 but not on t, x, or a. We write f = O(g) if
| f | � C |g|.

2. Outline of the proof of theorem 1.1

We begin by relating the law of d12 to the long-time behavior of a certain PDE solution.

2.1. An expression for the distribution of d12

Consider a BBM shifted to start from a single particle at position −a rather than 0. Recall that
x1(t) � x2(t) � · · · � xn(t)(t) are the positions of the n(t) particles alive at time t. We introduce
the (unnormalized) density

z(t, x; a) dx :=P (x1(t) ∈ [x, x + dx], x2(t) < x − a) (2.1)

under the convention that x2(t) = −∞ before the first branching event. Precisely:∫
A
z(t, x; a) dx = P (x1(t) ∈ A, x2(t) < x1(t) − a)
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for every Borel set A ⊂ R. The density z exists because x1(t) has a density, with c.d.f. given by
the solution of the Fisher–KPP equation. We derive an evolution equation for z by considering
the dependence of z(t + ε, x; a) on the state of the system at the small time ε > 0. We implicitly
assume that z ∈ C1

t C2
x . This assumption is justified a posteriori by (2.8).

At time ε, there have been no branching events with probability 1 − ε+ o(ε), one branch-
ing event with probability ε+ o(ε), and more than one branching event with probability
o(ε). We will only track terms of order ε or larger, so the last event can be safely discarded.
More precisely, we denote the event defining z(t + ε, x; a) by Z:

Z := {x1(t + ε) ∈ [x, x + dx], x2(t) < x − a}.

Let b denote the (random) number of branching events by time ε. Then

z(t + ε, x; a) dx = P
(
Z|b = 0

)
(1 − ε) + εP

(
Z|b = 1

)
+ o(ε). (2.2)

If b = 0, there is a single particle present at time ε. Its position is −a + η
√
ε, where η is a

centered Gaussian of variance 2. Hence, by the Markov property,

P
(
Z|b = 0

)
= E

[
z(t, x − η

√
ε; a)

]
dx =

[
z(t, x; a) + ε∂2

x z(t, x; a) + o(ε)
]

dx.

(2.3)

When b = 1, there are κ particles (with κ > 1 random) with positions −a +√
εη1, . . . ,−a +

√
εηκ . We further condition on the event κ = k. Then η = (η1, . . . , ηk) are

the scaled positions of a time-ε BBM started from 0 and conditioned to have a singe branch-
ing event which produces k offspring. (In particular, each ηi is a centered Gaussian with
variance 2). As ε→ 0, η converges in ( joint) distribution to the positions at time 1 of the
particles of a BBM with a single branching event at a uniform time on [0, 1] that produces k
offspring. Conditioning onκ = k andη, for Z to occur we need the descendant-BBM generated
by one particle, say j, to satisfy the event defining

z
(
t, x −

√
εη j; a

)
= z(t, x; a) + O(

√
εη j).

Moreover, we need the descendant-BBMs generated by the remaining k − 1 particles to all lie
to the left of x − a at time t + ε. Recalling the solution H(t, x) to (1.5) and (1.6), the conditional
probability density that Z occurs is

pZ(t, x; a) =
k∑

j=1

z(t, x −
√
εη j; a)

∏
i 	= j

[
1 − H(t, x −

√
εηi)

]
.

Recall the exponent β from (1.1). We claim that

pZ(t, x; a) = kz(t, x; a)[1 − H(t, x)]k−1 + O
(
εβ/4k1+β/2 max{‖η‖∞, 1}

)
.

(2.4)

As a first step, note that 0 � H � 1 implies

pZ(t, x; a) = z(t, x; a)
k∑

j=1

∏
i 	= j

[
1 − H(t, x −

√
εηi)

]
+ O

(√
εk‖η‖∞

)
. (2.5)
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This error is smaller than that in (2.4) because εβ/4kβ/2 � ε1/2 when ε < 1. Next, we claim that∏
i 	= j

[
1 − H(t, x −

√
εηi)

]
= [1 − H(t, x)]k−1 + O

(
min

{√
εk‖η‖∞, 1

})
.

(2.6)

The upper bound of 1 on the error is clear, as both products lie in [0, 1]. To obtain the other
bound, we write H(t, x −√

εηi) = H(t, x) + O(
√
ε‖η‖∞). Supposing for simplicity that j = 1,

we use 0 � H � 1 and induct on the following:

k∏
i=2

[
1 − H(t, x −

√
εηi)

]
= [1 − H(t, x)]

k∏
i=3

[
1 − H(t, x −

√
εηi)

]
+ O(

√
ε‖η‖∞).

We now record an elementary bound for all a, b > 0 and γ ∈ (0, 1):

min{ab, 1} � min{a, 1} max{b, 1} � aγ max{b, 1}.

Taking a =
√
εk, b = ‖η‖∞, and γ = β/2, we find

min
{√

εk‖η‖∞, 1
}
� εβ/4kβ/2 max{‖η‖∞, 1}.

Summing over j in (2.6) and using (2.5), we obtain (2.4).
We now take expectation over η in (2.4). The maximum of k Gaussians is bounded in

expectation by
√

log k, so Eη

(
k1+β/2 max{‖η‖∞, 1}

)
� Ck1+β and

P
(
Z|b = 1,κ = k

)
= Eη pZ(t, x; a) dx

=
[
kz(t, x; a)[1 − H(t, x)]k−1 + O

(
εβ/4k1+β

)]
dx. (2.7)

We can now take expectation over b and κ. We have carefully tracked the k-dependence of the
error because we only assume a limited number of moments on κ. Gathering (2.2), (2.3), and
(2.7), the moment bound (1.1) yields

z(t + ε, x; a) = (1 − ε)
[
z(t, x; a) + ε∂2

x z(t, x; a)
]

+ εE
[
κz(t, x; a)[1 − H(t, x)]κ−1 + O(εβ/4

κ
1+β)

]
+ o(ε)

= (1 − ε)z(t, x; a) + ε∂2
x z(t, x; a) + εz(t, x; a)

∑
k�2

pkk[1 − H(t, x)]k−1 + o(ε).

Taking ε ↘ 0 and recalling the definition of f in (1.7), we obtain

∂tz(t, x; a) = ∂2
x z(t, x; a) + f ′(H(t, x))z(t, x; a), z(0, x; a) = δ(x + a). (2.8)

By the definition of z,

P (x1(t) − x2(t) > a) =
∫
R

z(t, x; a) dx.

We observe that a is arbitrary; in particular, we could allow it to depend on t. We do not consider
such dependence, however. Instead, we fix a and take t →∞ to obtain

P(d12 > a) = lim
t→∞

∫
R

z(t, x; a) dx. (2.9)
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To understand the long-time behavior of z, we observe that (2.8) resembles a derivative
of the Fisher–KPP equation (1.5). Indeed, ∂xH solves (2.8) with a different initial condition.
Bramson showed that H converges to a traveling wave in the m-moving frame. If we apply
standard parabolic estimates to (1.8), we can conclude that

∂xH(t, x + m(t)) → U′(x − x0)

uniformly in x ∈ R as t →∞. This suggests that U′(x − x0) is a stable steady state at t = ∞ of
(2.8) in the moving frame. Since (2.8) is linear, we might expect that z converges to a multiple
of this state in the moving frame. The methods of [10, 19] can be adapted to confirm these
heuristics:

Proposition 2.1 For each a > 0, there exists M(a) > 0 such that

z(t, x + m(t); a) →−M(a)U′(x − x0) (2.10)

uniformly in x ∈ R as t →∞.

The proof of this proposition is very similar to that of theorem 1.1 in [19]. There, the
authors analyze the dynamics of the leading tail of a solution to the Fisher–KPP equation.
They show that this tail converges to a multiple of xe−λ∗x in an appropriate regime. In light
of (1.10), this multiple determines the constant shift x∞ in theorem 1.1 of [19]; in the present
notation, this is the shift s[φ] in (1.13). In our case, the methods of [19] (particularly lemma 5.1)
can be adapted to show that the leading tail of z converges to a multiple of the tail of U′. The
arguments of section 4 in [19] then imply the full convergence in proposition 2.1. This adapted
proof contains no new ideas, so we omit it. We also note that the convergence in proposition 2.1
can be extended to a wider class of initial data for z, e.g. to compactly-supported non-negative
measures of finite mass.

To use (2.10) in (2.9), we need to commute the long-time limit of the spatial integral.

Lemma 2.2 For all a > 0,

lim
t→∞

∫
R

z(t, x + m(t); a) dx = M(a). (2.11)

Proof. Throughout, we fix a > 0. By the comparison principle and (2.8), z � 0. Since (2.10)
is uniform in x, it suffices to show that no mass of z escapes to infinity. Recalling the definition
(2.1) and (1.4), we have

z(t, x; a) � −∂xH(t, x + a).

Hence for L > 0, (1.8) and (1.10) imply that∫ ∞

L
z(t, x + m(t); a) dx � H(t, L + m(t) + a) � 2U(L + a − x0) � C(a)e−cL,

provided t is sufficiently large (depending on L and a). Similarly, (1.10) yields∫ −L

−∞
z(t, x + m(t); a) dx � C(a)e−cL
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when t is large. Therefore (2.10) implies

lim
t→∞

∫
R

z(t, x + m(t); a) dx = lim
t→∞

∫ L

−L
z(t, x + m(t); a) dx + O

(
e−cL

)
= M(a) [U(−L − x0) − U(L − x0)] + O

(
e−cL

)
= M(a) + O

(
e−cL

)
,

where we have again used (1.10). Since L > 0 was arbitrary, (2.11) follows. �
Combining (2.9) and (2.11), we obtain P(d12 > a) = M(a). Hence proposition 2.1 becomes

z(t, x + m(t); a) →−P(d12 > a)U′(x − x0) as t →∞ (2.12)

uniformly in x ∈ R. We will use this long-time limit to determine the the dependence of
P(d12 > a) on a. First, however, we describe a connection with the Bramson shift introduced
in (1.13).

2.2. The distribution of d12 through Bramson shifts

As noted above, (2.8) appears to be a derivative of (1.5). Precisely, it is the derivative with
respect to a certain perturbation of the initial data 1(−∞,0]. Consider the initial condition

u(0, x; y, a) = 1(−∞,0](x) − 1(y−a,−a](x) (2.13)

parameterized by y < 0 and a > 0. We emphasize that y is negative, so y − a < −a. We think
of a as fixed, but allow y to vary. Note that

u(0, x; 0, a) = 1(−∞,0](x) (2.14)

for all a > 0 and

∂yu(0, x; y, a) = δ(x − y + a) (2.15)

in the distributional sense. Now let u(t, x; y, a) denote the solution to the Fisher–KPP
equation (1.11) with initial data (2.13). In particular, (1.6) and (2.14) imply that

u(t, x; 0, a) = H(t, x) (2.16)

for all a > 0.
Now, standard parabolic estimates imply that u is differentiable in y and that its derivative

satisfies the appropriate derivative of (1.11). That is, if

z(t, x; y, a) = ∂yu(t, x; y, a), (2.17)

then (2.15) yields

∂tz(t, x; y, a) = ∂2
x z(t, x; y, a) + f ′ (u(t, x; y, a)) z(t, x; y, a),

z(0, x; y, a) = δ(x − y + a).

In particular, (2.16) and uniqueness imply that z(t, x; 0, a) = z(t, x; a). That is, the distribution
of x1(t) − x2(t) can be expressed via derivatives of the Fisher–KPP equation with respect to its
initial data. This connection allows us to relate the law of d12 to the Bramson shift in (1.13).
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Recall that for each fixed y and a, (1.13) implies that

u(t, x + m(t); y, a) → U(x − s(y, a)) (2.18)

uniformly in x as t →∞, where s(y, a) = s [u(0, x; y, a)] is the Bramson shift associated
with the initial condition u(0, x; y, a). This is well defined because u(0, x; y, a) is bounded,
nonnegative, and compactly supported on the right. Let us formally suppose that s is
differentiable in y and that ∂y commutes with the long-time limit (2.18). Then (2.17) and (2.18)
imply

lim
t→∞

z(t, x + m(t); a) = lim
t→∞

∂yu(t, x + m(t); y, a)
∣∣∣
y=0

= ∂y

(
lim
t→∞

u(t, x + m(t); y, a)
)∣∣∣

y=0

= ∂yU(x − s(y, a))|y=0 = −∂ys(0, a)U′(x − x0).

In the last line, we used the identity s(0, a) = x0, which follows from (1.14) and (2.14).
Comparing with (2.12), we see that

P(d12 > a) = ∂ys(0, a). (2.19)

That is, the gap between the two leaders in the BBM extremal process is encoded in the
Bramson shifts s(y, a).

This can be seen directly from ideas of [6, section 3] and [18, section 1]. Using (2.13) and
McKean’s identity [17], we have

1 − u(t, x + m(t); y, a) = E

[
n(t)∏
k=1

(1 − u(0, x + m(t) − xk(t); y, a))

]

= P [x + m(t) − xk(t) ∈ (y − a,−a] ∪ (0,∞) for all 1 � k � n(t)]

= P [xk(t) − m(t) ∈ [x + a, x + a − y) ∪ (−∞, x) for all 1 � k � n(t)] .

Taking the limit t →∞, (2.18) and (1.19) imply

1 − U(x − s(y, a)) = P
[
χk ∈ [x + a, x + a + |y|) ∪ (−∞, x) for all k � 1

]
= P [χ1 < x] + P

[
χ1 ∈ [x + a, x + a + |y|), χ2 < x

]
+ O(y2),

(2.20)

where we have used χ1 � χ2 � . . . and y < 0. The O(y2) term contains all events with
multiple particles in [x + a, x + a + |y|). The first term in the right side of (2.20) is
1 − U(x − x0) = 1 − U(x − s(0, a)). Moving this term to the left side and dividing by |y|, we
obtain in the y ↗ 0 limit

∂yU(x − s(y, a))|y=0 = −∂ys(0, a)U′(x − x0) = lim
y↗0

P
[
χ1 ∈ [x + a, x + a + |y|), χ2 < x

]
|y|

=
d

dx
P [χ1 < x + a, d12 > a] .

Integrating over x, we recover (2.19). For other results of a similar flavor, see [6, 18].
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2.3. Long-time asymptotics for z

The previous subsection puts our problem in a broader context, but it is not essential to our proof
of theorem 1.1. Instead, we can proceed directly from (2.12), which states that P(d12 > a) is
the coefficient of −U′ in the long-time limit of z in the m-moving frame. We must determine
the dependence of this coefficient on a as a →∞. To do so, it helps to shift by m and remove
the exponential decay of U′. We define

r(t, x) = (t + 1)−3/2eλ∗(x+a)z(t, m(t) + x; a). (2.21)

The factor of (t + 1)−3/2 above is a matter of convenience which will be explained below.
Of course, r depends on a as well, but explicit dependence will become cumbersome in the
remainder of the paper, so we drop it.

Using (1.2) and (1.3), we see that the function r(t, x) satisfies

∂tr = ∂2
x r − 3

2λ∗(t + 1)
∂xr −

[
N − 1 − f ′ (H(t, m(t) + x))

]
r, r(0, x) = δ(x + a).

(2.22)

Recalling the decomposition (1.17) of f , we see that the coefficient of the reaction term is
−F′(H ). We introduce the notation

V(t, x) = F′(H(t, m(t) + x)) (2.23)

and write (2.22) as

∂tr = ∂2
x r − 3

2λ∗(t + 1)
∂xr − V(t, x)r, r(0, x) = δ(x + a). (2.24)

By (1.18), 0 < V < N and

V(t, x) → N as x →−∞,

V(t, x) → 0 as x →+∞.

Moreover,

V(t, x) → V(∞, x) = F′ (U(x − x0)) as t →∞. (2.25)

The potential V largely confines r to R+. Since the drift term in (2.24) decays in time,
we can thus view (2.24) as a heat equation on R+ with (approximate) Dirichlet conditions at
x = 0. It follows that the dynamics of r are largely driven at the diffusive scale x �

√
t, by

which we mean c
√

t � x � C
√

t. In particular, at that scale we should expect r to resemble a
multiple of the fundamental solution to the Dirichlet heat equation on R+:

r(t, x) ∼ M̃(a)
x

(t + 1)3/2
e−x2/4(t+1) for t � 1, x �

√
t (2.26)

and some M̃(a) > 0.
Now, f ∈ C1, so (1.9) implies that U ∈ C3, and the asymptotics (1.10) are actually valid in

C3. In particular, we can differentiate (1.10) to obtain:

U′(x − x0) ∼ −λ∗xe−λ∗(x−x0) as x →∞,

U′(x − x0) = −Aγ∗eγ∗(x−x0) + O
(
e(γ∗+c)x

)
as x →−∞.

(2.27)
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Thus, if x is large but fixed, (2.10), (2.21), and (2.27) suggest that

r(t, x) ≈ λ∗eλ∗(x0+a)
P(d12 > a)

x
(t + 1)3/2

as t →∞. (2.28)

Comparing (2.26) and (2.28), we expect

M̃(a) = λ∗e
λ∗(x0+a)

P(d12 > a).

Once again, the methods of [19, section 5] confirm these calculations:

Proposition 2.3 For each a > 0 and γ ∈
(
0, 1/2

)
, there exist C(a, γ) > 0 and h : [0,∞) →

R such that for all t � 0 and x ∈ R,

r(t, x) =
[
λ∗eλ∗(x0+a)

P(d12 > a) + h(t)
] x+

(t + 1)3/2
e−x2/4(t+1) + R(t, x) (2.29)

with

|R(t, x)| � C(a, γ)(t + 1)−(3/2−γ)e−x2/[6(t+1)] and h(t) → 0 as t →∞.

(2.30)

We have used the notation x+ = max{x, 0} in (2.29). This proposition is very similar to
lemma 5.1 in [19], so we omit the proof.

2.4. A moment computation

By (2.19) and (2.29), it now suffices to understand the long-time dynamics of r on the diffusive
scale. We capture these dynamics in a certain moment of r. An elementary computation using
(2.29) and (2.30) shows that

P(d12 > a) =
1

2λ∗
√
π

e−λ∗(a+x0) lim
t→∞

∫ ∞

0
xr(t, x) dx. (2.31)

This identity is the reason for introducing the (t + 1)−3/2 factor in (2.21). It is convenient to
express this moment in terms of the function

ψ(x) = −U′
0(x)eλ∗x ,

where we have introduced the notation

U0(x) = U(x − x0) (2.32)

for the limiting shift of the front U. The function ψ is a positive time-independent solution to
the leading-order part of (2.24):

0 = ψ′′ − V(∞, x)ψ = ψ′′ − F′(U0(x))ψ. (2.33)

Here we have used (2.25) and (2.32) to express the long-time limit of the potential V introduced
in (2.23). Recalling that γ∗ + λ∗ =

√
N, (2.27) implies that
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ψ(x) ∼ λ∗e
λ∗x0 x as x →+∞,

ψ(x) = Aγ∗e−γ∗x0e
√

Nx + O
(

e(
√

N+c)x
)

as x →−∞
(2.34)

for some c > 0. For future use, we also record the asymptotics of ψ′. Recalling that the
asymptotics in (1.10) are valid in C3, we can differentiate (2.34) to obtain

ψ′(x) ∼ λ∗eλ∗x0 as x →+∞,

ψ′(x) = Aγ∗
√

Ne−γ∗x0e
√

Nx + O
(

e(
√

N+c)x
)

as x →−∞.
(2.35)

It follows from (2.29), (2.30), and (2.34) that (2.31) can be written as

P(d12 > a) =
1

2λ2
∗
√
π

e−λ∗(a+2x0) lim
t→+∞

I(t), (2.36)

where

I(t) =
∫
R

ψ(x)r(t, x) dx. (2.37)

This completes our series of reductions: to control P(d12 > a), we determine the dependence
of I(∞) on a.

Motivated by (2.25), we write (2.24) as

∂tr = ∂2
x r − 3

2λ∗(t + 1)
∂xr − V(∞, x)r + E(t, x)r, r(0, x) = δ(x + a),

(2.38)

with an error term

E(t, x) = V(∞, x) − V(t, x). (2.39)

If we multiply (2.38) by ψ and integrate, (2.33) yields

dI
dt

(t) =
3

2λ∗(t + 1)

∫
R

r(t, x)ψ′(x) dx +

∫
R

E(t, x)r(t, x)ψ(x) dx. (2.40)

We note that we can exchange the time derivative and the spatial integral because z is smooth
and rapidly decaying in space.

We will see below that the second term in the right side of (2.40) is, indeed, an error term,
so we focus on the first term. To this end, we describe the dynamics of (2.38) qualitatively,
ignoring the error term Er. First note that the mass of the solution on R− will decay exponen-
tially in time under (2.38), due to absorption from the term −F′(U0)r. After all, (1.18) implies
F′(U0) > 0 and, in particular, F′(1) = N. However, mass that escapes to R+ experiences
almost no absorption because F′(0) = 0. This ‘fugitive’ mass diffuses, but gets absorbed when-
ever it returns to R−. Thus, as noted previously, (2.38) acts much like the heat equation on R+

with a Dirichlet boundary condition at x = 0. That said, there is initially no mass on R+, so
we must include an initial time layer during which the mass escapes from R− to R+.

The initial condition r(0, x) = δ(x + a) is ‘deep in the large absorption territory,’ and takes
a while to diffuse to R+. If we neglect the drift in the right side of (2.38), then, in the absence
of absorption, the proportion of mass that diffuses from position −a to R+ at time t is roughly
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e−a2/(4t). Attrition by the absorbing potential approximately reduces this by the factor e−Nt.
Thus to leading order, the mass that escapes to R+ at time t is

exp
(
−Nt − a2/(4t)

)
.

Therefore, the mass flux into R+ is maximized at the time

t∗ =
a

2
√

N
, (2.41)

and this is, roughly, the size of the initial time layer.
Let us now use this heuristic to approximate the first term in the right side of (2.40):

3
2λ∗(t + 1)

∫
R

r(t, x)ψ′(x) dx =
3

2λ∗(t + 1)

∫
R

ψ′(x)
ψ(x)

ψ(x)r(t, x) dx.

We see from (2.34) and (2.35) that

ψ′(x)
ψ(x)

∼

⎧⎪⎨⎪⎩
√

N for x � −1,

1
x

for x � 1.

The heuristic argument above suggests that most of the mass lies inR− until t∗, when it transfers
to R+. Therefore, we expect that∫

R

ψ′(x)
ψ(x)

ψ(x)r(t, x) dx ≈
√

N
∫
R

ψ(x)r(t, x) dx for t < t∗.

After t∗, the mass of r will largely stay in R+, and will spread to the diffusive scale x �
√

t.
Since ψ′

ψ
≈ 1

x , we should have∫
R

ψ′(x)
ψ(x)

ψ(x)r(t, x) dx �
∫
R

ψ(x)r(t, x) dx for t > t∗.

Thus, I(t) satisfies

dI
dt

(t) ≈ 3
√

N
2λ∗(t + 1)

I(t) for t < t∗,
dI
dt

(t) ≈ 0 for t > t∗.

Integrating, we find

lim
t→+∞

I(t) ≈ t3
√

N/(2λ∗)
∗ I(0) =

(
a

2
√

N

)3
√

N/(2λ∗)

I(0) (2.42)

when a � 1. In the remainder of this paper, we justify (2.42).

Proposition 2.4 We have

lim
t→+∞

I(t) =

(
a

2
√

N

)3
√

N/(2λ∗) [
1 + O

(
a−1/2

)] ∫
R

ψ(x)r(0, x) dx as a →+∞.

(2.43)
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Theorem 1.1 is a consequence of proposition 2.4. Indeed, using (2.34), we see that the
integral in the right side of (2.43) is∫

R

ψ(x)r(0, x) dx = ψ(−a) = Aγ∗e−γ∗x0e−
√

Na
(
1 + o(e−ca)

)
(2.44)

for some c > 0. We then use (2.36) to write

P(d12 > a) =
1

2λ2
∗
√
π

e−λ∗(a+2x0) lim
t→+∞

I(t)

=
Aγ∗

2λ2
∗
√
π

e−(2λ∗+γ∗)x0

(
a

2
√

N

)3
√

N/(2λ∗)

e−(λ∗+
√

N)a
[
1 + O

(
a−1/2

)] (
1 + o(e−ca)

)
=

Aγ∗
2λ2

∗
√
π

(
a

2
√

N

)3
√

N/(2λ∗)

e−(
√

N+
√

N−1)(a+x0)
[
1 + O

(
a−1/2

)]
.

This finishes the proof of theorem 1.1.
The rest of the paper contains the proof of proposition 2.4. The strategy is to estimate the

ratio İ(t)/I(t) on various times scales. Lemmas 4.1, 5.1, and 6.1 below express these estimates.
At the end of section 6, we collect these results and prove proposition 2.4. Because we are
interested in the regime a →∞, we always implicitly assume that a � 1.

3. The time scales and the correctors

We now turn to the proof of proposition 2.4. In this section, we discuss the time scales on
which various approximations to the dynamics of (2.24) should be valid, and introduce the
corresponding ‘scattering decomposition’ of the solution.

3.1. The time scales

Let us first explain the time scales on which various effects will dominate. Our previous rea-
soning indicates that at times t < t∗, the heat equation has not had enough time to diffuse much
mass from the initial position x = −a to x � 0. The evolution of r(t, x), the solution to (2.24),
is thus dominated by its homogeneous part

∂t p = ∂2
x p− 3

2λ∗(t + 1)
∂x p− Np, p(0, x) = δ(x + a), (3.1)

as F′(1) = N. Its explicit solution is

p(t, x) =
1√
4πt

exp

{
−Nt − 1

4t

[
x + a − 3

2λ∗
log(t + 1)

]2
}
. (3.2)

The corrector

q(t, x) = r(t, x) − p(t, x)

solves

∂tq = ∂2
x q − 3

2λ∗(t + 1)
∂xq − V(t, x)q + (N − V(t, x))p, q(0, x) = 0, (3.3)
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recalling that

V(t, x) = F′ (H(t, x + m(t))) .

Since F′(u) � N by (1.18), V � N. Applying the comparison principle to (3.3), we see that

q(t, x) � 0. (3.4)

We view (2.24) as a perturbation of the absorbing heat equation (3.1), so that p(t, x) repre-
sents the free evolution and q(t, x) accounts for the interaction with the potential V(t, x). The
role of p is to transport the mass from x = −a to the half-lineR+, and the role of q is to account
for this escaped mass as t →∞. Indeed, we will show that

I(t) =
∫
R

r(t, x)ψ(x) dx ≈
∫
R

p(t, x)ψ(x) dx for t � t∗

and

I(t) =
∫
R

r(t, x)ψ(x) dx ≈
∫
R

q(t, x)ψ(x) dx for t � t∗.

In constructing our time scales, we must also consider the forcing term (N − V)p in (3.3).
In particular, we study its moment contribution∫

R

(N − V(t, x))ψ(x)p(t, x) dx. (3.5)

To understand the time scales on which it may potentially play a role, note that the first two
terms in the integrand decay on the left: ψ(x) has the asymptotic behavior as in (2.34), and the
first factor is controlled by the following lemma.

Lemma 3.1 There exist B > 0 and c > 0 depending only on f such that

0 � N − V(t, x) � min {Beγ∗x , N} and 0 � V(t, x) � min
{

Be−cx , N
}
(3.6)

for all t � 0 and x ∈ R.

Proof. For t > 0, define the shift m̃(t) by

H(t, m̃(t)) = U0(0).

This is well-defined and continuous because H(t, ·) strictly decreases from 1 to 0 and H is
continuous when t > 0. By theorem 12 in [14],

U0(x) � H(t, x + m̃(t)) � 1 for all t > 0 and x � 0 (3.7)

and

0 � H(t, x + m̃(t)) � U0(x) for all t > 0 and x � 0. (3.8)

Bramson’s work [4, 5] implies that m̃(t) − m(t) → 0 as t →∞. Using (1.10) and (3.7), we find

0 � 1 − H(t, x + m(t)) � min {Ceγ∗x, 1} for all t � 0 and x ∈ R (3.9)
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for some C depending only on f . Similarly, (1.10) and (3.8) imply

0 � H(t, x + m(t)) � min
{

Ce−λ∗x/2, 1
}

for all t � 0 and x ∈ R. (3.10)

Now, (1.1) and (1.7) imply that f is C2 away from 0 and C1,β near 0. The decomposition
(1.17) implies the same regularity for F. Using the definition (2.23) of V , the first bound in
(3.6) follows from (1.18), (3.9), and F′ ∈ C1([1/2, 1]). The second bound in (3.6) follows from
(1.18), (3.10), and F′ ∈ Cβ([0, 1]). �

To understand the spatial decay of p(t, x), it helps to write it as

p(t, x) = Λ(t; a)e−ax/(2t)g(t, x) (3.11)

with the factor

Λ(t; a) =
(t + 1)3a/(4λ∗t)

√
4πt

e−Nt−a2/(4t) (3.12)

and the re-centered Gaussian

g(t, x) = exp

{
− 1

4t

[
x − 3

2λ∗
log(t + 1)

]2

(3.13)

Combining (2.34), (3.6) and (3.11), we see that it is straightforward to control the spatial
decay of the integrand in (3.5) as x →−∞ for times t such that

γ∗ +
√

N >
a
2t

,

i.e.

t >
a

2(2
√

N −
√

N − 1)
.

Accordingly, we fix

ξ− ∈
(

1

2(2
√

N −
√

N − 1)
,

1

2
√

N

)
, t− = ξ−a.

Let us decompose the solution to (3.3) as

q = qe + qm,

where qe is forced on the time interval [0, t−] and qm on [t−,∞):

∂tqe = ∂2
x qe −

3
2λ∗(t + 1)

∂xqe − V(t, x)qe + (N − V(t, x))1[0,t−](t)p (3.14)

and

∂tqm = ∂2
x qm − 3

2λ∗(t + 1)
∂xqm − V(t, x)qm + (N − V(t, x))1[t−,∞)(t)p,

(3.15)

with qe(0, ·) = qm(0, ·) = 0.
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As we have discussed, the product (N − V )p is very small for t � t∗, and t− � t∗ if a � 1.
It follows that qe should never form a significant part of r, and we think of it as error. In
contrast, qm is eventually the principal part of r, so we view it as the main part of q.

Although qe should be irrelevant, it is challenging to estimate. We introduced the correc-
tor q because it is easier to analyze the long-time behavior of adjoint-weighted mass which
begins in R+, rather than deep in R−. As we argue above, the adjoint-weighted forcing
(N − V )ψp for qm is concentrated on R+. However, this is not the case for qe, which is still
primarily forced deep in R−. We appear to be no better off than when we started with a point
mass at −a! And indeed, we will be forced to control qe using a further corrector.

However, qe is driven by the forcing (N − V )p, which is far smaller than p due to lemma
3.1. It follows that qe is much smaller than the original solution r. We can therefore be less
precise in our estimation of qe. This wiggle room saves us from a futile infinite descent of
correctors. Instead, two steps suffice. The details are rather technical, so we defer them to
section 7. There, we show:

Lemma 3.2 There exist C, c > 0 independent of a and t such that for all a � 1 and t � 0:∫
R

ψ(x)qe(t, x) dx � Ce−(
√

N+c)a,∫
R

ψ′(x)qe(t, x) dx � C√
t + 1

e−(
√

N+c)a,∫
R

ψ(x) |E(t, x)| qe(t, x) dx � C
(t + 1)2

e−(
√

N+c)a.

(We note thatψ andψ′ are non-negative, so the first two bounds are effective.) These bounds
feature an extra factor of e−ca relative to the main term, which is of order e−

√
Na; cf (2.44). This

justifies our treatment of qe as error.
To prove lemma 3.2, we will make use of the following result, which will also be useful in

subsequent sections:

Lemma 3.3 Let w(t, x) satisfy

∂tw � ∂2
x w − 3

2λ∗(t + 1)
∂xw − α21(−∞,−K)(x)w, t > s, x ∈ R, (3.16)

w(s, x) �

⎧⎨⎩e−κ−x for x < 0,

e−κ+xe−x2/(8s) for x � 0,
(3.17)

for someα > 0, K � 0, κ− < α, and κ+ > 0. Then there exists a constant C > 0 that depends
on α, K, κ−, and λ∗ but not on s or κ+ such that for all t � s, we have∫

R

ψ(x)w(t, x) dx � C max{κ−2
+ , 1}, (3.18)∫

R

ψ′(x)w(t, x) dx � C max{κ−2
+ , 1}(t − s + 1)−1/2, (3.19)∫

R

|E(t, x)|ψ(x)w(t, x) dx � C max{κ−2
+ , 1}(t + 1)−1/2(t − s + 1)−3/2. (3.20)

In particular, this lemma allows us to control the long-time behavior of the integrals in
lemma 3.2, because qe eventually satisfies the hypotheses of lemma 3.3 with an additional
factor of e−(

√
N+c)a.
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We prove lemma 3.3 in appendix B, but offer a heuristic explanation here. Roughly speak-
ing, we may think of (3.16) as the heat equation on the half-line with Dirichlet boundary
conditions, so that

w(t, x) ∼ x
(t − s + 1)3/2

e−x2/(4(t−s+1))
∫ ∞

0
xw(s, x) dx

� C
κ2
+

x
(t − s + 1)3/2

e−x2/(4(t−s+1)). (3.21)

The bounds in (3.18)–(3.20) come from the right side of (3.21).
Going forward, we separately consider three regimes delimited by t∗ from (2.41) and a:

the early times 0 � t � t∗ in section 4, the middle times t∗ � t � a in section 5, and the late
times t � a in section 6. The cutoff a is more or less arbitrary: it simply allows us to assume
that t = O(a) in the middle regime. As stated above, proposition 2.4 and theorem 1.1 are
immediate consequences of lemmas 4.1, 5.1, and 6.1.

4. The early times

In this section, we start analyzing the contributions of p and q = qm + qe to I(t) and İ(t). We
begin with the early times t � t∗. The terms involving the ‘early’ corrector qe have already
been bounded in lemma 3.2 and will turn out to be irrelevant—they are much smaller than
the corresponding contributions of p(t, x) in lemma 4.2 below. It remains to estimate the
terms involving p(t, x) and qm(t, x). We will see that the terms involving p dominate for nearly
the entire interval t ∈ [0, t∗] (in particular, qm ≡ 0 for t � t−). However, the contributions of p
and qm become comparable when t∗ − t = O

(√
a
)
.

The main result of this section is the following lemma.

Lemma 4.1 We have

İ(t)
I(t)

=
3
√

N
2λ∗(t + 1)

[
1 + O

(
e−

c(t∗−t)2
a

)]
(4.1)

for all t ∈ [0, t∗].

We note that the error term in (4.1) is small over most of the time period [t, t∗], but it becomes
order 1 when t∗ − t = O

(√
a
)
. After integration, lemma 4.1 implies that

log
I(t∗)
I(0)

=
3
√

N
2λ∗

log(t∗ + 1) + O(a−1/2) =
3
√

N
2λ∗

log
a

2
√

N
+ O(a−1/2),

(4.2)

where the error term is dominated by the region t∗ − t = O
(√

a
)
.

4.1. The free contribution

We first look at the putative main term in this period.
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Lemma 4.2 There exist c > 0 and C > 0 so that for all t ∈ [t−, t∗], we have the asymptotics

∫
R

ψ(x)p(t, x) dx = Aγ∗e
−γ∗x0 (t + 1)3

√
N/(2λ∗)e−

√
Na

[
1 + O

(
e−

c(t∗−t)2
a

)]
(4.3)

and ∫
R

ψ′(x)p(t, x) dx =
√

NAγ∗e
−γ∗x0 (t + 1)3

√
N/(2λ∗)e−

√
Na

[
1 + O

(
e−

c(t∗−t)2
a

)]
,

(4.4)

as well as the error estimate∫
R

|E(t, x)|p(t, x)ψ(x) dx � C
t + 1

e−
c(t∗−t)2

a

∫
R

ψ′(x)p(t, x) dx. (4.5)

Moreover, for all t ∈ [t−, t∗],

I(t) �
∫
R

ψ(x)p(t, x) dx � c(t + 1)3
√

N/(2λ∗)e−
√

Na. (4.6)

The first estimate in this lemma permits
∫
R
ψp to reach 0 when t∗ − t = O

(√
a
)
, which

could make İ(t)/I(t) very large. The lower bound (4.6) ensures that this does not occur.

Proof. To prove (4.3), let us first re-write p(t, x) in a more convenient form, starting from
(3.2):

p(t, x) =
1√
4πt

exp

{
−Nt − 1

4t

[
x + a − 3

2λ∗
log(t + 1)

]2
}

=
1√
4πt

exp

{
− 1

4t

[
x + a − 3

2λ∗
log(t + 1) − 2

√
Nt

]2

−
√

N

[
x + a − 3

2λ∗
log(t + 1)

]}

=
1√
4πt

e−a
√

N(t + 1)3
√

N/(2λ∗)e−
√

Nx exp

{
− 1

4t
[x − ν(t)]2

}
.

where we used the notation

ν(t) = −a +
3

2λ∗
log(t + 1) + 2

√
Nt.

It follows that∫
R

ψ(x)p(t, x) dx = e−
√

Na(t + 1)3
√

N/(2λ∗)
∫
R

ζ(x) exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

,

(4.7)

with

ζ(x) = ψ(x) exp
(
−
√

Nx
)
.
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Note that (2.34) gives

ζ(x) = Aγ∗e−γ∗x01R−(x) + O
(

e−c|x|
)
. (4.8)

Note also that

ν(t) = −a +
3

2λ∗
log(t + 1) + 2

√
N(t∗ − (t∗ − t)) � −2

√
N(t∗ − t) + C log a.

(4.9)

When t∗ − t � √
a, (4.3) follows simply from 0 � ζ � C, which is a consequence of (4.8).

We may thus assume that 0 � t � t∗ −
√

a. Since log a �
√

a when a is large, we can in turn
assume that (4.9) yields

ν(t) � −c(t∗ − t). (4.10)

Using (4.8) and (4.9), we can write the integral in the right side of (4.7) as∫
R

ζ(x) exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

= Aγ∗e
−γ∗x0

∫
R−

exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

+ O

(∫
R

e−c|x| exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

)
. (4.11)

We can write the main term on the right side as∫
R−

exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

= 1 −
∫
R+

exp

{
− 1

4t

[
x + |ν(t)|

]2
}

dx√
4πt

= 1 + O
(

e−ν(t)2/(4t)
)
= 1 + O

(
e−

c(t∗−t)2
a

)
.

(4.12)

We used (4.10) and t � a in the last step. To bound the error in (4.11), we break the integral at
the position ν(t)/2. For x � ν(t)/2 we write, on the one hand,∫ ν(t)/2

−∞
e−c|x| exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

� 1√
4πt

∫ ν(t)/2

−∞
ecx dx =

C√
t
ecν(t)/2

and, on the other hand,∫ ν(t)/2

−∞
e−c|x| exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

� ecν(t)/2
∫
R

exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

= ecν(t)/2.

Combining these two bounds gives∫ ν(t)/2

−∞
e−c|x| exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

� C√
1 + t

ecν(t)/2 � C√
1 + t

e−c(t∗−t)

� C√
1 + t

e−
c(t∗−t)2

a . (4.13)
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For the the region x � ν(t)/2 of the integral in the error term in (4.11), we have

∫ ∞

ν(t)/2
e−c|x| exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

� C√
t
e−ν(t)2/(16t) � C√

1 + t
e−

c(t∗−t)2
a .

(4.14)

In the last step, we wrote ν(t)2/(16t) � 1/(32t) + ν(t)2/(32t) and used

1√
t

exp

(
− 1

32t

)
� C√

t + 1
.

Now, (4.3) follows from (4.7), (4.11)–(4.14). The proof of (4.4) is identical: recalling (2.35),
we just need to use ζ̃(x) :=ψ′(x) exp(−

√
Nx) =

√
NAγ∗e−γ∗x01R−(x) + O

(
e−c|x|) in place of

(4.8).
We now turn to (4.5). We rely on a quantitative form of (1.8), which essentially follows

from theorem 1.3 in [20].

Lemma 4.3 There exist constants C > 0 and c > 0 such that

|H (t, x + m(t)) − U0(x)| � Ce−c|x|
√

t + 1
for all (t, x) ∈ [0,∞) × R.

Recalling the definitions (2.39) of E(t, x) and (2.23) of V(t, x), and noting that F′ is Lipschitz,
we obtain

|E(t, x)| � C |H (t, x + m(t)) − U0(x)| � Ce−c|x|
√

t + 1
. (4.15)

In fact, [20] proves a bound with e−cx rather than e−c|x|, so the original estimate deterio-
rates as x →−∞. However, it is not difficult to improve the spatial dependence when x < 0.
To avoid cluttering the present argument, we prove lemma 4.3 in appendix C.

Using (4.15) in (4.5) and recalling that ζ(x) � C, we find∫
R

|E(t, x)|ψ(x)p(t, x) dx � C√
t + 1

e−
√

Na(t + 1)3
√

N/(2λ∗)

×
∫
R

e−c|x| exp

{
− 1

4t

[
x + |ν(t)|

]2
}

dx√
4πt

.

We estimated this integral above, assuming t∗ − t � √
a. Using (4.13) and (4.14), we obtain

(4.5) for such times. When t∗ − t � √
a, we can bound the Gaussian in the above integral by

1 to obtain (4.5).
To obtain the lower bound in (4.6), we first recall (3.4), which implies r � p and I �

∫
R
ψp.

Next, we note that ζ � c1R− . So, (4.7) implies

I(t) �
∫
R

ψ(x)p(t, x) dx � c(t + 1)3
√

N/(2λ∗)e−
√

Na ×
∫
R−

exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

.

(4.16)

Changing variables via η = x−ν(t)√
t , we have
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∫
R−

exp

{
− 1

4t
[x − ν(t)]2

}
dx√
4πt

=

∫ −ν(t)/
√

t

−∞
e−η2/4 dη√

4π
. (4.17)

By (4.9), for t � t−,

−ν(t)√
t
� −C log a√

a
� −1,

assuming a is large. In light of (4.16) and (4.17) yields

I(t) �
∫
R

ψ(x)p(t, x) dx � c(t + 1)3
√

N/(2λ∗)e−
√

Na.

This finishes the proof of lemma 4.2. �

4.2. The main corrector contribution

Next, we control the contributions of qm to I(t) and İ(t). We only need to consider t � t− as
qm ≡ 0 for t < t−.

Lemma 4.4 There exist c > 0 and C > 0 such that for all t ∈ [t−, t∗],∫
R

[ψ(x) + ψ′(x)]qm(t, x) dx � C(t + 1)3
√

N/(2λ∗)e−
√

Nae−
c(t∗−t)2

a (4.18)

and ∫
R

|E(t, x)|ψ(x)qm(t, x) dx � C
a

(t + 1)3
√

N/(2λ∗)e−
√

Nae−
c(t∗−t)2

a . (4.19)

Recall that qm satisfies (3.15):

∂tqm = ∂2
x qm − 3

2λ∗(t + 1)
∂xqm − V(t, x)qm + (N − V(t, x))1[t−,∞)(t)p, qm(0, · ) = 0.

We use the Duhamel formula

qm(t, x) =
∫ t

t−
qs(t, x) ds (4.20)

to control qm. Here, for s � t−, the function qs satisfies

∂tq
s = ∂2

x qs − 3
2λ∗(t + 1)

∂xqs − V(t, x)qs, t > s,

qs(s, x) = [N − V(s, x)] p(s, x).

(4.21)

We can control this for all t− � s � t.

Lemma 4.5 For all s � t− and t � s,∫
R

ψ(x)qs(t, x) dx � C
s2

a2
Λ(s; a),∫

R

ψ′(x)qs(t, x) dx � C
s2

a2
Λ(s; a)(t − s + 1)−1/2,∫

R

|E(t, x)|ψ(x)qs(t, x) dx � C
s2

a2
Λ(s; a)(t + 1)−1/2(t − s + 1)−3/2.

(4.22)
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Proof. We first get rid of the logarithmic term in (3.11) and (3.13). We claim that

p(s, x) = Λ(s; a)e−ax/(2s) exp

[
− 1

4s

(
x − 3

2λ∗
log(s + 1)

)2
]

� CΛ(s; a)e−ax/(2s) exp

(
− x2

8s

)
.

After all, an elementary study of the quadratic polynomial shows that for all α > 0 and
ε ∈ (0, 1), there there exists C depending on α and ε such that

[z + α log(t + 1)]2

4t
� (1 − ε)

z2

4t
− C for all z ∈ R and t > 0. (4.23)

By lemma 3.1, we obtain

Λ(s; a)−1qs(s, x) = Λ(s; a)−1[N − V(s, x)]p(s, x) �

⎧⎪⎪⎨⎪⎪⎩
C exp

[
−
( a

2s
− γ∗

)
x
]

for x < 0,

C exp
(
−ax

2s

)
exp

(
− x2

8s

)
for x � 0.

(4.24)

Since s � t−, we have

a
2s

− γ∗ �
1

2ξ−
− γ∗=:κ− ∈

(
0,
√

N
)
. (4.25)

Let us fix α ∈
(
κ−,

√
N
)
. By lemma 3.1, there exists K � 0 such that

V(t, x) � α21(−∞,−K)(x). (4.26)

We see from (4.24) and (4.26) that qs/[CΛ(s; a)] satisfies the hypotheses of lemma 3.3,
with κ− given in (4.25) and κ+ = a/(2s). The bounds in (4.22) follow from lemma 3.3 and
s � t−. �

We can now control qm in terms of qs.

Proof of lemma 4.4. In light of (4.20), we need to integrate (4.22) over s ∈ [t−, t] for
t ∈ [t−, t∗]. For s � t−, the definition (3.12) of Λ implies

Λ(s; a) � C√
a

(s + 1)3a/(4λ∗s)e−aθ(s/a) (4.27)

for the rate function

θ(ξ) = Nξ +
1
4ξ

for ξ > 0. (4.28)

This strictly convex function is minimized at ξ∗ = 1/(2
√

N), so there exists c > 0 such that

θ(ξ) = Nξ +
1
4ξ

� θ(ξ∗) + c(ξ − ξ∗)
2 =

√
N + c(ξ − ξ∗)

2
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for all ξ ∈ (0, 1]. Therefore,

Λ(s; a) � C√
a

(s + 1)3a/(4λ∗s)e−
√

Na− c(t∗−s)2
a (4.29)

for all s ∈ [t−, a].
We next handle the polynomial prefactor, which we write as

(s + 1)3a/(4λ∗s) = exp

[
3a

4λ∗s
log(s + 1)

]
.

For any ε > 0, we employ the Peter–Paul inequality 2AB � εA2 + B2/ε:

a

(
1
s
− 1

t∗

)
log(s + 1) � C(t∗ − s) log a

a
� ε(t∗ − s)2

a
+

C2 log2 a
4εa

� ε(t∗ − s)2

a
+ Cε.

Exponentiating, this implies that

(s + 1)3a/(4λ∗s) � Cε(s + 1)3a/(4λ∗t∗)e
ε(t∗−s)2

a = Cε(s + 1)3
√

N/(2λ∗)e
ε(t∗−s)2

a .

(4.30)

Taking ε � 1, we can absorb the last factor into the Gaussian term in (4.29). Thus, (4.29) and
(4.30) yield

Λ(s; a) � C√
a

(s + 1)3
√

N/(2λ∗)e−
√

Na− c(t∗−s)2
a � C√

a
(s + 1)3

√
N/(2λ∗)e−

√
Na− c(t∗−s)2

a

(4.31)

for all s ∈ [t−, a]. We now combine (4.22) and (4.31) to control the contribution of qm. At these
times, we do not need the distinction between ψ and ψ′ in (4.22):∫

R

[ψ(x) + ψ′(x)]qm(t, x) dx =

∫ t

t−

∫
R

[ψ(x) + ψ′(x)]qs(t, x) dx ds � C
∫ t

t−
Λ(s; a) ds.

Using (4.31) and changing variables via η = t∗−s√
a , we obtain∫

R

[ψ(x) + ψ′(x)]qm(t, x) dx � C(t + 1)3
√

N/(2λ∗)e−
√

Na

∫ ∞

(t∗−t)/
√

a
e−cη2

dη

� C(t + 1)3
√

N/(2λ∗)e−
√

Nae−
c(t∗−t)2

a .

This is (4.18). Finally, the third line in (4.22) and (4.31) imply:∫
R

|E(t, x)|ψ(x)qm(t, x) dx � C
a

(t + 1)3
√

N/(2λ∗)e−
√

Na ×
∫ t

t−
(t − s + 1)−3/2e−c(t∗−s)2/a ds.

(4.32)

Since (|y|+ 1)−3/2 is integrable, the integral on the right side of (4.32) is bounded by
Ce−(t∗−t)2/a. Hence
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∫
R

|E(t, x)|ψ(x)qm(t, x) dx � C
a

(t + 1)3
√

N/(2λ∗)e−
√

Nae−c(t∗−t)2/a.

We have thus verified (4.19) and completed the proof of lemma 4.4. �

4.3. The proof of lemma 4.1

We wish to understand I(t) and İ(t) given by (2.37) and (2.40), respectively. Recall that
r = p+ qe + qm. We use lemmas 4.2, 3.2, and 4.4 to control the terms with p, qe, and qm,
respectively. These lemmas yield

I(t) =
∫
R

ψ(x)r(t, x) dx = Aγ∗e
−γ∗x0 (t + 1)3

√
N/(2λ∗) × e−

√
Na

[
1 + O

(
e−

c(t∗−t)2
a

)]
and

dI
dt

(t) =
3

2λ∗(t + 1)

∫
R

ψ′(x)r(t, x) dx +

∫
R

E(t, x)ψ(x)r(t, x) dx

=
3

2λ∗(t + 1)

√
NAγ∗e−γ∗x0 (t + 1)3

√
N/(2λ∗)e−

√
Na

[
1 + O

(
e−

c(t∗−t)2
a

)]
.

Finally, the lower bound (3.4) and (4.6) imply that İ(t)/I(t) does not become singular as
t → t∗. Therefore

İ(t)
I(t)

=
3
√

N
2λ∗(t + 1)

[
1 + O

(
e−

c(t∗−t)2
a

)]
when t ∈ [0, t∗], and the proof of lemma 4.1 is complete. �

5. Middle times

Here, we consider the time interval t ∈ [t∗, a]. Now, the story changes: the main corrector
qm(t, x) becomes the dominant term in I(t) and İ(t), though, of course, the homogeneous
term p(t, x) is comparable to it when t − t∗ = O

(√
a
)
. Again, lemma 3.2 shows that the

contributions of qe are negligible relative to those of qm in lemma 5.3 below.
We will prove the following.

Lemma 5.1 There exist c > 0 and C > 0 such that for all t ∈ [t∗, a],

|İ(t)|
I(t)

� C
a

[
(t − t∗ + 1)−1/2 + e−c(t−t∗)2/a

]
. (5.1)

After integration, lemma 5.1 implies that

log
I(a)
I(t∗)

= O(a−1/2). (5.2)
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5.1. The free contribution

We first bound the contributions of the free term p.

Lemma 5.2 There exist c > 0 and C > 0 such that for all t ∈ [t∗, a],∫
R

[ψ(x) + ψ′(x)]p(t, x) dx � C(t + 1)3
√

N/(2λ∗)e−
√

Nae−
c(t−t∗ )2

a

and ∫
R

|E(t, x)| p(t, x) dx � C
a

(t + 1)3
√

N/(2λ∗)e−
√

Nae−
c(t−t∗ )2

a .

Proof. Recall expression (3.11) for p(t, x). We consider (ψ + ψ′)p separately on R±. When
x � 0, we use ψ(x) + ψ′(x) � C exp(

√
Nx) from (2.34) and (2.35), and obtain

[ψ(x) + ψ′(x)]p(t, x) � CΛ(t; a) exp
[(√

N − a
2t

)
x
]

g(t, x) for x � 0.

(5.3)

Now t � t∗, so
√

N − a/(2t) � 0. Also, (3.13) shows that
∫
R

g(t, x) dx =
√

4πt. It follows that

∫
R−

[ψ(x) + ψ′(x)]p(t, x) dx � CΛ(t; a)
∫
R

g(t, x) dx � C
√

tΛ(t; a) for all t � t∗.

(5.4)

When x � 0, we use ψ(x) + ψ′(x) � C(1 + x) from (2.34) and (2.35), and t � a to obtain

[ψ(x) + ψ′(x)]p(t, x) � C(1 + x)Λ(t; a)e−ax/(2t) � C(1 + x)Λ(t; a)e−x/2 for x � 0.

(5.5)

So ∫
R+

[ψ(x) + ψ′(x)]p(t, x) dx � CΛ(t; a). (5.6)

We now turn to the error term with E. Recalling the bound (4.15) on E, (5.3) and (5.5) imply∫
R

|E(t, x)|ψ(x)p(t, x) dx � CΛ(t; a)√
t + 1

∫
R

e−c|x| dx � CΛ(t; a)√
t

. (5.7)

The lemma follows from (5.4), (5.6) and (5.7) using (4.29) with a/t � a/t∗ = 2
√

N. �

5.2. The main corrector contribution

We now estimate the contribution of qm(t, x) on the interval [t∗, a].

Lemma 5.3 There exist c > 0 and C > 0 such that for all t ∈ [t∗, a],
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∫
ψ′(x)qm(t, x) dx � C(t + 1)3

√
N/(2λ∗)e−

√
Na ×

[
(t − t∗ + 1)−1/2 + e−c(t−t∗)2/a

]
,

(5.8)∫
|E(t, x)|ψ(x)qm(t, x) dx � C

a
(t + 1)3

√
N/(2λ∗)e−

√
Na ×

[
(t − t∗ + 1)−1/2 + e−c(t−t∗)2/a

]
.

(5.9)

Moreover, for all t � t∗,

I(t) �
∫
R

ψ(x)qm(t, x) dx � ca3
√

N/(2λ∗)e−
√

Na. (5.10)

We emphasize that the last bound holds for all t � t∗, and thus extends to the late times after
a as well.

Proof. We again represent qm(t, x) via the Duhamel formula (4.20) as an integral of qs

satisfying (4.21). By lemma 4.5,∫
R

ψ′(x)qm(t, x) dx � C
∫ t

t−
Λ(s; a)(t − s + 1)−1/2 ds,

∫
R

|E(t, x)|ψ(x)qm(t, x) dx � C
∫ t

t−
Λ(s; a)a−1/2(t − s + 1)−3/2 ds.

(5.11)

By (4.31),

Λ(s; a) � C√
a

(t + 1)3
√

N/(2λ∗)e−
√

Nae−c(s−t∗)2/a (5.12)

for t− � s � t � a. In light of (5.11), we must bound integrals of the form

Zα(t) :=
∫ t

t−
(t − s + 1)−αe−c(s−t∗)2/a ds �

∫ ∞

0
(s + 1)−αe−c(t−t∗−s)2/a ds (5.13)

for α ∈ {1/2, 3/2}.
We cut the integral in the right side of (5.13) at s = (t − t∗)/2:∫ ∞

t−t∗
2

(s + 1)−αe−c(t−t∗−s)2/a ds �
(

t − t∗
2

+ 1

)−α∫ ∞

t−t∗
2

e−c(t−t∗−s)2/a ds

� C
√

a(t − t∗ + 1)−α

and ∫ t−t∗
2

0
(s + 1)−αe−c(t−t∗−s)2/a ds �

∫ t−t∗
2

0
e−c(t−t∗−s)2/a ds �

∫ ∞

t−t∗
2

e−cr2/a dr

� C
√

ae−c(t−t∗)2/(4a).
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We conclude that

Zα(t) � C
√

a
[
(t − t∗ + 1)−α + e−c(t−t∗)2/a

]
. (5.14)

When α > 1, the integrability of (s + 1)−α gives an alternative bound. Still cutting at s = (t −
t∗)/2, we now write∫ ∞

t−t∗
2

(s + 1)−αe−c(t−t∗−s)2/a ds �
∫ ∞

t−t∗
2

(s + 1)−α ds � C(t − t∗ + 1)1−α

and ∫ t−t∗
2

0
(s + 1)−αe−c(t−t∗−s)2/a ds � e−c(t−t∗)2/(4a)

∫ ∞

0
(s + 1)−α ds

� Ce−c(t−t∗)2/(4a).

We conclude that

Zα(t) � C
[
(t − t∗ + 1)1−α + e−c(t−t∗)2/a

]
if α > 1. (5.15)

Combining (5.11), (5.12), and (5.14) with α = 1/2 gives∫
R

ψ′(x)qm(t, x) dx � C√
a

(t + 1)3
√

N/(2λ∗)e−
√

NaZ1/2(t)

� C(t + 1)3
√

N/(2λ∗)e−
√

Na
[
(t − t∗ + 1)−1/2 + e−c(t−t∗)2/a

]
,

while (5.11), (5.12), and (5.15) with α = 3/2 imply∫
R

|E(t, x)|ψ(x)qm(t, x) dx � C
a

(t + 1)3
√

N/(2λ∗)e−
√

NaZ3/2(t)

� C
a

(t + 1)3
√

N/(2λ∗)e−
√

Na ×
[
(t − t∗ + 1)−1/2 + e−c(t−t∗)2/a

]
.

We have thus confirmed (5.8) and (5.9).
Finally, we need a lower bound on I(t). With p � 0 and qe � 0, we can write for t � t∗

I(t) �
∫
R

qm(t, x)ψ(x) dx =

∫ t

t−

∫
R

qs(t, x)ψ(x) dx ds �
∫ t∗

t−

∫
R+

qs(t, x)ψ(x) dx ds,

(5.16)

where we used again the Duhamel formula (4.20) and qs � 0. We recall that qs satisfies (4.21).
We need a lower bound on qs, so we look for a subsolution to (4.21) on R+.

We first focus on the initial condition qs(s, x) = [N − V(s, x)]p(s, x) for x ∈ R+. Recall the
definition (2.23) of V . The comparison principle implies that H is decreasing in x, so

H(s, x + m(s)) � H(s, m(s)) for all x � 0. (5.17)

By (1.8) and s � t− = ξ−a, H(s, x + m(s)) is very close to U0(0) < 1 provided a is sufficiently
large. We can thus assume that H(s, m(s)) � 1 − c for all s � t−. Using (1.18) and (5.17), it
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follows that

N − V(s, x) = N − F′ (H(t, x + m(s))) � N − sup
u∈[0,1−c]

F′(u) > 0

in this region. That is,

qs(s, x) � cp(s, x) for all s � t−, x � 0. (5.18)

Going back to (3.11), we see that for all x � 0 and s � t−, we have

p(s, x) � Λ(s; a)e−Cx exp

{
− 1

4s

[
x − 3

2λ∗
log(s + 1)

]2
}
. (5.19)

We are free to assume s � t− � 2, so a variation on (4.23) yields

1
4s

[
x − 3

2λ∗
log(s + 1)

]2

� x2

8(1 − ε)
+ C(ε) for all s � t−, x ∈ R

and ε ∈ (0, 1). Hence (5.19) and e−Cx � C(ε)e−εx2
implies

p(s, x) � cΛ(s; a)e−Cxe−x2/7 � cΛ(s; a)e−x2/6 � cΛ(s; a)xe−x2/4, (5.20)

where we have allowed c > 0 to change from expression to expression. We now define

ϕ(λ, x) =
x

λ3/2
exp

(
− x2

4λ

)
and note for later reference that∫

R+

xϕ(λ, x) dx = 2
√
π for all λ > 0. (5.21)

Combining (5.18) and (5.20), we can write

qs(s, x) � cΛ(s; a)ϕ(1, x) for all s � t−, x � 0. (5.22)

Now, we consider the PDE in (4.21). Since we are looking for a lower bound on qs(t, x), we
cannot neglect the negative term −V(t, x)qs in the right side of (4.21). By lemma 3.1,

V(t, x) � Be−cx (5.23)

for all t > 0 and x > 0. To obtain a subsolution, we are free to impose a Dirichlet condition at
x = 0. We let vs(t, x) solve

∂tv
s = ∂2

x vs − 3
2λ∗(t + 1)

∂xvs − Be−cxvs for t > s and x > 0,

vs(t, 0) = 0 for t > s,

vs(s, x) = ϕ(1, x) for x > 0.

Applying the comparison principle to (4.21), (5.22) and (5.23) yield

qs(t, x) � cΛ(s; a)vs(t, x) for all t � s � t−, x � 0.
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Then, with (5.16),

I(t) � c
∫ t∗

t−
Λ(s; a)

∫
R+

vs(t, x)ψ(x) dx ds. (5.24)

The following lemma gives a lower bound on vs(t, x).

Lemma 5.4 There exists c > 0 such that for all t � s and x > 0 we have

vs(t, x) � cϕ(t − s + 1, x) + R(t, s, x) (5.25)

with

|R(t, s, x)| � C(t − s + 1)−2xe−x2/[8(t−s+1)]

= C(t − s + 1)−1/2ϕ (2(t − s + 1), x) . (5.26)

Proof. This is nearly lemma 2.2 in [10]. The only difference is the exponentially decaying
potential, which is negligible on the scale x ∼

√
t, where the analysis really happens. �

Using (2.34), we have ψ(x) � cx for x � 0. Then (5.25), (5.26), and (5.21) imply∫
R+

vs(t, x)ψ(x) dx � c
∫
R+

xϕ(t − s + 1, x) dx − C(t − s + 1)−1/2

×
∫
R

xϕ (2(t − s + 1), x) dx

� c − C(t − s + 1)−1/2,

where we have allowed c to change from expression to expression. So
∫
R+

vsψ is uniformly

positive once t − s � C′ for C′ large. On the other hand, vs is positive, so the integral is positive
on the time interval [s, s + C′]. By compactness, it follows that∫

R+

vs(t, x)ψ(x) dx � c for all t � s � t−.

Now (5.24) yields

I(t) � c
∫ t∗

t−
Λ(s; a) ds (5.27)

for all t � t∗. For s ∈ [t−, t∗], (3.12) implies

Λ(s; a) � c√
a

a3
√

N/(2λ∗)e−aθ(s/a) (5.28)

for θ(ξ) = Nξ + 1/(4ξ). We recall that θ is strictly convex and attains its minimum of
√

N at
ξ∗ = 1/(2

√
N) = t∗/a. Also, t− = ξ−a. Since θ is smooth on the interval [ξ−, ξ∗], there exists

C > 0 such that

θ(ξ) �
√

N + C(ξ − ξ∗)2 for all ξ ∈ [ξ−, ξ∗].

Then (5.28) yields

Λ(s; a) � c√
a

a3
√

N/(2λ∗)e−
√

Nae−C(t∗−s)2/a
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and (5.27) implies

I(t) � ca3
√

N/(2λ∗)e−
√

Na

∫ t∗

t−
e−C(t∗−s)2/a ds√

a
� ca3

√
N/(2λ∗)e−

√
Na

for all t � t∗. This completes the proof of lemma 5.3. �

5.3. The proof of lemma 5.1

Gathering together lemmas 3.2, 5.2, and 5.3, we obtain

|İ(t)| � 3
2(t + 1)

∫
R

ψ′(x)r(t, x) dx +

∫
R

|E(t, x)|ψ(x)r(t, x) dx

� C
a

(t + 1)3
√

N/(2λ∗)e−
√

Na
[
(t − t∗ + 1)−1/2 + e−c(t−t∗)2/a

]
.

Taking into account (5.10), we see that (5.1) follows. �

6. The late times

We finish with the times t � a. In this regime, p and qe should be exponentially negligible.
However, since this time period is unbounded, we must take care to ensure that İ(t)/I(t) is
integrable in time, and, in fact, small. We will prove the following lemma.

Lemma 6.1 There exists C > 0 such that for all t � a we have

|İ(t)|
I(t)

� C
t3/2

. (6.1)

After integration, lemma 6.1 implies that

log
I(∞)
I(a)

= O(a−1/2). (6.2)

Note that the lower bound (5.10) still holds, so it suffices to show that

|İ(t)| � C
t3/2

a3
√

N/(2λ∗)e−
√

Na for t � a.

6.1. The free contribution

It is simple to control the free contribution at late times, since it has decayed into irrelevance.

Lemma 6.2 There exist c > 0 and C > 0 such that for all t � a,∫
R

[
ψ(x) + ψ′(x) + |E(t, x)|ψ(x)

]
p(t, x) dx � Ce−(

√
N+c)ae−ct. (6.3)

Proof. For x � 0 we recall that E is bounded and we simply use (4.27) and (5.4), which give∫
R−

[
ψ(x) + ψ′(x) + |E(t, x)|ψ(x)

]
p(t, x) dx � C

√
tΛ(t; a) � CtCe−aθ(t/a)

(6.4)
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for θ defined in (4.28). Now, min θ =
√

N is uniquely attained at ξ∗ = 1/(2
√

N) < 1, and
θ(ξ) � Nξ. If c > 0 is sufficiently small, it follows that

θ(ξ) �
√

N + c + cξ for all ξ � 1. (6.5)

Together with (6.4), this implies∫
R−

[
ψ(x) + ψ′(x) + |E(t, x)|ψ(x)

]
p(t, x)dx � Ce−(

√
N+c)ae−ct. (6.6)

For x � 0, (2.34) and (2.35) imply ψ(x) � C(1 + x) and ψ′(x) � C. Then (3.11) and (4.27)
imply ∫

R+

[
ψ(x) + ψ′(x) + |E(t, x)|ψ(x)

]
p(t, x) dx

� CΛ(t; a)
∫ ∞

0
(1 + x)e−ax/(2t) dx � CtCe−aθ(t/a).

Again, (6.5) yields∫
R+

[
ψ(x) + ψ′(x) + |E(t, x)|ψ(x)

]
p(t, x)dx � Ce−(

√
N+c)ae−ct.

Combining this with (6.6), we obtain (6.3). �

6.2. The main corrector contribution

Next, we control qm at late times.

Lemma 6.3 There exist c > 0 and C > 0 such that for all t � a,∫
R

ψ′(x)qm(t, x) dx � C√
t
a3

√
N/(2λ∗)e−

√
Na (6.7)

and ∫
R

|E(t, x)|ψ(x)qm(t, x) dx � C
t2

a3
√

N/(2λ∗)e−
√

Na. (6.8)

Proof. Recall that qm has a Duhamel representation (4.20) in terms of qs, the solution to
(4.21). To control the contributions of qm, we integrate the bounds in lemma 4.5 over s ∈ [t−, t].
We rely on two different estimates for Λ. When s ∈ [t−, a], (4.31) implies:

s2

a2
Λ(s; a) � C√

a
a3

√
N/(2λ∗)e−

√
Nae−

c(s−t∗)2
a for s ∈ [t−, a]. (6.9)

This estimate cannot hold for s � a, since θ is not uniformly convex. Nonetheless, (4.27) and
(6.5) yield:

s2

a2
Λ(s; a) � CsCe−aθ(s/a) � Ce−(

√
N+c)ae−cs for s ∈ [a,∞). (6.10)
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We first use lemma 4.5 and (6.9) to control the contributions of qs when s ∈ [t−, a]. Recalling
the definition (5.13) of Zα(t) and noticing from (5.14) that Z1/2(t) � C

√
a/t for t � a, we find∫ a

t−

∫
R

ψ′(x)qs(t, x) dx ds � C√
a

a3
√

N/(2λ∗)e−
√

Na

∫ a

t−
(t − s + 1)−1/2e−c(s−t∗)2/a ds

� C√
t
a3

√
N/(2λ∗)e−

√
Na. (6.11)

Similarly, noticing from (5.14) that Z3/2(t) � C
√

a/t3/2, we obtain∫ a

t−

∫
R

|E(t, x)|ψ(x)qs(t, x) dx ds � C√
at

a3
√

N/(2λ∗)e−
√

Na

∫ a

t−
(t − s + 1)−3/2e−c(s−t∗)2/a ds

� C
t2

a3
√

N/(2λ∗)e−
√

Na. (6.12)

Next, we control the contributions of qs when s � a. To do so, we rely on the following bound:
for each α � 0 and t > 0,

∫ t

0
e−cs(t − s + 1)−α ds �

∫ t/2

0
e−cs

( t
2
+ 1

)−α

ds +
∫ t

t/2
e−cs ds � Cα(t + 1)−α.

(6.13)

Thus, lemma 4.5 and (6.10) yield

∫ t

a

∫
R

ψ′(x)qs(t, x) dx ds � Ce−(
√

N+c)a
∫ t

a
(t − s + 1)−1/2e−cs ds � C√

t
e−(

√
N+c)a

(6.14)

and∫ t

a

∫
R

|E(t, x)|ψ(x)qs(t, x) dx ds � C√
t
e−(

√
N+c)a

∫ t

a
(t − s + 1)−3/2e−cs ds � C

t2
e−(

√
N+c)a.

(6.15)

We recall that ∫
R

ψ′(x)qm(t, x) dx =

∫ t

t−

∫
R

ψ′(x)qs(t, x) dx ds,

∫
R

|E(t, x)|ψ(x)qm(t, x) dx =

∫ t

t−

∫
R

|E(t, x)|ψ(x)qs(t, x) dx ds.

Therefore (6.11) and (6.14) imply (6.7), while (6.12) and (6.15) imply (6.8). �

6.3. The proof of lemma 6.1

First, we recall (5.10):

I(t) � ca3
√

N/(2λ∗)e−
√

Na for t � t∗. (6.16)
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Next, collecting lemmas 3.2, 6.2, and 6.3, we see that (2.40) gives

|İ(t)| � 3
2λ∗(t + 1)

∫
R

ψ′(x)r(t, x) dx +

∫
R

|E(t, x)| r(t, x)ψ(x) dx

� C
t3/2

a3
√

N/(2λ∗)e−
√

Na. (6.17)

We obtain (6.1) from (6.16) and (6.17). �

6.4. Proof of the main result

As we have mentioned, proposition 2.4 is an immediate consequence of lemmas 4.1, 5.1, and
6.1. Combining (4.2), (5.2) and (6.2), we find

log
I(∞)
I(0)

=
3
√

N
2λ∗

log
a

2
√

N
+ O

(
a−1/2

)
.

Exponentiating, we obtain proposition 2.4. �

7. The early corrector—proof of lemma 3.2

Given ε0 ∈ (0, 1), to be chosen later, lemma 3.1 ensures the existence of K � 0 such that

N(1 − ε0) � V(t, x) for all t > 0 and x < −K.

The same lemma implies that

N − V(t, x) � Beγ∗x.

Hence if q̃ solves

∂tq̃ = ∂2
x q̃ − 3

2λ∗(t + 1)
∂xq̃ − N(1 − ε0)1(−∞,−K)(x)q̃ + Beγ∗x1[0,t−](t)p, q̃(0, x) = 0,

comparison with (3.14) implies

qe(t, x) � q̃(t, x).

To estimate q̃, we decompose it into two parts, ρ and σ

qe(t, x) � q̃(t, x) = ρ(t, x) + σ(t, x),

where ρ is the solution to

∂tρ = ∂2
xρ−

3
2λ∗(t + 1)

∂xρ− N(1 − ε0)ρ+ Beγ∗x1[0,t−](t)p, ρ(0, x) = 0,

(7.1)

and σ the solution to

∂tσ = ∂2
xσ − 3

2λ∗(t + 1)
∂xσ − N(1 − ε0)1(−∞,−K)(x)σ + N(1 − ε0)1[−K,∞)(x)ρ, σ(0, x) = 0.

(7.2)
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We will be able to estimate ρ more or less explicitly. For σ, we emphasize that the forcing in
the right side of (7.2) is supported on [−K,∞). That is, unlike r and qe, σ is never forced deep
in R−. There is thus no need to estimate it with a further corrector—we can control it with
lemma 3.3.

Lemma 3.2 is a consequence of the two following lemmas:

Lemma 7.1 There exist C, c > 0 independent of a and t such that for all a � 1 and t � 0:

∫
R

ψ(x)ρ(t, x) dx +

∫
R

ψ′(x)ρ(t, x) dx +

∫
R

ψ(x) |E(t, x)| ρ(t, x) dx � Ce−(
√

N+c)a−ct.

(7.3)

Lemma 7.2 There exist C, c > 0 independent of a and t such that for all a � 1 and t � 0:∫
R

ψ(x)σ(t, x) dx � Ce−(
√

N+c)a,∫
R

ψ′(x)σ(t, x) dx � C√
t + 1

e−(
√

N+c)a,∫
R

ψ(x) |E(t, x)|σ(t, x) dx � C
(t + 1)2

e−(
√

N+c)a.

7.1. Proof of lemma 7.1

We use the Duhamel formula to write the solution to (7.1) as

ρ(t, x) =
∫ t∧t−

0
ρs(t, x) ds. (7.4)

Here, ρs(t, x) is the solution to

∂tρ
s = ∂2

xρ
s − 3

2λ∗(t + 1)
∂xρ

s − N(1 − ε0)ρs for t > s, ρs(s, x) = Beγ∗x p(s, x).

(7.5)

Recall the expression (3.2) of p(t, x) and define

μ(t) = −a +
3

2λ∗
log(t + 1). (7.6)

Then we can write the initial condition ρs(s, x) as a Gaussian:

ρs(s, x) = Beγ∗x p(s, x) = Beγ∗x 1√
4πs

exp

{
−Ns − 1

4s
[x − μ(s)]2

}
=

B√
4πs

eγ∗(μ(s)+γ∗s) exp

{
−Ns − 1

4s
[x − μ(s) − 2γ∗s]2

}
.

One can then verify that
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ρs(t, x) =
B√
4πt

e−Nε0se−N(1−ε0)teγ∗(μ(s)+γ∗s) exp

[
− (x − μ(t) − 2γ∗s)2

4t

]
(7.7)

satisfies both the initial condition and (7.5). The Duhamel formula (7.4) implies∫
R

ψ(x)ρ(t, x) dx =

∫ t∧t−

0

∫
R

ψ(x)ρs(t, x) dx ds (7.8)

for all t � 0.
To bound the first term in (7.3), it suffices to show that for all t � 0 and s � t ∧ t−,∫

R

ψ(x)ρs(t, x) dx � C(1 + t)Ce−(
√

N+c)a−ct (7.9)

for some c > 0, C > 0. Then, the integral over s � t− � a in (7.8) gives at most a factor a which
can be absorbed, together with the (1 + t)C factor, into in the exponential decay by making c
smaller.

We now show (7.9). It follows from (2.34) that ψ(x) � Ce
√

Nx for some C; then, in (7.7),
we obtain

ψ(x)ρs(t, x) � e
√

Nxρs(t, x) � C√
t
e−N(1−ε0)teγ∗(μ(s)+γ∗s)e

√
Nx exp

[
− (x − μ(t) − 2γ∗s)2

4t

]
.

(7.10)

Now,

e
√

Nx exp

[
− (x − μ(t) − 2γ∗s)2

4t

]
= e

√
N(μ(t)+2γ∗s+

√
Nt) exp

[
− (x − μ(t) − 2γ∗s − 2

√
Nt)2

4t

]
.

(7.11)

Hence (7.10) yields∫
R

ψ(x)ρs(t, x) dx � C exp
{
−N(1 − ε0)t + γ∗(μ(s) + γ∗s) +

√
N
(
μ(t) + 2γ∗s +

√
Nt
)}

= C exp
{√

Nμ(t) + Nε0t + γ∗μ(s) + γ∗

(
γ∗ + 2

√
N
)

s
}

� C(1 + t)C exp
{

Nε0t − (
√

N + γ∗)a + γ∗

(
γ∗ + 2

√
N
)

s
}
. (7.12)

(In the last line, we replaced μ(s) and μ(t) by their expression (7.6), and then used s � t for the
logarithmic terms.) Pick c > 0, and then ε0 such that Nε0 � c. We see that (7.9) holds if

ct − γ∗a + γ∗

(
γ∗ + 2

√
N
)

s � −ca − ct. (7.13)

We now consider, until the end of this proof, the case where (7.13) does not hold, i.e. the case
where

γ∗

(
γ∗ + 2

√
N
)

s > (γ∗ − c)a − 2ct. (7.14)

In that case, the bound ψ(c) � Ce
√

Nx that we used to derive (7.12) is not good enough for
x > 0. We now show that if c > 0 is small enough, the centering term in (7.11) satisfies

μ(t) + 2γ∗s + 2
√

Nt > ca. (7.15)
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Indeed, recall that μ(t) > −a and
√

N > 1. If t > a, then (7.15) is obvious. If t < a, then (7.14)
and t > s imply that

μ(t) + 2γ∗s + 2
√

Nt � −a + 2(γ∗ +
√

N)s � −a +

[
2(γ∗ +

√
N)

γ∗ + 2
√

N

]
γ∗ − 3c

γ∗
a.

As the factor in square brackets is strictly larger than 1, it is possible to choose c > 0 small
enough independent of a such that (7.15) holds. Thus when x < 0, (7.14) implies

exp

[
− (x − μ(t) − 2γ∗s − 2

√
Nt)2

4t

]
� exp

[
− (μ(t) + 2γ∗s + 2

√
Nt)2

4t
+

cax
2t

]
.

Recalling (7.7), (7.10), and (7.11), we obtain

e
√

Nxρs(t, x) � Cρs(t, 0) exp
(cax

2t

)
for x < 0.

Therefore, ∫ 0

−∞
ψ(x)ρs(t, x) dx � C

t
a
ρs(t, 0). (7.16)

We now evaluate the integral over x > 0, still assuming (7.14). In this region, we use the
bound ψ(x) � C(1 + x) from (2.34). In the expression (7.7) of ρs(t, x), we start by getting
rid of the logarithmic terms that appear in μ(t) and μ(s). We employ (4.23) with some ε to
be chosen later. Recalling that Nε0 � c, (7.7) implies:

ρs(t, x) � ρ̃s(t, x) with ρ̃s(t, x)

=
C√

t
exp

[
2ct − Nt − γ∗(a − γ∗s) − (1 − ε)

(x + a − 2γ∗s)2

4t

]
.

(7.17)

The term 2ct has two contributions. On the one hand, Nε0t � ct. On the other, the logarithmic
term in μ(s) is sublinear: 3γ∗/(2λ∗)log(1 + s) � ct + C.

Since s � t− � t∗ = a/(2
√

N) and γ∗ �
√

N, we have a − 2γ∗s � 0 and

ρ̃s(t, x) � ρ̃s(t, 0) exp

[
−(1 − ε)

x2

4t

]
for x > 0.

Then ∫ ∞

0
ψ(x)ρs(t, x) dx � Cρ̃s(t, 0)

∫ ∞

0
(1 + x) exp

[
−(1 − ε)

x2

4t

]
dx

� C(
√

t + t)ρ̃s(t, 0). (7.18)

Combining (7.16) and (7.18), we have shown that, if (7.14) holds, we have∫
R

ψ(x)ρs(t, x) dx � C(
√

t + t)ρ̃s(t, 0).
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We now evaluate ρ̃s(t, 0) and show that if ε is chosen small enough, then there exists C > 0
and c > 0 such that, for all t > 0 and all s � t ∧ t−,

ρ̃s(t, 0) � C√
t

exp
[
−(

√
N + c)a − ct

]
. (7.19)

This will imply (7.9), and then lemma 7.1 for the term with ψ. We have from (7.17)

ρ̃s(t, 0) =
C√

t
exp

[
2ct − Nt − γ∗(a − γ∗s) − (1 − ε)

(a − 2γ∗s)2

4t

]
=

C√
t

exp

[
2ct − Nt − γ∗(a − γ∗s) − (1 − ε)

(
a2

4t
− γ∗s

t
(a − γ∗s)

)]
� C√

t
exp

[
2ct − (1 − ε)

(
N

t
a
+

a
4t

)
a − γ∗(a − γ∗s)

(
1 − (1 − ε)

s
t

)]
� C√

t
exp

[
2ct − (1 − ε)θ

( t
a

)
a − γ∗(a − γ∗s)

(
1 − s

t

)]
(7.20)

with θ(ξ) :=Nξ + 1/(4ξ). Here we have used a − γ∗s > 0. Notice that θ(ξ) reaches its min-
imum at ξ∗ = t∗/a = 1/(2

√
N) with θ(ξ∗) =

√
N. Let t0 = (t− + t∗)/2. Notice also that t0/a

does not depend on a and that t0/a < ξ∗. We choose c small enough that θ(t0/a) >
√

N +
5c, and then ε small enough that (1 − ε)θ(t0/a) >

√
N + 4c. Then, for t � t0, we have

θ(t/a) � θ(t0/a), so (7.20) yields

ρ̃s(t, 0) � C√
t

exp
[
2ct − (1 − ε)θ(t0/a)a

]
� C√

t
exp

[
2ct − (

√
N + 4c)a

]
,

where we used s � t and s � t− � t∗ = a/(2
√

N) � a/γ∗. Since t � t0 � a, this implies
(7.19).

We now consider t ∈ [t0, a]. Using θ(t/a) � θ(ξ∗) =
√

N and s � t− = ξ−a, (7.20) implies
that

ρ̃s(t, 0) � C√
t

exp

[
2ct − (1 − ε)

√
Na − aγ∗(1 − γ∗ξ−)

(
1 − t−

t0

)]
.

Notice that t−/t0 is independent of a and strictly smaller than one. We make c small enough
that γ∗(1 − γ∗ξ−)(1 − t−/t0) > 5c and then ε small enough that (1 − ε)

√
N �

√
N − c. Then,

since t � a, we obtain again the bound (7.19).
Finally, we consider t � a. As θ is convex, we have for ξ � 1

θ(ξ) � θ(1) + θ′(1)(ξ − 1) =
1
2
+

(
N − 1

4

)
ξ �

√
N +

1
4
+
(

N −
√

N
)
ξ.

Hence (7.20) yields

ρ̃s(t, 0) � C√
t

exp

[
2ct − (1 − ε)

(√
N +

1
4

)
a − (1 − ε)(N −

√
N)t

]
.

It is then clear that by taking c and ε small enough, we have again (7.19).
This concludes the proof that the first term in (7.3) is bounded as stated by lemma

7.1. The proof only relies on two properties of ψ: ψ(x) � C exp(
√

Nx) for x < 0 and
ψ(x) � C(1 + x) for x � 0. Since ψ′ satisfies the same two properties (by (2.35)) and |E| � C,
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the other terms in (7.3) are bounded in the same way as the first term and the proof of lemma
7.1 is complete. �

7.2. Proof of lemma 7.2

We now turn to the solution σ of (7.2).
Let us start by showing that∫

R

ψ(x)σ(t, x) dx = O
(

e−(
√

N+c)a
)
.

We again represent σ(t, x) via the Duhamel formula:

σ(t, x) =
∫ t

0
σs(t, x) ds. (7.21)

Here, σs(t, x), defined for 0 < s < t, is the solution to

∂tσ
s = ∂2

xσ
s − 3

2λ∗(t + 1)
∂xσ

s − N(1 − ε0)1(−∞,−K)(x)σs, t > s,

σs(s, x) = N(1 − ε0)1[−K,∞)(x)ρ(s, x).

(7.22)

Our first step will be to bound the initial condition in (7.22) with the following lemma.

Lemma 7.3 There exist C > 0, c > 0, and κ > 0 such that for all s � 0 and all x ∈ R:

σs(s, x) � C exp

[
−(

√
N + c)a − cs − κ min

{
1,

a
s

}
x+ − x2

8s

]
1[−K,∞)(x).

(7.23)

with x+ = max{x, 0}.

Proof. Recall from (7.22) that σs(s, x) = C1[−K,∞)(x)ρ(s, x) with ρ(t, x) given by (7.4):

ρ(t, x) =
∫ t∧t−

0
ρs(t, x) ds.

We use ρs(t, x) � ρ̃s(t, x) with ρ̃s(t, x) given in (7.17). It suffices to show that there exists κ > 0
such that, for all s � t ∧ t−,

ρ̃s(t, x) � C√
t

exp

[
−(

√
N + c)a − ct − κ min

{
(1,

a
t

}
x+ − x2

8t

]
for x > −K.

(7.24)

Then ρ(t, x) � C
√

t exp[. . .], and the
√

t can be absorbed in the exponential by making c
smaller. We now show (7.24).

We first assume that t � δa, for some small δ > 0 to be chosen. For such small times, the
Gaussian term in (7.17) controls everything. We use the following result: for any ε ∈ [0, 1/2 ),
any κ � 0, any λ � 0 and any K � 0, there exists δ′ > 0 such that, if b is large enough,
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(1 − ε)
(x + b)2

4t
� x2

8t
+ κx + λb for all t � δ′b and x � −K. (7.25)

Indeed, taking ε = 0 for simplicity, (7.25) is equivalent to x2 + 2βx + γ � 0 with
β = 2b − 4κt and γ = 2b2 − 8λbt. By making δ′ small enough, we have β ∈ [1.9b, 2b]
and γ ∈ [1.9b2, 2b2] for t � δ′b. Then, (7.25) holds for x � −β +

√
β2 − γ, where

−β +
√
β2 − γ < (−1.9 +

√
4 − 1.9)b ≈ −0.45b, which is smaller than −K for b large

enough.
Then, in (7.17), we notice that b := a − 2γ∗s � a − 2γ∗t− = a(1 − 2γ∗ξ−), with

1 − 2γ∗ξ− > 0. We use (7.25) with this b and λ = (
√

N + c)/(1 − 2γ∗ξ−) to obtain
(7.24) for t � δ′b � δa with δ = δ′(1 − 2γ∗ξ−). (We wrote 2ct − Nt � −ct in (7.17) after
assuming c < N/3, and we used κx � κx+ − κK for x � −K.)

We now turn to t � δa. From (7.17) and (7.19), we have

ρ̃s(t, x) = ρ̃s(t, 0) exp

[
−(1 − ε)

x2

4t
− (1 − ε)

a − 2γ∗s
2t

x

]
� C√

t
exp

[
−(

√
N + c)a − ct − x2

8t
− (1 − ε)

a − 2γ∗s
2t

x

]
.

(7.26)

Pick κ = (1 − ε)(1 − 2γ∗ξ−)/2. Since s ∈ [0, ξ−a] and t � δa, we have

(1 − ε)
a − 2γ∗s

2t
∈
[
κa
t

,
1
2δ

]
.

This implies that

(1 − ε)
a − 2γ∗s

2t
x � κa

t
x+ − K

2δ
� κ min

{
1,

a
t

}
x+ − K

2δ
for all x � −K.

Using this bound in (7.26) concludes the proof of (7.24) and of lemma 7.3. �
We now complete the proof of lemma 7.2. The solution to (7.22) with the initial condition

(7.23) can be treated by lemma 3.3, with κ− = 0 and κ+ = κmin{1, a/s}. For instance,∫
R

ψ(x)σs(t, x) dx � Ce−(
√

N+c)a−cs max

{( s
a

)2
, 1

}
.

Since a � 1, we have max
{

(s/a)2, 1
}
� C(ε)eεs for any ε > 0. Thus, we can absorb

max
{

(s/a)2, 1
}

into the exponential factor e−cs by reducing c. After this operation, lemma
3.3 yields: ∫

R

ψ(x)σs(t, x) dx � Ce−(
√

N+c)a−cs,∫
R

ψ′(x)σs(t, x) dx � Ce−(
√

N+c)a−cs(t − s + 1)−1/2,∫
R

|E(t, x)|ψ(x)σs(t, x) dx � Ce−(
√

N+c)a−cs(t + 1)−1/2(t − s + 1)−3/2.

(7.27)

In light of the Duhamel formula (7.21), we must integrate (7.27) over s ∈ [0, t]. Taking
α ∈ {1/2, 3/2} in (6.13), (7.21) and (7.27) imply lemma 7.2. �
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Appendix A. Probabilistic intuition

In this appendix, we discuss at a heuristic level the connection between the present work and
the more probabilistic approach used in [6, 7] to obtain the exponential decay of P(d12 > a).
To simplify the discussion, we only consider binary BBM with N = 2, λ∗ = 1 and c∗ = 2.

The limit extremal point process X of the BBM defined in (1.19) has the following descrip-
tion [1–3]. We start with a Poisson point process of intensity e−(z−θ) dz, where θ is an
independent random shift related to the limit of the so-called derivative martingale; see, for
instance, [1] for details. We refer to the atoms of this point process as the ‘leaders’. We then
replace each leader by an independent copy of a certain random point measure, the ‘decoration’,
shifted by the position of the leader. The decoration has an atom at 0 (to keep particles at the
leaders’ positions), and no mass to the right of 0. Informally, the leaders are the rightmost
descendants of particles that branched early on, while the decorations consist of particles that
branched off the leaders very recently.

Let dPoi denote the distance between the two rightmost particles in the Poisson point
process, and let ddec denote the same for the decoration of the rightmost leader. Then
d12 = min{dPoi, ddec}. By the independence of the Poisson point process and the decoration,
we have

P(d12 > a) = P(dPoi > a)P(ddec > a) = e−a
P(ddec > a). (A.1)

Here we have used properties of the Poisson point process to compute P(dPoi > a) = e−a.
We now construct the decoration point process D, following [1]. This ‘backwards’ con-

struction lies at the heart of the arguments in [7]. For fixed s > 0, let Bt∈[0,s] be a Brownian
bridge from B0 = 0 to Bs = −2s (recalling that our Brownian motions have diffusivity 2).
We call Bt the ‘spine;’ it represents the path of the leader traced in reverse time t. Next,
let σ1 � σ2 � σ3 � . . . be the successive atoms of a Poisson point process of intensity 2dt
on [0, rs], for some 1 � rs � s. These represent the times at which the leader branched.
For each k, we start an independent BBM from the position Bσk and let it evolve for time
σk (see figure 1).

Now let Ds denote the set of all the final positions in all the BBMs that branched from the
spine, together with the singleton {0}. That is, if x(k)

1 (σk) � x(k)
2 (σk) � . . . � x(k)

nk
(σk) denote

the final positions of the particles of the BBM born at time σk, we have

Ds = δ0 +
∑

k∈N | σk�rs

∑
i�nk

δ
Bσk+x(k)

i (σk)
.

Finally, the decoration D is given by

P [D ∈ · ] = lim
s→∞

P
[
Ds ∈ · |Ds ((0,∞)) = 0

]
. (A.2)
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Figure 1. Backwards construction of the decoration point process.

We emphasize the conditioning in (A.2), which ensures that the spine ends up as the rightmost
particle in its family. This conditioning affects the spine trajectory Bt, the point process of
branching times σk, and the BBMs that branch off the spine.

Now, the event ddec > a is equivalent to all the BBMs ending to the left of−a. The rightmost
particle of a BBM started from Bσk will typically have position near Bσk + 2σk − 3

2 log σk at
time σk. So if ddec > a, we should at least have Bσ1 + 2σ1 − 3

2 log σ1 < −a. If we ignore the
conditioning in (A.2) and all the other BBMs branching at σ2, σ3, . . . , this suggests that

P(ddec > a) ≈
∫ ∞

0

dσ√
σ

exp

[
−
(
a − 3

2 log σ
)2

4σ
− 2σ

]

≈
∫ ∞

0

dσ√
σ

exp

[
− a2

4σ
− 2σ +

3a log σ

4σ

]
(A.3)

for a � 1. In this calculation, we have approximated the Brownian bridge from B0 = 0 to
Bs = −2s by a Brownian path with drift −2 (and, as usual, diffusivity 2). The e−2σ term in
(A.3) corresponds to the distribution of σ1. The integral in (A.3) is dominated by σ close to
a/(2

√
2), so

P(ddec > a) ≈ exp

(
−
√

2 a +
3√
2

log a

)
. (A.4)

If we keep the leading term exp
(
−
√

2 a
)

and recall (A.1), we find to the exponential factor

in (1.21). This is, in essence, the argument used in [7].
The subleading term in (A.4) corresponds to the polynomial term a3/

√
2 in theorem 1.1,

since N = 2. However, at this scale the conditioning in (A.2) cannot be ignored: it alters the
trajectory of the spine and suppresses the branching rate. Indeed, to avoid producing particles
to the right of 0, the spine is inclined to move further to the left than a typical Brownian motion
with drift −2, and the effective branching rate along the spine will be less than 2 near the
origin.
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Moreover, we cannot ignore the other branchingsσk along the spine. Without the condition-
ing in (A.2), the spine will often lie to the right of −2t +

√
t. A BBM branching from such a

time would typically end with a particle near − 3
2 log t +

√
t, well to the right of 0. The authors

of [7] prove that the heuristic (A.3) remains correct at the exponential level (1.21) even when
the conditioning and other branchings are accounted for. However, we do not believe that the
argument extends easily to the subleading term.

To conclude this appendix, let us highlight that the heuristics in [6] are slightly different.
There, the authors consider a BBM at a large time. The least unlikely scenario leading to
d12 > a � 1 is as follows. A single particle starts from near the typical rightmost position
and moves an anomalous distance 2τ + a during a time τ without branching. Meanwhile, the
rest of the BBM behaves typically, with rightmost particle moving at velocity 2. The probability
of this event is roughly

P(d12 > a) ≈ P(d12 ≈ a) ≈ e−
(2τ+a)2

4τ −τ .

The maximizing τ is a/(2
√

2), which yields the correct probability P(d12 > a) ≈ e−(1+
√

2)a.
However, there does not seem to be an easy way (even at the heuristic level) to obtain the
polynomial prefactor in theorem 1.1 from this perspective.

Appendix B. The proof of lemma 3.3

To prove lemma 3.3, we argue that the absorption on (−∞,−K) in (3.16) acts similarly to a
Dirichlet boundary condition.

We begin by constructing a family of supersolutions based on the Dirichlet problem. Recall
that we defined

ϕ(λ, x) =
x

λ3/2
exp

(
− x2

4λ

)
.

Now let v(t, x; s), with s � 0, be the solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tv = ∂2

x v − 3
2λ∗(t + s + 1)

∂xv for t > 0 and x > 0,

v(t, 0) = 0 for t > 0,

v(0, x) = ϕ(λ, x) for x > 0.

(B.1)

We define the ‘λ-adapted’ self-similar variables

τ = log

(
t + λ

λ

)
and η =

x√
t + λ

.

Let v denote v in these coordinates:

v(τ , η) := v
(
λ(eτ − 1),

√
λeτ/2η

)
.

Then v satisfies

∂τv = ∂2
ηv +

η

2
∂ηv − m(τ )∂ηv, v(0, η) = λ−1ϕ(1, η)

with a drift
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m(τ ) =
3

2λ∗

√
λeτ/2

λ(eτ − 1) + s + 1
.

We wish to argue that the drift term m∂ηv is negligible, so that ϕ(λ+ t, x) is an approxi-
mate solution to (B.1). Precisely, we want sup m and

∫∞
0 m(τ ) dτ � 1 to be small. Suppose

λ � 1 and s � βλ for some β > 0. Then we will have m � Cβ−1/2s−1/2 when τ ∈ [0, 1], and

m(τ ) � Cs−1/2 min
{(

λs−1eτ
)1/2

,
(
λs−1eτ

)−1/2
}

for τ � 1.

It follows that both sup m and
∫∞

0 m(τ ) dτ are bounded by Cβ−1/2s−1/2.
Combining the proof of lemma 2.2 in [10] with methods from [19, section 5], we obtain the

following analogue of lemma 5.4.

Lemma B.1 For each β > 0, there exists C(β) > 0 such that for all λ � 1 and s � βλ, the
solution v(t, x; s) to (B.1) satisfies

v(t, x; s) = ϕ(t + λ, x) [1 + h0(t, x; s)] + R0(t, x; s)

and

∂xv(t, x; s) = ∂xϕ(t + λ, x) [1 + h1(t, x; s)] + R1(t, x; s)

with error terms satisfying |h0|+ |h1| � Cs−1/2 and

|R0|+ (t + λ)1/2 |R1| � Cs−1/2(t + λ)−3/2 exp

[
− x2

6(t + λ)

]
for all t, x > 0.

This lemma enables the construction of supersolutions for more complicated equations. If
we have an absorbing potential on the left rather than a Dirichlet condition, we can join v to
a decaying exponential. We illustrate the construction with a simple example. Consider the
equation

∂tν = ∂2
xν − 3

2(t + s + 1)
∂xν − 1(−∞,10)(x)ν. (B.2)

It is easy to check that

Aλ(t, x) =
1
2

(t + λ)−3/2 exp
( x

2

)
is a supersolution to (B.2) on (−∞, 10), provided λ � 2. We can glue Aλ(t, x) on the left to
the solution to the Dirichlet problem (B.1) on the right to form a global super-solution to
(B.2). For this ‘hybrid’ to be a supersolution itself, we need its slope to decrease at the joint,
which ensures that in a neighborhood of the joint, it is the minimum of two supersolutions, and
thus a supersolution. We take some care to achieve this.

To emphasize the dependence on λ, let vλ denote the solution to (B.1). If λ � 2, we can
verify numerically that the graphs of Aλ(t, ·) andϕ(t + λ, ·) intersect twice in (0, 10). By lemma
B.1, the same is true of Aλ(t, x) and vλ(t, x; s) when s is sufficiently large. Let j(t) denote their
rightward point of intersection. Then the ‘hybrid’ function

Ψ(t, x) =

{
Aλ(t, x) for x � j(t)

vλ(t, x; s) for x > j(t)
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is a supersolution to (B.2).
We now generalize this construction to produce supersolutions of (3.16) in lemma 3.3. By

‘supersolution,’we mean a function that satisfies the opposite inequality to that in (3.16). Recall
the parametersα > 0,κ− < α, and K � 0 from lemma 3.3. Define b := (κ− + α)/2 ∨ 0, so that
κ− ∨ (−α) < b < α.

Lemma B.2 For each β > 0, there exist C0(β) � 1 and B, L > 0 depending also on α, κ−,
K, and λ∗ such that the following holds for all λ � C0 and s � βλ. There exists a continuous
function j : [0,∞) → (−K − 1,−K) depending on α, κ−, K, λ∗, λ, and s such that if

Φ(t, x) :=

{
B(t + λ)−3/2e−bx for x � j(t),

vλ(t, x + L; s) for x > j(t),
(B.3)

then Φ is continuous, ∂xΦ decreases at x = j(t), and Φ(t − s, x) is a supersolution to (3.16).

Proof. Let C1 := 3
2(α2−b2) , which is positive because 0 � b < α. Then if

A(t, x) := (t + λ)−3/2 cosh [b(x + K + 1)]

and λ � C1, one can easily check that

∂tA � ∂2
x A − α2A.

Moreover, if C2 := 3b
λ∗(α2−b2)

, we have

∂tA � ∂2
x A − 3

2λ∗(t + s + 1)
∂xA − α2A

provided s � C2. Thus A(t − s, x) is a supersolution of (3.16) when x < −K.
We call a function f ∈ C1 ([−K − 1,−K]) good if it intersects cosh [b( · + K + 1)] exactly

twice in (−K − 1,−K), both intersections are transverse, and

∂x f ( j) < ∂x {cosh [b(x + K + 1)]}|x= j,

where j denotes the rightward intersection.
Now, cosh [b(x + K + 1)] is convex and increasing on [−K − 1,−K]. It follows that there

exists a good affine function �(x) :=B−1(x + L) with B > 0 and L > K + 1 depending on b
and K. Moreover, it is easy to check that goodness is an open condition in C1. Now note that
λ3/2ϕ(λ, x) → x in C1(K) as λ→∞ for every compact K ⊂ R. Moreover, by lemma B.1,

(t + λ)3/2‖vλ(t, · ; s) − ϕ(t + λ, · )‖C1(K) � C(β,K)λ−1/2

for every compact K ⊂ R, provided s � βλ. Thus

B−1(t + λ)3/2vλ(t, x + L; s) → �(x)

in C1([−K − 1,−K]) as λ→∞. Since goodness is open, there exists C3(β) > 0 depending
also on b, K, and λ∗ such that B−1(t + λ)3/2vλ(t, x + L; s) is good for all t � 0, λ � C3, and
s � βλ.

Therefore, BA(t, ·) and vλ(t, ·+ L; s) intersect exactly twice in (−K − 1,−K) and
∂xvλ < B∂xA at the rightward intersection, which we call j(t). Because the intersections are
transverse, j is continuous in t. We checked above that BA is a supersolution of (3.16) when
x < −K (as the equation is linear), and (B.1) implies that vλ is a supersolution of (3.16) when
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x > −L. Defining Φ by (B.3), we see that it is a supersolution of (3.16) on the whole line,
because it is locally a minimum of supersolutions.

The above conclusions hold under the conditions s � βλ, λ � C1, and s � C2 ∨ C3. We
therefore take C0 :=max{C1, β−1C2, β−1C3, 1}, so that the above holds when s � βλ and λ �
C0. �

In the sequel, we say that a function is hybrid if it is a positive multiple of a function Φ
provided by lemma B.2. Let H denote the set of hybrids. We can now prove lemma 3.3.

Proof of lemma 3.3. Consider w as in lemma 3.3. Let w denote the solution to (3.16) and
(3.17) with inequalities replaced by equalities. Then, by the comparison principle, we have
w � w, and it suffices to control w. To bound w, we use a sum of hybrid supersolutions to
cover different spatial regions of its initial condition.

For the moment, assume that s � 2−4C0. Recall that there is a time shift between (3.16) and
(B.1). We thus want to bound w(s, x) by various hybrid functions Φ(0, x). Define

k0 := �log4C0� and k1 := �log4s�+ 1. (B.4)

By (3.17), w(s, x) � e−κ−x on (−∞, 2k0 − L), where L is given by lemma B.2. Since b > κ−,
we also have w(s, x) � cosh [b(x + K + 1)] on (−∞, 2k0 − L). Thus there exists a hybrid
Φ− ∈ H with parameter λ = C0 such that

w(s, x) � Φ−(0, x) for all x � 2k0 − L. (B.5)

This hybrid Φ− can be chosen independently of κ+.
We are left with the decaying tail of w(s, x) for x � 2k0 − L. We cover this tail by a sequence

of ever-wider Gaussians. Note that

λϕ(λ, x) � 1
2

for all x ∈
[√

λ, 2
√
λ
]
. (B.6)

We claim that

w(s, x − L) � 2
k1∑

k=k0

exp
(
−2kκ+

)
4kϕ(4k, x) (B.7)

for all x � 2k0 . By (3.17) and (B.6), (B.7) holds for all x ∈ [2k0 , 2k1+1]. Moreover, for all
x � 2k1 , (3.17) and the definition (B.4) of k1 imply that

w(s, x) � e−κ+xe−x2/8s � exp
(
−κ+2k1

) x
2k1

exp

(
− x2

4k1+1

)
= exp

(
−2k1κ+

)
4k1ϕ(4k1 , x).

The final expression is the final term in the sum in (B.7), so (B.7) holds for all x � 2k0 as
claimed. By the definition (B.4) of k0, we have only used parameters λ = 4k � 4k0 � C0 in
(B.7). Moreover,λ � 4k1 � 24s, so s � βλ with β = 2−4. Thus by (B.1) and lemma B.2, there
exist hybrids Φk ∈ H independent of κ+ such that

Φk(0, x − L) � ϕ(4k, x),

with equality when x � L − K. Then (B.5) and (B.7) imply:
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w(s, x) � Φ−(0, x) + 2
k1∑

k=k0

exp
(
−2kκ+

)
4kΦk(0, x).

By lemma B.2, Φ−(t − s, x) and Φk(t − s, x) are supersolutions of (3.16). Thus the comparison
principle implies that

w(t, x) � Φ−(t − s, x) + 2
k1∑

k=k0

exp
(
−2kκ+

)
4kΦk(t − s, x) (B.8)

for all t � s and x ∈ R.
We can finally control various integrals of w. Notice that∫ ∞

0
ϕ(λ, x) dx ∼ λ− 1

2 and
∫
R+

xϕ(λ, x) dx ∼ 1.

If Φ is a hybrid with parameter λ � C0, it is a multiple of Cvλ(t, x + L; s) to the right of j(t).
By lemma B.1, the main term in vλ(t, x + L; s) is bounded by a multiple of ϕ(t + λ, x + L) as
t →∞. Using (2.34) and (2.35), lemma B.1, λ � C0 � 1, and s � 2−4λ, we can check that∫

R

ψ(x)Φ(t, x) dx � C,∫
R

ψ′(x)Φ(t, x) dx � C(t + 1)−1/2,∫
R

e−c|x|ψ(x)Φ(t, x) dx � C(t + 1)−3/2.

(B.9)

The sum of the coefficients 4k exp
(
−2kκ+

)
in (B.8) is O

(
κ−2
+

)
. Therefore, (B.8) and (B.9)

imply ∫
R

ψ(x)w(t, x) dx � C max{κ−2
+ , 1}∫

R

ψ′(x)w(t, x) dx � C max{κ−2
+ , 1}(t − s + 1)−1/2

∫
R

e−c|x|ψ(x)w(t, x) dx � C max{κ−2
+ , 1}(t − s + 1)−3/2

for all t � s, with a constant C depending on α, K, κ−, and λ∗ but not on s or κ+. Now
(3.18)–(3.20) follow from (4.15).

In all the above calculations, we assumed that s � 2−4C0, to satisfy the hypotheses of lemma
B.2. Now suppose that s ∈ [0, C0]. By (3.17),

w(s, x) � e−κ−x1R−(x) + e−x2/8s.

We claim that

w(t, x) � Ce−κ−x1R−(x) + Ce−x2/8t (B.10)

for all t ∈ [s, C0] and some C > 0 depending on κ−, λ∗, and C0. Then the estimates
(3.18)–(3.20) will hold for t ∈ [s, C0]. Moreover, w(C0, x) will satisfy (3.17) up to a multi-
plicative factor eCC0 , so our prior analysis will apply to t � C0.
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It remains to check (B.10). Let W1 denote the solution to the heat equation

∂tW1 = ∂2
x W1, W1(s, x) = e−κ−x1R−(x).

Because e−κ−x+κ2
− t solves the heat equation, we certainly have

W1(t, x) � e−κ−x+κ2
− t.

We can do better on R+ using the fundamental solution Gt(x) := (4πt)−1/2 exp
(
− x2

4t

)
. An

explicit computation yields

W1(t, x) = [Gt ∗ W1(0, · )](x) � exp

(
κ2
−t − x2

4t

)
when x � 0. So

W1(t, x) � eκ
2
+t

[
e−κ−x1R−(x) + exp

(
− x2

4t

)]
.

On the other hand, if W2 solves

∂tW2 = ∂2
x W2, W2(s, x) = e−x2/8s,

Gaussian identities imply that

W2(t, x) � e−x2/4(t+s)

for t > s. So if W solves the heat equation with W(s, x) = w(s, x), we have

W � W1 + W2 � eκ
2
+t

[
e−κ−x1R−(x) + exp

(
− x2

4t

)]
+ exp

(
− x2

4(t + s)

)
.

(B.11)

If we incorporate the drift term in (3.16), then W is a supersolution of (3.16). That is,

w(t, x) � W

(
t, x − 3

2λ∗
log

(
t + 1
s + 1

))
.

Using (B.11), we can easily verify (B.10). This completes the proof of lemma 3.3. �

Appendix C. The proof of lemma 4.3

In this appendix, we adapt the main result in [20] to incorporate exponential decay when x < 0.
Although [20] only explicitly handles the traditional quadratic KPP nonlinearity u − u2, its
results extend to general KPP nonlinearities f of the type considered here. The following bound
follows directly from theorem 1.3 in [20].

Theorem C.1 There exist C0, c0 > 0 such that

|H (t, x + m(t)) − U0(x)| � C0e−c0x

√
t + 1

for all (t, x) ∈ [0,∞) × R.
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We now replace e−c0x by e−c|x| in this bound.

Proof of lemma 4.3. Our KPP nonlinearity satisfies f ′(1) = −1 and f ′ ∈ Cβ . Hence there
exists θ ∈ (0, 1) such that

inf
s∈[θ,1]

[
− f ′(s)

]
� 1

2
.

Define

mθ(t) := sup {x ∈ R|H(t, x) � θ} .

By theorem 12 in [14],

H(t, x + mθ(t)) � U0(x + U−1
0 (θ)) for all (t, x) ∈ [0,∞) × (−∞, 0]. (C.1)

On the other hand, theorem C.1 implies that

mθ(t) − m(t) → U−1
0 (θ) as t →∞.

Hence there exists T � 1 such that∣∣m(t) − [mθ(t) − U−1
0 (θ)]

∣∣ � 1 for all t � T. (C.2)

Now note that H is always decreasing in x. Combining (C.1) and (C.2), we obtain

H(t, x + m(t)) � H(t, x + 1 − U−1
0 (θ) + mθ(t)) � U0(x + 1) � θ (C.3)

for all t � T and x � xθ :=U−1
0 (θ) − 1. Now define

Hm(t, x) :=H(t, x + m(t)) and w(t, x) :=Hm(t, x) − U0(x).

Using (1.5) and (1.9), we can check that w satisfies

∂tw = ∂2
x w + c∗∂xw − 3

2λ∗(t + 1)
(∂xw + U′

0) + f (Hm) − f (U0). (C.4)

We study w on the domain Q := [T,∞) × (−∞, xθ]. There, (C.3) and xθ = U−1
0 (θ) − 1

imply that θ � Hm, U0 < 1. It follows that − f ′ � 1/2 on the interval between Hm and U0.
Thus by the mean value theorem,

Q := − f (Hm) − f (U0)
w

� 1
2

in Q. (C.5)

We can then write (C.4) as

∂tw = ∂2
x w + c∗∂xw − Qw − 3

2λ∗(t + 1)
(∂xw + U′

0). (C.6)

Before analyzing (C.6), we state two a priori bounds on w. First, the second inequality in
(C.3) implies that U0(x + 1) � Hm � 1 in Q. In light of (1.10), both 1 − U0 and 1 − Hm decay
exponentially as x →−∞. In particular, there exists CT > 0 such that
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|w(T, x)| � CTeγ∗x for all x � xθ. (C.7)

This is an ‘initial’ bound on w. Using theorem C.1, we can control w on the boundary x = xθ:

|w(t, xθ)| �
C0e−c0xθ
√

t + 1
for all t � T. (C.8)

Together, these bounds control w on ∂Q.
Now define the affine operator

AW := ∂tW − ∂2
x W − c∗∂xW + QW +

3
2λ∗(t + 1)

(∂xW + U′
0).

We let

W(t, x) :=
M√
t + 1

eαx,

and choose M ∈ R+ and α ∈ (0, γ∗) so that AW � 0 and A(−W) � 0. We compute

AW =

[
− 1

2(t + 1)
− α2 − c∗α+ Q +

3α
2λ∗(t + 1)

]
W +

3
2λ∗(t + 1)

U′
0.

By (2.27) and α < γ∗, there exists CU ∈ R+ such that

3
2λ∗(t + 1)

|U′
0| � CUeαx.

Using (C.5) and our assumption t � T � 1, we find

(AW)e−αx �
[

1
4
− α2 − c∗α

]
M − CU. (C.9)

Choose α ∈ (0, γ∗) so that

α2 + c∗α <
1
4
.

Then using (C.7) and (C.8), we choose M > 0 sufficiently large that[
1
4
− α2 − c∗α

]
M − CU � 0

and W � |w| on ∂Q. In particular, (C.9) implies that AW � 0.
The same argument shows that A(−W) � 0, so W is a supersolution of (C.6) and −W is

a subsolution. Since |w| � W on ∂Q, the comparison principle implies that |w| � W in Q. In
light of theorem C.1, lemma 4.3 follows. �
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[1] Aïdékon E, Berestycki J, Brunet É and Shi Z 2013 Branching Brownian motion seen from its tip
Probab. Theory Relat. Fields 157 405–51

[2] Arguin L-P, Bovier A and Kistler N 2012 Poissonian statistics in the extremal process of branching
Brownian motion Ann. Appl. Probab. 22 1693–711

[3] Arguin L-P, Bovier A and Kistler N 2013 The extremal process of branching Brownian motion
Probab. Theory Relat. Fields 157 535–74

[4] Bramson M D 1978 Maximal displacement of branching Brownian motion Commun. Pure Appl.
Math. 31 531–81

[5] Bramson M D 1983 Convergence of solutions of the Kolmogorov equation to travelling waves Mem.
Am. Math. Soc. 44

[6] Brunet É and Derrida B 2011 A branching random walk seen from the tip J. Stat. Phys. 143 420–46
[7] Cortines A, Hartung L and Louidor O 2019 The structure of extreme level sets in branching

Brownian motion Ann. Probab. 47 2257–302
[8] Fisher R A 1937 The wave of advance of advantageous genes Ann. Eugen. 7 355–69
[9] Graham C 2019 Precise asymptotics for Fisher–KPP fronts Nonlinearity 32 1967–98

[10] Hamel F, Nolen J, Roquejoffre J-M and Ryzhik L 2013 A short proof of the logarithmic Bramson
correction in Fisher–KPP equations Netw. Heterog. Media 8 275–89

[11] Ikeda N, Nagasawa M and Watanabe S 1968 Branching Markov processes I J. Math. Kyoto Univ. 8
233–78

[12] Ikeda N, Nagasawa M and Watanabe S 1968 Branching Markov processes II J. Math. Kyoto Univ.
8 365–410

[13] Ikeda N, Nagasawa M and Watanabe S 1969 Branching Markov processes III J. Math. Kyoto Univ.
9 95–160

[14] Kolmogorov A N, Petrovskii I G and Piskunov N S 1937 Étude de l’équation de la diffusion avec
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