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Abstract – This paper presents a novel way of computing front positions in Fisher-KPP equations.
Our method is based on an exact relation between the Laplace transform of the initial condition
and some integral functional of the front position. Using singularity analysis, one can obtain the
asymptotics of the front position up to the O(log t/t) term. Our approach is robust and can be
generalised to other front equations.
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Introduction. – The goal of this letter is to present a
novel way of computing the asymptotic position of a front
propagating into an unstable phase. The typical equation
we consider is the Fisher-KPP equation [1,2],

∂th = ∂2
xh + h − h2 (Fisher-KPP), (1)

but our method is general and can be adapted to a large
class of other reaction-diffusion equations.

Equation (1) was introduced in 1937 independently by
Fisher [1] and by Kolmogorov, Petrovski, Piscounov [2]
in order to describe how a favourable mutation spreads
in a population (there, h(x, t) represents the fraction
of the population with the mutation at position x and
time t). This equation also appears in several other con-
texts [3], such as reaction-diffusion [4], growth [5], disor-
dered systems [6], branching processes [7–10], high energy
physics [11], etc. From the point of view of evolution-
ary biology, eq. (1) and its noisy version [4,12–18], are
one of the most basic theoretical models to describe the
evolution in a one-dimensional fitness landscape. In all
these models, determining the speed of adaptation (and
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the effect of selection on genealogies [19,20]) is a central
question [21–25].

It is remarkable that universal behaviours emerge both
from equations like (1) or like its noisy version, in the
sense that they do not depend on the precise form of the
nonlinearities. In fact, some properties of the Fisher-KPP
equation bear some similarities to properties seen in other
models used to describe evolutionary biology [26,27]. It
is therefore important to develop tools allowing to under-
stand these universal behaviours.

An important feature of (1) is that the solution con-
verges to a travelling wave: for an initial condition h0 ∈
[0, 1] such that h0(x) → 1 as x → −∞ and h0(x) → 0
exponentially fast as x → ∞, then

h(μt + z, t) → ωv(z),
μt

t
→ v, (2)

where μt is the position of the front (we will choose μt in
such a way that h(μt, t) = 1

2 but other choices are pos-
sible), v ≥ 2 is the asymptotic velocity and ωv(z) is the
travelling wave at velocity v, which is the unique solution
to

ω′′
v + vω′

v + ωv − ω2
v = 0,

ωv(0) =
1
2
, ωv(−∞) = 1, ωv(+∞) = 0.

(3)

The value of v depends only on the way the initial con-
dition decays at infinity. If h0(x) decays as e−x or faster,
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the asymptotic velocity is v = 2 [2,8,28]. For an initial
condition that (roughly) decays as e−γx with γ ∈ (0, 1),
the velocity is v = γ + γ−1 [9]. Since the work of Bram-
son [8,9], the leading sublinear terms for the position are
known: for example if the initial condition satisfies

h0(x) ∼ Axνe−γx,

then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μt = (γ + γ−1)t + ν log t + a + o(1), γ ∈ (0, 1),

μt = 2t +
ν − 1

2
log t + a + o(1), γ = 1, ν > −2,

μt = 2t − 3
2

log t + log log t + a + o(1), γ = 1, ν = −2,

μt = 2t − 3
2

log t + a + o(1), γ = 1, ν < −2,

or γ > 1,

(4)
where a is some constant. The last line also holds for
an initial condition decaying faster than any exponential.
Twenty years later, Ebert and van Saarloos [29] computed
the next term for μt in the case where the initial condition
decays fast enough:

μt = 2t − 3
2

log t + a − 3
√

π√
t

+ o(t−
1
2 ). (5)

It is remarkable that although the constant a is unknown
and depends on the precise shape of h0(x), the next-order
term can be determined and is universal. This corrective
term was rigorously established recently [30], but only for
initial conditions such that h0(x) = 0 if x is large enough.

So far, results (4) and (5) were obtained either by prob-
abilistic methods, exploiting the link between (1) and
branching processes [7–9,31] or by computing precisely
how the shape h(μt + x, t) of the centred front converges
to the travelling wave [2,12,28–30,32–35].

In a recent work [36,37], we have presented a new ap-
proach, different from previous ones, to compute the po-
sition of the front in an equation looking like (1), in a
particular case where the nonlinear term is replaced by a
free boundary condition: the problem was to find h and
νt such that{

∂th = ∂2
xh + h, for x > νt,

h(νt, t) = 1 and ∂xh(νt, t) = 0.
(6)

This approach was based on an exact relation between an
integral involving νt and the Laplace transform of the ini-
tial condition h0(x). It allowed us to show in [36,37] that
the results (4) and (5), known for the FKPP equation (1),
remain valid for the free boundary problem (6). We fur-
ther established the necessary conditions on the initial
condition under which the Ebert van Saarloos term holds
and obtained next-order terms.

In the present paper, we show that our method is much
more general and that it works even in the presence of

nonlinear terms in the equation. In particular, it can be
applied to (1). Introduce

ϕ(r, t) :=
∫

R

dz h(μt + z, t)2erz, (7)

and define
Ψ(r) :=

∫
R

dxh0(x)erx. (8)

Then, all our results will be obtained from the following
equality (derived in the next section): for any r < 1 small
enough so that (8) converges,

Ψ(r) =
∫ ∞

0
dt ϕ(r, t)erμt−(r2+1)t. (9)

Notice from (7) that ϕ(r, t)erμt is independent of μt.
Therefore, (9) holds in fact for an arbitrary choice of μt

and, by itself, it is not sufficient to determine the position
of the front. However, when μt is the position of the front
(defined as above by h(μt, t) = 1

2 ), we then have

ϕ(r, t) → ϕ̂(r) with ϕ̂(r) :=
∫

dz ωv(z)2erz, (10)

for r small enough, and we can evaluate the speed of that
convergence. Then, with (9) and (10), we will determine
the first terms of the large t asymptotics of μt.

Derivation of (9). – From its definition (7), it is ob-
vious that ϕ(r, t)erμt is independent of the choice of μt.
Thus, it is sufficient to establish (9) for μt = 0. Define,
for r small enough,

g(r, t) =
∫

R

dxh(x, t)erx. (11)

(Of course Ψ(r) = g(r, 0) from (8).) Then, from (1)
and (7) with μt = 0 one has

∂tg(r, t) = (1 + r2)g(r, t) − ϕ(r, t), (12)

where we integrated by parts
∫

dx∂2
xh erx. One can solve

(12) to get

g(r, t) = e(1+r2)t

[
Ψ(r) −

∫ t

0
ds ϕ(r, s)e−(1+r2)s

]
.

There only remains to show that

g(r, t)e−(1+r2)t → 0 as t → ∞ (13)

to obtain (9). The solution h(x, t) to (1) is smaller than
L(x, t), the solution to the linearised equation ∂tL(x, t) =
∂2

xL(x, t) + L(x, t) with L(x, 0) = h0(x). For any β

L(x, t) =
∫

R

dy h0(y)et e− (x−y)2

4t√
4πt

,

=
∫

R

dy h0(y)e(1+β2)t−β(x−y) e− (x−y−2βt)2

4t√
4πt

.
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Using the definition (8), this gives

L(x, t) ≤ e(1+β2)t
√

4πt
e−βxΨ(β). (14)

We choose β such that Ψ(β) < ∞. Then, we write that
h(x, t) ≤ min[1, L(x, t)]. By using the bound (14), one has

h(x, t) ≤

⎧⎪⎨
⎪⎩

1, if x < dβ,t,

e(1+β2)t
√

4πt
e−βxΨ(β), if x > dβ,t,

(15)

where dβ,t is the position where the second bound is also
equal to 1. Then, for r < β, one gets from (11)

g(r, t) ≤
(1

r
+

1
β − r

)
erdβ,t.

Using erdβ,t =
(

e(1+β2)t√
4πt

Ψ(β)
)r/β

, this leads for t > 1 to

g(r, t) ≤ Cer(β+β−1)t (16)

for some constant C. Choose furthermore β ≤ 1. With
r < β, one checks that r(β + β−1) < 1 + r2, and one
concludes that (13) and (9) hold for all r < 1 such that
r < sup

[
β; Ψ(β) < ∞]

.

Velocity selection. – Let us first see how (9) and (10)
allow to recover the asymptotic velocity v = limt→∞ μt/t
of the front, and how this velocity depends on the initial
condition.

First assume that Ψ(r) in (8) is singular as r ↗ γ ≤ 1,
meaning (roughly speaking) that h0(x) decays as e−γx.
Then, obviously, the right-hand-side of (9) must also be
singular as r ↗ γ. This singularity can only come from
the large t part of the integral, where ϕ(r, t) is nearly equal
to ϕ̂(r) according to (10). The only mechanism for (9) to
become singular at r = γ is that rμt − (r2 +1)t → −∞ for
r = γ − ε and rμt − (r2 + 1)t → +∞ for r = γ + ε (with
ε > 0 small). This means that μt ∼ vt with v such that
γv − (γ2 + 1) = 0, which is the expected relation between
the decay rate γ and the velocity v when γ < 1.

When Ψ(r) in (8) has no singularity up to r = 1 (mean-
ing that the initial condition decays “fast”), the velocity of
the front cannot be larger than 2 (otherwise, there would
a singularity at some γ < 1 solution to γv = γ2 + 1) so
it must be equal to 2 as there are no positive travelling
waves of speed less than 2; this is also a well-known fact
of the Fisher-KPP equation.

Higher-order corrections. – We have just seen that
the position of the singularity determines the velocity:
μt ≈ vt; we are now going to see that the nature of the
singularity gives the next-order terms in μt. Let us illus-
trate this method by focusing on the Ebert-van Saarloos
term (5). All the other asymptotics given in (4), includ-
ing the Bramson logarithmic term can be obtained in a
similar way.

Assume, for simplicity, that the initial condition decays
fast enough for Ψ(r) as given by (8) to be analytic at r = 1.
Then, from (4),

μt = 2t − 3
2

log t + a + o(1), (17)

where a is some unknown constant that depends on the
nonlinearity in the equation and on the initial condition.
We now apply our method to evaluate the o(1).

As a first attempt, let us look at what happens as r ↗ 1
in (9) when ϕ(r, t) is replaced by its limit ϕ̂(r) and μt is
given by 2t − 3

2 log t + a for t > t0, without any further
corrective terms. Then, with these substitutions, Ψ(1 − ε)
would be equal to

f(ε) + ϕ̂(1 − ε)e(1−ε)a
∫ ∞

t0

dt
e−ε2t

t
3
2

eε 3
2 log t, (18)

where f(ε), which corresponds to the integral from 0 to
t0, is obviously analytic. On the other hand, the integral
above is an incomplete Gamma function, which one can
expand in powers of ε to obtain

A + Bε + 6
√

πε2 log ε + Cε2 + O(ε3),

where A, B and C depend on t0, but where the singular
term in ε2 log ε does not. (See also the last section before
the conclusion.)

Such a singular term cannot be actually present in the
expansion of Ψ(1 − ε), because we know (from our choice
of initial condition) that Ψ is analytic at r = 1. As in the
linear case [37], the only possibility for the ε2 log ε term to
disappear, is that it is cancelled by another ε2 log ε term
coming from the o(1) in (17). One finds that this o(1)
term must be given, to leading order, by the Ebert and
van Saarloos term:

μt = 2t − 3
2

log t + a − 3
√

π√
t

+ · · · . (19)

Repeating the same procedure, one can notice that in-
serting μt = 2t − 3

2 log t + a − 3
√

π√
t

into (9) leads to a
ε3 log ε singular term in the expansion. By a careful small
ε expansion, one finds as that this term is cancelled by
choosing

μt = 2t− 3
2

log t+a− 3
√

π√
t

+
9
8
(5−6 log 2)

log t

t
+· · · , (20)

and so on: each new term in the large t expansion of μt

allows to remove a singularity in the small ε expansion of
Ψ , but introduces a new, weaker, singularity.

Remark that we started this analysis by requiring that
Ψ(r) is analytic at r = 1. In fact, this hypothesis is not
needed: to obtain (19), the only requirement is that there
is no ε2 log ε term in the expansion of Ψ(1 − ε):

Ψ(1 − ε) = A + Bε + o(ε2 log ε)
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for some constants A and B. (From (8), this condition
is satisfied if the initial condition decays a bit faster than
x−3e−x.) Similarly, the (log t)/t term of (20) requires that
there is no ε3 log ε term in Ψ(r), that is that the initial
condition decays a bit faster than x−4e−x.

At the beginning of the current section, we have re-
placed ϕ(r, t) in (9) by its limit ϕ̂(r) to obtain (18). It
is now time to justify this simplification. The term we
neglected until now is

Δ(r) =
∫ ∞

0
dt

[
ϕ(r, t) − ϕ̂(r)

]
erμt−(r2+1)t. (21)

We claim that

Δ(1 − ε) = Ã + B̃ε + C̃ε2 + O(ε3), (22)

which means that the first singularity in the small ε > 0
expansion of Δ(1 − ε) is smaller than ε3. Then, the re-
sult (20) still holds as it was obtained by suppressing a
singularity ε3 log ε, bigger than ε3.

To justify (22), we argue in the next section that, when
μt is defined as the position where the front is 1/2, one
has

ϕ(r, t) = ϕ̂(r) + O
(1

t

)
. (23)

Then, inserting (23) and Bramson’s estimate (17) for the
position μt of the front into (21), one obtains

Δ(1 − ε) =
∫ ∞

1
dt

e−ε2t+ 3
2 ε log t

t3/2 × O
(1

t

)
.

One checks directly that the integral on the right-hand
side satisfies (22).

Justification of (23). – With μt being the position
where the front is 1/2, define

δ(x, t) = h(μt + x, t) − ω2(x)

(recall that ω2 is the travelling wave at velocity 2). One
obtains from (1) and (3) that

∂tδ = ∂2
xδ + 2∂xδ + (1 − 2ω2)δ − (2 − μ̇t)(∂xδ + ω′

2) − δ2

≈ ∂2
xδ + 2∂xδ + (1 − 2ω2)δ − (2 − μ̇t)ω′

2,

where one has neglected two second-order terms (recall
that δ → 0 and 2 − μ̇t → 0). With μt ≈ 2t − 3

2 log t, one
expects (2− μ̇t) ∼ 3/(2t) for large times. This means that

δ(x, t) ∼ 3
2t

η(x), as t → ∞,

with η(x) the unique solution to

η′′ +2η′ +(1−2ω2)η = ω′
2, η(0) = 0, η(±∞) = 0.

(The ∂tδ = O(t−2) term is also negligible compared
to δ, so that δ satisfies a inhomogeneous second-order
linear equation. We eliminate other solutions by using
δ(0, t) = 0, and δ(±∞, t) = 0.)

One checks that η(x) ∼ −Ax3e−x for large x. We now
compute the difference

ϕ(r, t) − ϕ̂(r) =
∫

dx erx
[
h(μt + x, t)2 − ω2(x)2

]
=

∫
dx erxδ(x, t)

[
h(μt + x, t) + ω2(x)

]
∼ 3

2t

∫
dx erxη(x)

[
h(μt + x, t) + ω2(x)

]
.

In the integral, ω2(x) and h(μt + x, t) both decay roughly
like e−x for large x (more precisely, a standard result for
the Fisher-KPP equation is that ω2(x) ∼ Bxe−x for some
constant B). With η(x) ∼ −Ax3e−x, we see that the
integral converges if 0 < r < 2. In particular, it converges
for r around 1 and so we obtain (23).

A small ε expansion. – To illustrate the methods
used in the present paper to obtain the asymptotic expan-
sion of μt, we give here (without going into the details of
the computation) the small ε expansion of

I =
∫ ∞

0
dt e−ε2t+(1−ε)(μt−2t),

where μt is an arbitrary function such that, as t → ∞,

μt = 2t − 3
2

log t + a +
b√
t

+
c log t + d

t
+ o(t−1),

for arbitrary constants a, b, c, d. One finds

I = A0 + A1ε + 2ea(b + 3
√

π)ε2 log ε + A2ε
2

− 3ea(b + 3
√

π)ε3 log2 ε

+ ea
[(

15 − 8
3
c − 18 log 2

)√
π

− (3γE + 2a − 1)(b + 3
√

π)
]
ε3 log ε

+ A3ε
3 + o(ε3),

with γE the Euler constant. Notice that the singular terms
only depend on the asymptotic behaviour of μt, while the
regular terms A0, A1, . . . depend on the whole function
μt. For instance, A0 =

∫ ∞
0 dt eμt−2t and A1 = −ea2

√
π +∫ ∞

0 dt eμt−2t(2t − μt). The value of A0 is obvious, the
value of A1 is maybe less obvious, and A2 and A3 have
complicated expressions.

To remove the singularities in the expansion of I, the
only possible choice is b = −3

√
π and c = 9

8 (5 − 6 log 2).

Conclusion. – In this letter, we have presented a
new method to study the Fisher-KPP equation. It re-
lies on a single relation (9) between the initial condition
h0 (through Ψ) and the position μt of the front. A careful
analysis of the singularities in (9) leads to the large time
asymptotics of the position of the front.

In [36,37], we already used a similar method to study,
respectively, a linear front equation with a free boundary
or on the lattice. The (log t)/t term was first identified, for
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the lattice case in [38]. The main progress of the present
work is to show that this method is not limited to linear
fronts, but works also in the nonlinear case. Our main re-
lation in [37] was simpler than (9) because the term ϕ(r, t)
was absent. However, we argue that ϕ(r, t) converges fast
enough as t → ∞ for the large time analysis in [37] to
apply equally in the present setting, for the Fisher-KPP
equation.

The method presented here is robust, and can be
adapted to a wide variety of front equations. For instance,
one could apply it to

∂th = ∂2
xh + h − F (h),

with the h2 term replaced by an arbitrary nonlinearity
F (h) (satisfying some conditions such as F (h) > 0, F (0) =
F (1) = 0). In fact, F (h) could even be a functional of h
rather than a function, for instance for the nonlocal Fisher-
KPP [39]

∂th = ∂2
xh + h − hρ ∗ h,

where ρ > 0 is some well-behaved kernel with
∫

ρ = 1. One
could also work with equations discrete in space and/or
time [12,36].

For the noisy Fisher-KPP equation, the leading correc-
tions to the front velocity are also known to be universal in
a weak noise expansion [12–14,16]. It would be interesting
to know whether a generalization of the method presented
here could allow to recover these universal velocity correc-
tions, and to predict new ones.
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(ANR NONLOCAL). ÉB and BD were partially sup-
ported by ANR grant ANR-16-CE93-0003 (ANR MALIN)

REFERENCES

[1] Fisher R. A., Ann. Eugen., 7 (1937) 355.
[2] Kolmogorov A., Petrovsky I. and Piscounov N.,
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