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Abstract
Motivated by the study of branching particle systems with selection, we 
establish global existence for the solution (u,µ) of the free boundary problem




∂tu = ∂2
x u + u for t > 0 and x > µt,

u(x, t) = 1 for t > 0 and x � µt,
∂xu(µt, t) = 0 for t > 0,
u(x, 0) = v(x) for x ∈ R,

when the initial condition v : R → [0, 1] is non-increasing with v(x) → 0 as 
x → ∞ and v(x) → 1 as x → −∞. We construct the solution as the limit of a 
sequence (un)n�1, where each un is the solution of a Fisher–KPP equation with 
the same initial condition, but with a different nonlinear term. Recent results 
of De Masi A et al (2017 (arXiv:1707.00799)) show that this global solution 
can be identified with the hydrodynamic limit of the so-called N-BBM, i.e. 
a branching Brownian motion in which the population size is kept constant 
equal to N by removing the leftmost particle at each branching event.
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1. Main results and introduction

Consider the following particle system: N particles perform independent Brownian motions 
on the real line. At random, exponentially distributed times with rate one and independently 
of the other particles, each particle branches into two (i.e. creates a new particle at its cur-
rent position). The number of active particles is kept constant (and equal to N) by removing 
the leftmost particle from the system each time a particle branches. This is sometimes called 
branching Brownian motion with selection or N-BBM for short. Recently, De Masi et al [6] 
showed that as N → ∞, under appropriate conditions on the initial configuration of particles, 
the N-BBM has a hydrodynamic limit whose cumulative distribution can be identified with the 
solution of a free boundary problem, provided such a solution exists (see section 2 for more 
details).

In the present work we establish global existence and uniqueness for this free boundary 
problem:

Theorem 1.1. Let v : R → [0, 1] be a non-increasing function such that v(x) → 0 as x → ∞ 
and v(x) → 1 as x → −∞. Let µ0 = inf{x ∈ R : v(x) < 1} ∈ {−∞} ∪ R. Then there exists 
a unique classical solution (u,µ) with u ∈ [0, 1] to the following free boundary problem:





∂tu = ∂2
x u + u for t > 0 and x > µt,

u(x, t) = 1 for t > 0 and x � µt, (FBP)
∂xu(µt, t) = 0 for t > 0,
u(x, 0) = v(x) for x ∈ R.

Furthermore, this unique solution satisfies the following properties:

 •  For every t  >  0, u(·, t) ∈ C1(R) and is non-increasing, and ∂xu ∈ C(R× (0,∞)).
 •  As t ↘ 0, u(x, t) → v(x) at all points of continuity of v (since v is non-increasing, it is 

differentiable almost everywhere).
 •  If v(1) � v(2) are two valid initial conditions and (u(i),µ(i)) is the solution with initial 

condition v(i), then u(1) � u(2) and µ(1) � µ(2).

We say that (u,µ) is a classical solution to (FBP) above if µt ∈ R ∀t > 0, t �→ µt is con-
tinuous, u : R× (0,∞) → [0, 1], u ∈ C2,1({(x, t) : t > 0, x > µt}) ∩ C(R× (0,∞)), (u,µ) 
satisfies the equation (FBP), and u(·, t) → v(·) in L1

loc as t ↘ 0.
We shall first prove existence of solutions, and then prove uniqueness separately (without 

relying on the comparison principle included in the statement).

Remark 1. If instead v(x) → l > 0 as x → ∞, then a classical solution (u,µ) of (FBP) ex-
ists for t < tc = − log l, with µt → ∞ as t ↗ tc.

Remark 2. As discussed below, the condition that v is non-increasing can be relaxed to 
some extent (but then the result that u(·, t) is non-increasing is lost). Moreover, as we shall 
see in section 2 below, for studying the hydrodynamic limit of the N-BBM, one only needs to 
consider (FBP) with non-increasing initial conditions v.

The overall idea behind the proof is to construct u as the limit of a sequence of functions 
un, where, for each n, un satisfies an n-dependent nonlinear equation, but where all the un have 
the same initial condition. More precisely, let v : R → [0, 1] be a measurable function and, for 
n � 2, let (un(x, t), x ∈ R, t � 0) be the solution to
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{
∂tun = ∂2

x un + un − un
n for x ∈ R and t > 0,

un(x, 0) = v(x) for x ∈ R.
 (1.1)

For each n � 2, this is a version of the celebrated Fisher–KPP equation about which much is 
known (see e.g. [1, 12, 14, 17–19]). In particular,

 •  un exists and is unique,
 •  un(x, t) ∈ (0, 1) for x ∈ R and t  >  0 (unless v ≡ 0 or v ≡ 1).

Since the comparison principle applies, we see furthermore that for every x ∈ R, t > 0 fixed, 
the sequence n �→ un(x, t) is increasing. Therefore, the following pointwise limit is well 
defined:

u(x, t) := lim
n→∞

un(x, t), (1.2)

with u(x, t) ∈ (0, 1] for t  >  0 (unless v ≡ 0). Indeed, in most of the cases we are interested in, 
there are regions where u(x, t) = 1.

Heuristically, it is natural to expect u to be a solution of our free boundary problem (FBP) 
because the un

n term becomes negligible as n → ∞ except where 1  −  un is of order 1/n. Hence 
the limit u follows the linear equation where u  <  1 but still saturates at 1. The most delicate 
point, as is clear from the proofs, is to show that this limit is C1 in space.

We have the following results on u:

Theorem 1.2. Let v : R → [0, 1] be a measurable function. The function u(x, t) as defined 
by (1.1) and (1.2) satisfies the following properties:

 •  u is continuous on R× (0,∞) and, for t  >  0, u(·, t) is Lipschitz continuous.
 •  u(·, t) → v(·) in L1

loc as t ↘ 0, and if v is continuous at x then u(t, x) → v(x) as t ↘ 0.
 •  At any (x, t) with t  >  0 such that u(x, t) < 1, the function u is continuously differentiable 

in t and twice continuously differentiable in x, and satisfies

∂tu = ∂2
x u + u.

 •  u satisfies the following semigroup property: for any t  >  0 and any t0 � 0, u(·, t + t0) can 
be obtained as the solution at time t to (1.1) and (1.2) with an initial condition u(·, t0).

 •  If v(1) � v(2) are two measurable functions and u(i) is the solution to (1.1) and (1.2) with 
initial condition v(i), then u(1) � u(2).

The existence result in theorem 1.1 is then a consequence of the following result:

Proposition 1.3. Suppose that v (and µ0) is as in theorem 1.1, and define u(x, t) as in (1.1) 
and (1.2). Then there exists a map t �→ µt with µt ∈ R ∀t > 0 and µt → µ0 as t ↘ 0 such that

u(x, t) = 1 ⇔ x � µt for t > 0. (1.3)

Furthermore, t �→ µt is continuous and u(·, t) ∈ C1(R) for t  >  0 with ∂xu ∈ C(R× (0,∞)).

By combining theorem 1.2 and proposition 1.3, we have that if v is as in theorem 1.1 then 
(u,µ) is a classical solution of (FBP).

Remark 3. For an arbitrary measurable initial condition v, for t  >  0, u(·, t) is obviously 
C1 in the interior of the region where u  =  1, and by theorem 1.2 it is C1 in the region where 
u  <  1. The difficulty in proving proposition 1.3 is to show that u(·, t) is also C1 at the boundary 
between these two domains.
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Remark 4. It turns out that the proof that u(·, t) is C1 holds whenever the topological bound-
ary between the (two-dimensional) domains {u  =  1} and {u  <  1} has measure zero. (In the 
case where v is non-increasing, this is implied by the existence of a continuous map t �→ µt 
satisfying (1.3).) This means that it should be possible to show that u(·, t) is C1 for any ‘reason-
able’ initial condition.

Remark 5. The condition that v is non-increasing in theorem 1.1 is only used in the proof 
of proposition 1.3 to show the existence of a continuous boundary t �→ µt as in (1.3).

The idea of using the limit of (un)n�1 as the solution to (FBP) first appeared in [2] and the 
present article puts this intuition on a rigorous footing.

The rest of the article is organised as follows: the next section is devoted to putting our 
result in the context of several recent works on related problems; in particular, we give the 
precise relationship between (FBP) and the hydrodynamic limit of the N-BBM [6]. Next, in  
section 3, we present the precise versions of the Feynman–Kac representation that we shall use 
in the rest of the proof. The proof of one of these Feynman–Kac results will be postponed until 
section 7. We establish theorem 1.2 in section 4, and in section 6 we prove proposition 1.3.  
In section 6, we complete the proof of theorem 1.1 by proving the uniqueness of the classical 
solution of (FBP). In section 7, in addition to proving a Feynman–Kac formula, we also state 
and prove a version of the comparison principle which will be used throughout.

2. Context

Let ω  be a probability measure on R . Then define v : R → [0, 1] by setting

v(x) = ω([x,∞)).

Note that v is non-increasing, and that v(x) → 0 as x → ∞ and v(x) → 1 as x → −∞. 
Therefore, by theorem 1.1, there exists a unique classical solution (u,µ) to the free boundary 
problem (FBP), and ∂xu is continuous on R× (0,∞).

Let

ρ = −∂xu.

The following result is an easy consequence of theorem 1.1 and its proof.

Corollary 2.1. Let ω  be a probability measure on R  and let µ0 = inf{x ∈ R :  
ω([x,∞)) < 1} ∈ R ∪ {−∞}. Then (ρ,µ) constructed as above from the solution of (FBP) 
with initial condition v(x) = ω([x,∞)) is the unique classical solution with ρ � 0 to the fol-
lowing free boundary problem:




∂tρ = ∂2
xρ+ ρ for t > 0 and x > µt,

ρ(µt, t) = 0,
∫∞
µt

ρ(y, t) dy = 1 for t > 0, (FBP′)

ρ(·, t)dλ → dω(·) in the vague topology as t ↘ 0.

We say that (ρ,µ) is a classical solution to (FBP′) above if µt ∈ R ∀t > 0, t �→ µt is con-
tinuous, ρ : R× (0,∞) → [0,∞), ρ ∈ C2,1({(x, t) : t > 0, x > µt}) ∩ C(R× (0,∞)), and 

(ρ,µ) satisfies the equation (FBP
′
).

This result improves on a recent result of Lee [16], where local existence of a solution to 
(FBP′) is shown (i.e. existence of a solution on a time interval [0, T] for some T  >  0), under the 
additional assumptions that ω  is absolutely continuous with respect to Lebesgue measure with 
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probability density φ ∈ C2
c(R), and that there exists µ0 ∈ R such that φ(µ0) = 0, φ′(µ0) = 1 

and 
∫∞
µ0

φ(x) dx = 1.
In [6], De Masi et al. study the hydrodynamic limit of the N-BBM and its relationship with 

the free boundary problem (FBP′). The N-BBM is a variant of branching Brownian motion in 
which the number of active particles is kept constant (and equal to N) by removing the left-
most particle each time a particle branches.

We shall now define this particle system more precisely. Suppose that φ ∈ L1(R) is a prob-
ability density function which satisfies (a) ‖φ‖∞ < ∞ and (b) 

∫∞
r φ(x) dx = 1 for some 

r ∈ R. Let X1
0 , . . . , XN

0  be i.i.d. with density φ. At time 0, the N-BBM consists of N particles 
at locations X1

0 , . . . , XN
0 . These particles move independently according to Brownian motions, 

and each particle independently, at an exponentially distributed time with rate 1, creates a 
new particle at its current location. (More informally, during a small interval of time δt, each 
particle has a probability δt +O((δt)2) of branching.) Whenever a new particle is created, the 
leftmost particle is removed from the particle system.

Let Xt = {X1
t , . . . , XN

t } denote the set of particle locations at time t. Let π(N)
t  be the empiri-

cal distribution induced by the particle system at time t, i.e. for A ⊂ R, let

π
(N)
t (A) =

1
N
|Xt ∩ A|.

De Masi et  al prove in [6] that for each t � 0 there exists a probability density function 
ψ(·, t) : R → [0,∞) such that, for any a ∈ R,

lim
N→∞

πN
t [a,∞) =

∫ ∞

a
ψ(r, t) dr a.s. and in L1.

Moreover, they show that if (ρ,µ) is a classical solution of (FBP′) with initial condition ω  
given by dω = φ dλ then ψ = ρ. The following result is then a direct consequence of theorems 
1 and 2 in [6] and our corollary 2.1.

Corollary 2.2. Suppose φ ∈ L1(R) is a probability density function with ‖φ‖∞ < ∞ and ∫∞
r φ(x) dx = 1 for some r ∈ R. Construct an N-BBM with initial particle locations given by 

i.i.d. samples from φ, as defined above. Let π(N)
t  denote the empirical distribution induced by 

the particle system at time t. Then for any t � 0 and a ∈ R,

lim
N→∞

πN
t [a,∞) =

∫ ∞

a
ρ(r, t) dr = u(a, t) a.s. and in L1,

where (u,µ) is the solution of (FBP) with initial condition v given by v(x) =
∫∞

x φ(y) dy, and 
ρ = −∂xu.

Lee [16] points out that (FBP′) can be reformulated as a variant of the Stefan problem; let 
(ρ,µ) be a solution of (FBP′) and define

w(x, t) := e−t∂xρ(x, t) = −e−t∂xxu(x, t).

Then under some regularity assumptions, (w,µ) solves
{
∂tw = ∂2

x w for t > 0 and x > µt,
w(µt, t) = e−t, ∂tµt = − 1

2 et∂xw(µt, t) for t > 0. (Stefan)

The Stefan problem describes the phase change of a material and is one of the most popu-
lar problems in the moving boundary problem literature. Typically, it requires solving heat 
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equations for the temperature in the two phases (e.g. solid and liquid), while the position of the 
front separating them, the moving boundary, is determined from an energy balance referred to 
as the Stefan condition. The Stefan problem has been studied in great detail since Lamé and 
Clapeyron formulated it in the 19th century [15]. There are several reference books that the 
reader may consult such as the recent and up-to-date book [11].

Now that the existence and uniqueness of solutions of (FBP) has been established, the 
natural next step is to study the long time asymptotics of the solution, and in particular the 
long time asymptotics of µt . It is clear intuitively that µt → ∞ as t → ∞, and this is not very 
difficult to prove using the same techniques as in the proof of proposition 5.1 below. However, 
it is worth noting that t �→ µt is not in general monotone, even for simple initial conditions 
such as a Heaviside step function v(x) = 1{x<0}. Indeed, as will be shown later (see the proof 
of lemma 4.4), one has u(x, t) � t + pt ∗ v(x), where pt ∗ v(x) is the solution to the heat equa-
tion at time t with the same initial condition v. In particular, in the case of a Heaviside initial 
condition v(x) = 1{x<0}, the solution to the heat equation is simply an error function which 
remains equal to 1

2 at the origin. Then one has that u(0, t) � 1
2 + t  and, therefore, µt < 0 at 

least up to time 12.
The long time behaviour of µt  was the focus of [2]. In that paper, it was conjectured that 

(FBP) behaves very similarly to the Fisher–KPP equation (see (1.1)). In particular, it was con-
jectured that for initial conditions v that decay fast enough to zero, the front would converge 
to a travelling wave moving at velocity 2 [14]. In fact, for such a fast decaying v, one of the 
main (heuristic) results of [2] was that µt  (which one can interpret as the position of the front) 
has the following expansion:

µt = 2t − 3
2
log t + C − 3

√
π√
t

+
9
8
(5–6 ln 2)

log t
t

+O
(1

t

)
as t → ∞.

 

(2.1)

The asymptotic expansion (2.1) up to the constant term is the same as in Bramson’s celebrated 
result for the position of the Fisher–KPP front [3]. The 1/

√
t  correction is known as the Ebert–

van Saarloos term [9], and has been proved only recently for the Fisher–KPP equation for 
initial conditions with support bounded on the right [18]. The (log t)/t  correction [2, 4] has 
also been recently proved to be present in the Fisher–KPP case for a step initial condition [10].

The method used in [2] to obtain (2.1) relies on a remarkable relation between µt  and the 
initial condition v:

Lemma 2.3. Let v be as in theorem 1.1 with µ0 ∈ R and such that γ := sup
{

r :  ∫∞
µ0

v(x)erx dx < ∞
}
� 0. Let (u,µ) be the classical solution to (FBP). Then

1 + r
∫ ∞

0
dx v(µ0 + x)erx =

∫ ∞

0
ds er(µs−µ0)−(1+r2)s for all r < min(γ, 1).

 

(2.2)

(Although this can be proved rigorously and the proof is not very difficult, we omit it from 
the present work as it is not our main focus here; the main ideas can be found in [2, 4].)

For instance, take a step initial condition v(x) = 1{x�0}. Using (2.2) with r = 1 − ε gives
∫ ∞

0
ds e−ε2s+(1−ε)(µs−2s) = 1 ∀ε > 0. (2.3)

The right-hand side looks roughly like a Laplace transform of eµs−2s and, if results on the 
uniqueness of the inverse Laplace transform could be extended, one might expect that (2.3) 
completely characterizes the function µ. It should also be possible to extract the asymptotic 
results (2.1) out of (2.3) in a rigorous way.
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We leave the question of convergence of solutions of (FBP) to a travelling wave and the 
proof of the asymptotics (2.1) for future work.

3. Feynman–Kac formulae

In this section, we state the versions of the Feynman–Kac formula which we shall use repeat-
edly in the rest of the paper. So as not to interrupt the flow of the main argument, the proof for 
proposition 3.1 is postponed to section 7.

We introduce the heat kernel

pt(x) =
1√
4πt

e−
x2
4t .

 

(3.1)

For x ∈ R, we let Px  denote the probability measure under which (Bt)t�0  is a Brownian motion 
with diffusivity constant 

√
2 started at x. We let Ex denote the corresponding expectation. The 

symbol ∗ denotes convolution; for instance,

pt ∗ v(x) =
∫ ∞

−∞
dy pt(x − y)v(y) = Ex[v(Bt)]

is the solution at time t to the heat equation on R  with an initial condition v.

Proposition 3.1. Suppose that A ⊆ R× (0,∞) is an open set, and that w : A → R is C2,1 
and bounded, and satisfies

∂tw = ∂2
x w + Kw + S for (x, t) ∈ A, (3.2)

where K : A → R, S : A → R are continuous, S is bounded and K is bounded from above. 
Then, if one of the conditions below is met, we have the following representation for w(x, t) 
with (x, t) ∈ A:

w(x, t) = Ex

[
w(Bτ , t − τ)e

∫ τ
0 K(Bs,t−s) ds +

∫ τ

0
dr S(Br, t − r)e

∫ r
0 K(Bs,t−s) ds

]
,

 

(3.3)

where τ  is a stopping time for (Bs)s�0.
For the representation (3.3) to hold, it is sufficient to have one the following:

 1.  The stopping time τ  is such that (Bs, t − s) ∈ A for all s � τ ,
 2.  The set A is given by A =

{
(x, t) : t ∈ (0, T) and x > µt

}
 for some T  >  0 and some con-

tinuous boundary t �→ µt with µt ∈ R ∪ {−∞} ∀t ∈ [0, T], the stopping time τ  is given 
by τ = inf

{
s � 0 : Bs � µt−s

}
∧ t (the first time at which (Bτ , t − τ) ∈ ∂A) and, fur-

thermore, w is defined and bounded on Ā, continuous on Ā ∩ (R× (0,∞)) and satisfies 
w(·, t) → w(·, 0) in L1

loc as t ↘ 0.

Although this is a very classical result, we give a proof in section 7 for the sake of com-
pleteness and because we could not find an exact statement with stopping times or a discontin-
uous initial condition in the literature. The proof that (3.3) holds under condition 1 essentially 
follows the proof of theorem 4.3.2 in [8].

Proposition 3.1 gives some useful representations for the un defined in (1.1).

Corollary 3.2. Let v : R → [0, 1] be measurable, let n � 2 and let un(x,t) denote the solu-
tion to (1.1). Then by proposition 3.1:

J Berestycki et alNonlinearity 32 (2019) 3912
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 •  taking K = 1 − un−1
n  and S  =  0, for τ  a stopping time with τ < t:

un(x, t) = Ex

[
un(Bτ , t − τ)e

∫ τ
0 (1−un−1

n (Bs,t−s))ds
]

. (3.4)

 •  taking K = 1 − un−1
n , S  =  0, and τ = t:

un(x, t) = Ex

[
v(Bt)e

∫ t
0 (1−un−1

n (Bs,t−s))ds
]

. (3.5)

 •  taking K  =  0, S = un − un
n and τ = t:

un(x, t) = Ex

[
v(Bt) +

∫ t

0
dr

[
un(Br, t − r)− un

n(Br, t − r)
]]

= pt ∗ v(x) +
∫ t

0
dr pr ∗

[
un(x, t − r)− un

n(x, t − r)
]
.

 (3.6)

 •  taking K  =  1, S = −un
n and τ = t:

un(x, t) = Ex

[
v(Bt)et −

∫ t

0
dr erun

n(Br, t − r)
]

= etpt ∗ v(x)−
∫ t

0
dr erpr ∗ un

n(x, t − r).
 (3.7)

Proof. This is a direct consequence of the previous result. □ 

We will also use the following representation for solutions of the free boundary problem 
(FBP):

Corollary 3.3. If v is as in theorem 1.1 and (u,µ) is a classical solution of (FBP) with ini-
tial condition v, then for t  >  0 and x ∈ R,

u(x, t) = Ex
[
eτ1{τ<t} + etv(Bt)1{τ=t}

]
, (3.8)

where τ = inf{s � 0 : Bs � µt−s} ∧ t.

Proof. This is a direct application of proposition 3.1 under condition 2, with K  =  1 and 
S  =  0. □ 

Finally, we use the following result to recognise solutions to partial differential equations:

Lemma 3.4. Suppose that a  <  b, t0 < t1, and that g : [a, b]× [t0, t1] → [0,∞) is continu-
ous and for x ∈ [a, b] and t ∈ [t0, t1],

g(x, t) = Ex [g(Bτ , t − τ)eτ ] ,

where τ = inf{s � 0 : Bs ∈ {a, b}} ∧ (t − t0). Then g ∈ C2,1((a, b)× (t0, t1)) with

∂tg = ∂2
x g + g for (x, t) ∈ (a, b)× (t0, t1).

Proof. The proof is the same as the proof of exercise 4.3.15 in [13], where an outline proof 
is given. □ 
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4. Proof of theorem 1.2

In this section, we suppose v : R → [0, 1] is measurable. Let un denote the solution of (1.1) 
and define u as in (1.2). We shall use the following basic results on the smoothing effect of 
convolution with the heat kernel p t as introduced in (3.1).

Lemma 4.1. Suppose t  >  0.

 1.  If x �→ a(x) is bounded, then x �→ pt ∗ a(x) is C∞ and ( pt ∗ a)(n)(x) = p(n)
t ∗ a(x).

 2.  If (x, s) �→ b(x, s) is such that bs := ‖b(·, s)‖∞ < ∞ for each s ∈ (0, t), and the map 

s �→ bs√
s is integrable on [0, t], then

f (x) :=
∫ t

0
ds

∫ ∞

−∞
dy ps(x − y)b(y, s) =

∫ t

0
ds ps ∗ b(x, s)

  is C1 and

f ′(x) =
∫ t

0
ds p′s ∗ b(x, s).

Proof. The first statement holds since for every n ∈ N and t  >  0, there exists a polynomial 

function qn,t : R → R such that |p(n)
t (x − y)| � |qn,t(x − y)|e−(x−y)2/(4t)∀x, y ∈ R. Then for 

the second statement, we have that fs(x) := ps ∗ b(x, s) is smooth, with

∣∣f ′s (x)
∣∣ = ∣∣p′s ∗ b(x, s)

∣∣ �
∫ ∞

−∞
dy

∣∣p′s(x − y)
∣∣bs =

bs√
πs

.

Since s �→ bs√
πs is integrable on [0, t], the result follows. □ 

The following result of Uchiyama provides a useful bound on the spatial derivative of un.

Lemma 4.2 ([19], section 4). For x ∈ R and t  >  0,

|∂xun(x, t)| � 1√
πt

+

√
8√
π

. (4.1)

Proof. We briefly recall Uchiyama’s proof. Using lemma 4.1 to differentiate (3.6) with 
respect to x, and bounding the result (using v ∈ [0, 1] and un − un

n ∈ [0, 1]) yields:

|∂xun(x, t)| �
∫ ∞

−∞

∣∣p′
t(x − y)

∣∣dy +
∫ t

0
ds

∫ ∞

−∞
dy

∣∣p′s(x − y)
∣∣ = 1√

πt
+ 2

√
t√
π

.

 

(4.2)

This bound reaches its minimum 
√

8/π at t  =  1/2. For t � 1/2, the result (4.1) follows im-
mediately from (4.2). Now fix t � 1/2 and let ̃un denote the solution of (1.1) with initial condi-
tion un(·, t − 1/2). Then by the same argument as for (4.2) we have that

|∂xũn(x, 1/2)| �
√

2√
π
+ 2

1√
2π

=

√
8
π

.
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Since ũn(·, 1/2) = un(·, t) by the definition of ũn, it follows that |∂xun(x, t)| �
√

8/π ∀x ∈ R, 
t � 1/2. □ 

In the following two lemmas, we prove the continuity of u.

Lemma 4.3. For any t  >  0, the map x �→ u(x, t) is Lipschitz continuous, with Lipschitz 

constant 1√
πt

+
√

8√
π

.

Proof. For x ∈ R and h  >  0, we can write, using (4.1),
∣∣∣un(x + h, t)− un(x, t)

∣∣∣ �
(

1√
πt

+

√
8√
π

)
h.

Then take the n → ∞ limit to conclude. □ 

Lemma 4.4. The map (x, t) �→ u(x, t) is continuous on R× (0,∞). Furthermore, u(·, t) → v 
in L1

loc as t ↘ 0, and if v is continuous at x then u(x, t) → v(x) as t ↘ 0.

Proof. Using the bound un − un
n ∈ [0, 1] in the expression for un in (3.6), we have that for 

x ∈ R, t0 � 0 and t  >  0,

un(x, t)− pt ∗ v(x) ∈ [0, t] and un(x, t0 + t)− pt ∗ un(x, t0) ∈ [0, t],

where for the second expression we used that un(·, t + t0) is the solution at time t of (1.1) with 
initial condition un(·, t0). Taking the n → ∞ limit, it follows that

u(x, t)− pt ∗ v(x) ∈ [0, t] and u(x, t0 + t)− pt ∗ u(x, t0) ∈ [0, t].

Since the solution to the heat equation  pt ∗ v converges to v in L1
loc as t ↘ 0, we have 

that u(·, t) → v in L1
loc. If v is continuous at x, then pt ∗ v(x) → v(x) as t ↘ 0, and hence 

u(x, t) → v(x) as t ↘ 0.
It remains to prove that u is continuous. By lemma 4.3, we have

|pt ∗ u(x, t0)− u(x, t0)| =
∣∣∣Ex

[
u(Bt, t0)− u(x, t0)

]∣∣∣

�

(
1√
πt0

+

√
8√
π

)
Ex [|Bt − x|] =

(
1√
πt0

+

√
8√
π

)√
4t
π

.

Therefore by the triangle inequality,

|u(x, t0 + t)− u(x, t0)|� |u(x, t0 + t)− pt ∗ u(x, t0)|+ |pt ∗ u(x, t0)− u(x, t0)|

� t +

(
1√
πt0

+

√
8√
π

)√
4t
π

.

Hence by the triangle inequality and then by lemma 4.3, for x1, x2 ∈ R, t0 � 0 and t  >  0,

|u(x1, t0 + t)− u(x2, t0)| � |u(x1, t0 + t)− u(x1, t0)|+ |u(x1, t0)− u(x2, t0)|

� t +

(
1√
πt0

+

√
8√
π

)(√
4t
π

+ |x1 − x2|

)
,
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and the result follows. □ 

We now turn to the semigroup property.

Lemma 4.5. Suppose v : R → [0, 1] , take t0 � 0 and, as throughout this section, let un and 
u denote the functions defined in (1.1) and (1.2). Furthermore, for t � t0, let un;t0(·, t) denote 
the solution at time t  −  t0 to (1.1) with the initial condition v(·) replaced by u(·, t0). Then for 
t � t0 and x ∈ R,

lim
n→∞

un;t0(x, t) = lim
n→∞

un(x, t) = u(x, t).

Proof. Since un(x, t0) � u(x, t0) ∀x ∈ R, it follows by the comparison principle that 
un(x, t) � un;t0(x, t) ∀x ∈ R, t � t0. Then for t � t0, by the Feynman–Kac formula (3.5),

un;t0(x, t)− un(x, t)

= et−t0Ex

[
u(Bt−t0 , t0)e

−
∫ t−t0

0 un−1
n;t0

(Bs,t−s) ds − un(Bt−t0 , t0)e−
∫ t−t0

0 un−1
n (Bs,t−s) ds

]

= et−t0Ex

[(
u(Bt−t0 , t0)− un(Bt−t0 , t0)

)
e−

∫ t−t0
0 un−1

n;t0
(Bs,t−s) ds

]

+ et−t0Ex

[
un(Bt−t0 , t0)

(
e−

∫ t−t0
0 un−1

n;t0
(Bs,t−s) ds − e−

∫ t−t0
0 un−1

n (Bs,t−s) ds
)]

� et−t0Ex

[
u(Bt−t0 , t0)− un(Bt−t0 , t0)

]
,

where, in the last step, we used that un;t0 � 0 and u � un for the first term and that un;t0 � un 
and un � 0 for the second term. By dominated convergence, the right hand side converges to 
zero as n → ∞, and this completes the proof. □ 

At this point, it is convenient to introduce the two sets

U :=
{
(x, t) ∈ R× (0,∞) : u(x, t) = 1

}

and S :=
{
(x, t) ∈ R× (0,∞) : u(x, t) < 1

}
.

 (4.3)

By the continuity of u, the set S is open.
The next proposition focuses on the set S, while proposition 4.7 below is about the behav-

iour of un in the set U.

Proposition 4.6. The map u is C2,1 on S and satisfies

∂tu = ∂2
x u + u on S. (4.4)

Proof. Choose (x, t) ∈ S. Let a, b, t0 and t1 be such that x ∈ (a, b), t ∈ (t0, t1) and 
[a, b]× [t0, t1] ⊂ S. By (3.4), we have that for (x′, t′) ∈ [a, b]× [t0, t1],

un(x′, t′) = Ex′

[
un(Bτ , t′ − τ)e

∫ τ
0

(
1−un−1

n (Bs,t′−s)
)

ds
]
, (4.5)

where τ = (t′ − t0) ∧ inf{s � 0 : Bs �∈ (a, b)} is the time at which (Bτ , t′ − τ) hits the bound-
ary of [a, b]× [t0, t1].

We now take the n → ∞ limit. For a given Brownian path (Bs)s�0, since (Bs, t′ − s) ∈ S  
for s ∈ [0, τ ], we have un(Bs, t′ − s) → u(Bs, t′ − s) < 1 as n → ∞ for s ∈ [0, τ ] and so, since 
τ � t′ − t0,
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∫ τ

0
un−1

n (Bs, t′ − s)ds → 0 as n → ∞.

Hence by dominated convergence in (4.5),

u(x′, t′) = Ex′

[
u(Bτ , t′ − τ)eτ

]
for any (x′, t′) ∈ [a, b]× [t0, t1]. (4.6)

The result then follows by lemma 3.4. □ 

To complete the proof of theorem 1.2, it only remains to note that if v(1) � v(2) are two 
measurable functions, and if u(i)

n  is the solution to (1.1) with initial condition v(i), then by the 
comparison principle u(1)

n � u(2)
n  and hence u(1) � u(2).

We finish this section by proving two more results on the behaviour of un which will be 
used in the proof of proposition 1.3 in the next section, but which do not require any additional 
assumptions on v.

Proposition 4.7. If (x, t) is in the interior of U, then

lim
n→∞

un
n(x, t) = 1.

In other words, un  =  1  −  o(1/n) in the interior of U, i.e. the convergence of un to 1 is rela-
tively fast.

Before proving this result properly, we give a heuristic explanation. As in the proof of 
proposition 4.6, choose a rectangle [a, b]× [t0, t1] in the interior of U, and write (4.5) for a 
point (x′, t′) ∈ (a, b)× (t0, t1). We take the limit n → ∞ again. By construction, un(x′, t′) → 1 
and un(Bτ , t′ − τ) → 1, so we obtain

1 = lim
n→∞

Ex′

[
e
∫ τ

0

(
1−un−1

n (Bs,t′−s)
)

ds
]
.

This equation  strongly suggests the result, because if there were a region where 
lim supn→∞ un

n < 1 which was visited by the paths (Bs, t′ − s) with a strictly positive prob-
ability then the limiting expectation above would be larger than 1. However, we were not able 
to turn this heuristic into a proper proof of proposition 4.7, so we used a completely different 
method.

Proof. Take (x, t) in the interior of U. For ε > 0, let

A = [−ε0.49, ε0.49].

(The exponent 0.49 could be any positive number smaller than 1/2.) Choose ε sufficiently 
small that [x − ε0.49, x + ε0.49]× [t − ε, t] ⊂ U . Note that un is a monotone sequence and conv-
erges pointwise to 1 on [x − ε0.49, x + ε0.49]× [t − ε, t]. Therefore, by Dini’s theorem, we can 
choose n0 sufficiently large that un(x + y, t − ε) > 1 − ε

2  for all y ∈ A and all n � n0.
Let wn(y ,s) denote the solution to

{
∂swn = ∂2

y wn + wn − wn
n for y ∈ R and s > 0,

wn(y, 0) =
(

1 − ε
2

)
1{y∈A} for y ∈ R. (4.7)

Then, by the comparison principle, un(x + y, t − ε+ s) � wn(y, s) for n � n0, s � 0 and 
y ∈ R.
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Heuristically, the domain A is so ‘large’ that, for times s � ε, the solution wn behaves lo-
cally near y   =  0 as if started from a flat initial condition. This suggests that ∂2

y wn(0, s) is very 
small for s ∈ [0, ε]. Indeed, starting from (3.7) we have

wn(y, s) = esps ∗ wn(y, 0)−
∫ s

0
dr es−r

∫ ∞

−∞
dz ps−r(y − z)wn

n(z, r).

Taking the derivative with respect to y , using lemma 4.1, yields

∂ywn(y, s) = esp′s ∗ wn(y, 0)−
∫ s

0
dr es−r

∫ ∞

−∞
dz p′s−r(y − z)wn

n(z, r).

Then integrating by parts with respect to z in the second term, we have that

∂ywn(y, s) = esp′s ∗ wn(y, 0)−
∫ s

0
dr es−r

∫ ∞

−∞
dz ps−r(y − z)n∂zwn(z, r)wn−1

n (z, r).

Note that |∂zwn(z, r)| � 1√
πr +

√
8√
π
 ∀z ∈ R by lemma 4.2, and the map r �→ es−r 1√

s−r

(
1√
πr +

√
8√
π

)
 

is integrable on [0, s]. Hence by lemma 4.1, we can take the derivative with respect to y  again, 

to obtain, at y   =  0,

∂2
y wn(0, s) = esp′′

s ∗ wn(0, 0)− n
∫ s

0
dr es−r

∫ ∞

−∞
dz p′s−r(−z)∂zwn(z, r)wn−1

n (z, r).

Clearly, ∂zwn(z, r) has the opposite sign to z, while p′
s−r(−z) has the same sign as z. Hence the 

double integral is negative and

∂2
y wn(0, s) � esp′′s ∗ wn(0, 0) =

(
1 − ε

2

)
es2p′

s(ε
0.49) = −

(
1 − ε

2

)
es ε0.49

2
√
πs

3
2

e−
ε0.98

4s .

The function s �→ s−
3
2 e−ε0.98/(4s) reaches its maximum at s = ε0.98/6 and is increasing on 

[0, ε0.98/6). Thus, for ε small enough, s �→ s−
3
2 e−ε0.98/(4s) is increasing on [0, ε] and so

∂2
y wn(0, s) � −ε−1.01e−

ε−0.02
4 for s ∈ [0, ε].

This bound is uniform in n and goes to zero faster than ε. Thus, we can choose ε small enough 
that ∂2

y wn(0, s) > −ε/2 ∀s ∈ [0, ε]. We use this in (4.7) and obtain, by the comparison princi-
ple, wn(0, s) � yn(s) for s ∈ [0, ε], where y n is the solution of

∂syn(s) = − ε

2
+ yn(s)− yn(s)n, yn(0) = 1 − ε

2
.

For n sufficiently large, y n(s) is an increasing function of s. Since, for s � 0, 
yn(s) � yn(0) = 1 − ε/2 and yn(s)n � en(yn(s)−1), we see, again by the comparison principle, 
that yn(s) � zn(s) ∀s � 0, where zn is the solution of

∂szn(s) = 1 − ε− en(zn(s)−1), zn(0) = 1 − ε

2
.
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This last equation can be solved explicitly, giving

zn(s) = 1 − 1
n
log

[
1 − e−n(1−ε)s

1 − ε
+ e−n

(
(1−ε)s− ε

2

)]

or, equivalently,

e−n(zn(s)−1) =
1 − e−n(1−ε)s

1 − ε
+ e−n

(
(1−ε)s− ε

2

)
.

Indeed, these expressions agree with the initial condition, and taking the derivative of the 
second expression gives

−n∂szn(s)e−n(zn(s)−1) = −n(1 − ε)

[
−e−n(1−ε)s

1 − ε
+ e−n

(
(1−ε)s− ε

2

)]

= −n(1 − ε)

[
e−n(zn(s)−1) − 1

1 − ε

]
,

which is equivalent to the original differential equation for zn(s). Hence setting s = ε and let-
ting n → ∞, we obtain that for ε sufficiently small,

lim
n→∞

e−n(zn(ε)−1) =
1

1 − ε
.

It follows that as n → ∞,

zn(ε) = 1 +
log(1 − ε)

n
+ o

(
1
n

)
.

Therefore

lim
n→∞

zn(ε)
n = 1 − ε.

Since for ε sufficiently small and n sufficiently large we have un(x, t) � wn(0, ε) � yn(ε) � zn(ε), 
this implies that for ε > 0 sufficiently small,

lim inf
n→∞

un
n(x, t) � 1 − ε,

which yields the desired conclusion. □ 

Lemma 4.8. If the topological boundary ∂U = ∂S between U and S has measure zero, then 
x �→ u(x, t) is C1 for every t  >  0, and ∂xu is continuous on R× (0,∞).

Proof. Let

u∗(x, t) :=
{

u(x, t) if u(x, t) < 1,
0 if u(x, t) = 1.

Then we have almost everywhere

un(x, t)− un
n(x, t) → u∗(x, t). (4.8)

Indeed, this holds in S (obviously) and in the interior of U (by proposition 4.7), and therefore 
holds almost everywhere by hypothesis. Hence by (3.6), letting n → ∞ and applying domi-
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nated convergence, for t  >  0,

u(x, t) = pt ∗ v(x) +
∫ t

0
dr pr ∗ u∗(x, t − r). (4.9)

Applying lemma 4.1, we have that u(·, t) is C1 with

∂xu(x, t) = p′t ∗ v(x) +
∫ t

0
dr p′r ∗ u∗(x, t − r),

and hence, by dominated convergence, ∂xu is continuous on R× (0,∞), as required. □ 

5. Proof of proposition 1.3

In this section, we suppose that v : R → [0, 1] is a non-increasing function such that v(x) → 0 
as x → ∞ and v(x) → 1 as x → −∞. Let µ0 = inf{x ∈ R : v(x) < 1} ∈ {−∞} ∪ R. Let un 
denote the solution of (1.1), and define u as in (1.2). For t  >  0, let

µt = inf
(
{x ∈ R : u(x, t) < 1} ∪ {∞}

)
∈ R ∪ {∞,−∞}.

Note that since v is non-increasing, by the comparison principle we have that x �→ un(x, t) is 
non-increasing for each n and each t � 0, and therefore the same property holds for u. Hence, 
since u is continuous on R× (0,∞), we have that for t  >  0

u(x, t) = 1 ⇔ x � µt.

We first prove that µt ∈ R for t  >  0 and bound the increments of µ.

Proposition 5.1. µt ∈ R for any t  >  0. Furthermore, there exists a non-negative continu-
ous increasing function ε �→ aε with a0  =  0 such that for any t  >  0 and any ε � 0,

µt+ε − µt � −aε. (5.1)

If µ0 ∈ R, the above also holds at t  =  0.

Proof. By (3.5), we have that for x ∈ R and t  >  0,

u(x, t) � etE0 [v(Bt + x)] , (5.2)

and so, by dominated convergence, u(x, t) → 0 as x → ∞. Hence µt < ∞ ∀t > 0.
We now turn to showing that (5.1) holds if µt ∈ R; we shall then use the ingredients of this 

proof to show that µt > −∞ for t  >  0. Take v : R → R measurable with 0 � v � v, and, for 
x ∈ R and t � 0, let

u(x, t) = etEx
[
v(Bt)

]
. (5.3)

Let T = sup{t � 0 : u(x, t) < 1 ∀x ∈ R}; (we call T the time at which u  hits 1). Then

u(x, t) � u(x, t) ∀x ∈ R, t � T . (5.4)
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Indeed, note that u(x, t) is the unique bounded solution to ∂tu = ∂2
x u + u  with initial condi-

tion v. By theorem 1.2, for t  <  T, u(·, t) is equal to the solution arising from (1.1) and (1.2) 
with v as initial condition. Again by theorem 1.2, it follows that u(·, t) � u(·, t) for t  <  T. By 
continuity, we now have (5.4).

Now fix ε > 0. Let v(x) = η1{x∈[−a,a]} for some fixed η ∈ (0, 1) and a  >  0 to be chosen 
later. For this choice of v, define u(x, s) as in (5.3). For ε sufficiently small, the pair (η, a) can 
be chosen in such a way that u  hits 1 at time ε (we shall explain below how this is done); by 
symmetry, the position where u  hits 1 is x  =  0.

Fix t � 0 such that µt ∈ R. Our definition of v ensures that v(x − µt + a) � u(x, t) for all 
x ∈ R. Then, by (5.4) and the semigroup property in theorem 1.2, u(x − µt + a, ε) � u(x, t + ε). 
In particular, 1 = u(0, ε) � u(µt − a, t + ε) and so µt+ε � µt − a.

We now complete the proof of (5.1) by showing that it is possible, when ε is sufficiently 
small, to choose a = aε := ε1/3 and to find ηε ∈ (0, 1) such that u  hits 1 at time ε, as required.

Introduce

f (s) = u(0, s) = ηεesP0 (|Bs| < aε) = ηεes
∫ aε

−aε

dy√
4πs

e−
y2

4s .

Note that

P0 (Bε � aε) =
∫ ∞

aε

dy√
4πε

e−
y2

4ε =

∫ ∞

aε/
√
ε

dy√
4π

e−y2/4 � e−ε−1/3/4.

Hence for ε sufficiently small,

eε
∫ aε

−aε

dy√
4πε

e−
y2

4ε > 1,

and we can find ηε < 1 such that

u(0, ε) = f (ε) = ηεeε
∫ aε

−aε

dy√
4πε

e−
y2

4ε = 1.

It only remains to show that f (s) < 1 for s < ε. To do this, we simply show that f ′(s) � 0 for 
s < ε. We have

f ′(s) = ηεes
(∫ aε

−aε

dy√
4πs

e−
y2

4s − aε
s

1√
4πs

e−
a2
ε

4s

)
. (5.5)

Clearly, for ε sufficiently small and s � ε, the first term in the parenthesis of (5.5) is arbitrar-
ily close to 1 while the second term is arbitrarily close to 0. Hence, f ′(s) > 0 ∀s � ε, which 
concludes the proof of (5.1).

Finally, we can now show that in fact µt > −∞ for t  >  0. Indeed, let v(x) = η1{x∈[−a,a]} 
where a  >  0 and η ∈ (0, 1) are such that u  hits 1 at some time s � t . (By the above argument, 
such a pair (η, a) can always be found. By symmetry, the position where u  hits 1 is x  =  0.) 
Now choose x0 such that v(x − x0) � v(x) ∀x ∈ R (this is always possible as we assumed 
v(x) → 1 as x → −∞). Then by (5.4) we have u(x − x0, s) � u(x, s) ∀x ∈ R and, in par-
ticular, 1 � u(x0, s), which implies that µs � x0. We now have that µs ∈ R for some s � t  and 
therefore, by (5.1), µt > −∞. □ 
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Proposition 5.2. The following left-limit exists for every t  >  0 and satisfies: (làg)

lim
ε↘0

µt−ε � µt.

Proof. Suppose that the left limit limε↘0 µt−ε does not exist for some t  >  0, and choose b 
and c such that

lim inf
ε↘0

µt−ε < b < c < lim sup
ε↘0

µt−ε.

Then for any ε > 0, there exists ε′ ∈ (0, ε) such that µt−ε′ > c. There also exists ε′′ ∈ (0, ε′) 
such that µt−ε′′ < b, so that µt−ε′′ − µt−ε′ < b − c. However, by proposition 5.1 and then by 
monotonicity of a,

µt−ε′′ − µt−ε′ � −aε′−ε′′ � −aε,

which is a contradiction if ε is sufficiently small that aε < c − b. Hence the left limit limε↘0 µt−ε 
exists. By proposition 5.1 again, µt−ε � µt + aε → µt as ε → 0, and so limε↘0 µt−ε � µt. □ 

Proposition 5.3. The map t �→ µt is right-continuous (càd and hence càdlàg), i.e. for 
every t � 0,

lim
ε↘0

µt+ε = µt.

Proof. Proposition 5.1 already implies that for t � 0, lim infε↘0 µt+ε � µt. It now remains 
to prove that for any t � 0, lim supε↘0 µt+ε � µt. Indeed, fix t  >  0 (we shall consider the case 
t  =  0 separately). For z  >  0, by the definition of µt , we have u(µt + z, t) < 1. Then since u is 
continuous on R× (0,∞), u(µt + z, t + ε) < 1 for ε sufficiently small, and so µt+ε � µt + z. 
Hence lim supε↘0 µt+ε � µt + z, and the result follows since z  >  0 was arbitrary.

It remains to consider the case t  =  0. First suppose µ0 ∈ R and take z  >  0. Since v is non-
increasing, we have that v(y) � v(µ0 + z/2) < 1 ∀y � µ0 + z/2. Since u(·, ε) → v in L1

loc as 
ε ↘ 0, and u(·, ε) is non-increasing for ε > 0, it follows that u(µ0 + z, ε) < 1 for ε sufficiently 
small, and so µε < µ0 + z . Hence for any z  >  0, lim supε↘0 µε � µ0 + z. By the same argu-
ment, if µ0 = −∞ then, for any z ∈ R, u(z, ε) < 1 for ε small enough. Therefore µε < z and 
so for any z ∈ R, lim supε↘0 µε < z. □ 

We can finally complete the following important step:

Proposition 5.4. The map t �→ µt is continuous on [0,∞).

Proof. By propositions 5.3 and 5.2, we already have that t �→ µt is càdlàg, and that for 
t  >  0, limε↘0 µt−ε � µt. Thus the only way in which µ could fail to be continuous would be 
if limε↘0 µt−ε < µt  for some t  >  0. Suppose, for some t  >  0, that limε↘0 µt−ε = a < b = µt, 
and take c ∈ (a, b). Define f (s) = u(c, s) and observe that f  is continuous on (0,∞).

Since limε↘0 µt−ε = a, we have f (t − ε) < 1 for all ε > 0 sufficiently small, but since 
µt = b, we have lims→t f (s) = f (t) = 1. Fix t0 ∈ (0, t) such that f (s) < 1 ∀s ∈ [t0, t), and 
define (ũ(x, s), x ∈ R, s � t0) as the solution of the boundary value problem
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∂tũ = ∂2

x ũ + ũ for x > c and s > t0,
ũ(c, s) = f (s) for s > t0,
ũ(x, t0) = u(x, t0) for x ∈ R.

 (5.6)

By theorem 1.2, and since u(x, s) < 1 for s ∈ [t0, t) and x  >  c, we have that ∂tu = ∂2
x u + u for 

x  >  c and s ∈ (t0, t). Since the solution of the boundary value problem (5.6) is unique it fol-
lows that for all s ∈ [t0, t) and x � c  we have ũ(x, s) = u(x, s). By taking s ↗ t  we also have, 
by continuity, ũ(x, t) = u(x, t) for x � c . But since µt = b, we must have ũ(x, t) = u(x, t) = 1 
∀x ∈ [c, b]. Furthermore, limx→∞ ũ(x, t) = limx→∞ u(x, t) = 0. This is impossible because 
for each s  >  t0, the solution ũ(·, s) of the boundary value problem is analytic (see theorem 
10.4.1 in [5]). □ 

The proof of proposition 1.3 is now essentially complete. The map t �→ µt is continuous 
on [0,∞), whether µ0 is finite or −∞. Therefore, defining U and S as in (4.3), we see that the 
topological boundary between these two domains is simply ∂U = ∂S = {(µt, t) : t > 0}. It 
has measure zero, and hence by lemma 4.8, u(·, t) is C1 for every t  >  0 and ∂xu is continuous 
on R× (0,∞).

6. Proof of uniqueness

In this section we prove that the classical solution to (FBP) is unique. We start with the fol-
lowing very simple lemma.

Lemma 6.1. If (u,µ) is a classical solution of (FBP), then for t  >  0,

µt = inf{y ∈ R : u(y, t) < 1}.

Proof. Suppose, for a contradiction, that µt < x := inf {y ∈ R : u(y, t) < 1} for some 
t  >  0. Take c ∈ (µt, x) and ε > 0 small enough that, by continuity, µt+s < c ∀s ∈ [0, ε]. Then 
by corollary 3.3, for y ∈ (c, x) and δ ∈ (0, ε],

u(y, t + δ) � eδPy
(
Bs ∈ [c, x] ∀s � δ

)
.

This is strictly larger than 1 for δ sufficiently small, which is a contradiction. □ 

This lemma implies that if u1 � u2 then µ1 � µ2, and so the proof of the comparison prop-
erty of theorem 1.1 will be a consequence of theorem 1.2 and the uniqueness of classical solu-
tions of (FBP). Furthermore, it implies that if (u,µ) and (ũ, µ̃) are two classical solutions to 
(FBP) with the same initial condition v, it is sufficient to show that u = ũ to obtain that µ = µ̃.

For t  >  0, let Gt denote the Gaussian semigroup operator, so that for f ∈ L∞(R) ∪ L1(R),

Gtf (x) = pt ∗ f (x) =
∫ ∞

−∞

1√
4πt

e−
(x−y)2

4t f (y) dy.

For m  >  0, let Cm denote the cut operator given by

Cmf (x) = min( f (x), m).

Suppose that v : R → [0, 1] is as in theorem 1.1, i.e. v is non-increasing, v(x) → 0 as 
x → ∞ and v(x) → 1 as x → −∞. For n ∈ Z�0 and δ > 0, introduce
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un,δ,−(x) :=
[
eδGδCe−δ

]n
v(x) and un,δ,+(x) :=

[
C1eδGδ

]n
vδ,+(x),

where we now define vδ,+. Recall that µ0 = inf{x ∈ R : v(x) < 1} ∈ R ∪ {−∞}; 

if µ0 ∈ R, let vδ,+(x) =
{

1 if x < µ0 + δ

v(x) if x � µ0 + δ, (6.1)

and if µ0 = −∞, let vδ,+(x) =
{

1 if v(x) > 1 − δ

v(x) if v(x) � 1 − δ. (6.2)

Our proof of uniqueness relies on the Feynman–Kac representation of corollary 3.3 and the 
following two results.

Lemma 6.2. Suppose (u,µ) is a classical solution of (FBP) with initial condition v. Then 
for n ∈ Z�0, δ > 0 and x ∈ R,

un,δ,−(x) � u(x, nδ) � un,δ,+(x). (6.3)

Lemma 6.3. For any δ > 0, n ∈ Z�0, and A � 1
2 ,

∫ A

−A

∣∣∣un,δ,+(x)− un,δ,−(x)
∣∣∣ dx � 4A(1 + eδn)(eδ − 1).

Suppose that (u,µ) and (ũ, µ̃) are classical solutions of (FBP) with initial condition v. Then 
by lemmas 6.2 and 6.3, for t  >  0, n ∈ Z�0 and A � 1

2 ,
∫ A

−A

∣∣∣u(x, t)− ũ(x, t)
∣∣∣ dx �

∫ A

−A

∣∣∣un, t
n ,+(x)− un, t

n ,−(x)
∣∣∣ dx � 4A(1 + et)(e

t
n − 1).

Since n ∈ Z�0 can be taken arbitrarily large, it follows that 
∫ A
−A

∣∣u(x, t)− ũ(x, t)
∣∣ dx = 0. 

Letting A → ∞, by continuity of u(·, t) and ũ(·, t) it follows that u(x, t) = ũ(x, t) ∀x ∈ R. 
Therefore (u,µ) is the unique classical solution to (FBP) with initial condition v.

It remains to prove lemmas 6.2 and 6.3. We shall require the following preliminary result 
for the proof of lemma 6.2.

Lemma 6.4. Suppose v+ : R → [0, 1] is non-increasing with v+(x) → 0 as x → ∞ and 
v+(x) = 1 for some x ∈ R. For t � 0, let u+(·, t) = etGtv+(·) and let

µ+
t = inf{x ∈ R : u+(x, t) < 1}.

Then µ+
t ∈ R ∀t � 0 and t �→ µ+

t  is continuous.

This is a simple result about the heat equation, which can be proved, for instance, using the 
same techniques as in section 5.

Proof of lemma 6.2. We shall show the following result: suppose that v : R → [0, 1] is 
as in theorem 1.1 and that (u,µ) is a classical solution of (FBP) with initial condition v. Let 
µ0 = inf{x ∈ R : v(x) < 1} ∈ R ∪ {−∞}. Suppose v− and v+ are non-increasing functions 
with

0 � v− � v � v+ � 1,
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and that v−(x) → 1 as x → −∞, v+(x) → 0 as x → ∞ and µ+
0 := inf{x ∈ R : v+(x) < 1} > µ0 . 

Take δ > 0. For t � 0 and x ∈ R, let

u+(x, t) = etGtv+(x) and u−(x, t) = etGtCe−δv−(x).

Let µ+
t = inf{x ∈ R : u+(x, t) < 1}. Then we shall prove that

u−(x, δ) � u(x, δ) � u+(x, δ) ∀x ∈ R and µ+
δ > µδ . (6.4)

Since u(x, δ) ∈ [0, 1], it follows from (6.4) that

0 � eδGδCe−δ v−(x) � u(x, δ) � C1eδGδ v+(x) � 1,

and (6.3) follows by the definition of vδ,+ and by induction on n.
We now prove (6.4). Let τ = inf{s � 0 : Bs � µδ−s} ∧ δ. Then by corollary 3.3, for x ∈ R,

u(x, δ) = Ex
[
eδv(Bδ)1{τ=δ} + eτ1{τ<δ}

]

� Ex
[
eδ min(v(Bδ), e−δ)1{τ=δ} + eδ min(v(Bδ), e−δ)1{τ<δ}

]

= Ex
[
eδ min(v(Bδ), e−δ)

]

= u−(x, δ).

Now let t0 := inf{t � 0 : µ+
t � µt}. By continuity of µt  and µ+

t  (from lem-
ma 6.4), we have t0  >  0. We will show below that t0 = ∞. Take t  <  t0 and, again, let 
τ = inf{s � 0 : Bs � µt−s} ∧ t. By proposition 3.1 we have

u+(x, t) = Ex
[
etv+(Bt)1{τ=t} + eτu+(Bτ , t − τ)1{τ<t}

]
.

Then, again by corollary 3.3,

u(x, t) = Ex
[
etv(Bt)1{τ=t} + eτ1{τ<t}

]

� Ex
[
etv+(Bt)1{τ=t} + eτu+(Bτ , t − τ)1{τ<t}

]

= u+(x, t),

where the second line follows since v � v+ and since, on {τ < t}, we have Bτ = µt−τ < µ+
t−τ  

and so u+(Bτ , t − τ) � 1. By continuity, the inequality also holds for t  =  t0 and so

u+(x, t) � u(x, t) ∀x ∈ R, t � t0. (6.5)

Suppose, for a contradiction, that t0 < ∞. Then, by continuity, µ+
t0 = µt0. Hence 

u(µt0 , t0) = 1 = u+(µt0 , t0) and ∂xu(µt0 , t0) = 0, and so by (6.5), ∂xu+(µt0 , t0) = 0.
Note that u+ is smooth on R× (0,∞) and, by the same argument as in lemma 4.2, for 

t  >  0, ∂xu+(·, t/2) is bounded. Therefore for x ∈ R,

∂xu+(x, t) = et/2pt/2 ∗ ∂xu+(x, t/2) < 0

since u+(·, t/2) is a non-increasing non-constant function.
We now have a contradiction. Therefore t0 = ∞ and we have µ+

δ > µδ and u+(x, δ) � u(x, δ) 
∀x ∈ R by (6.5). This completes the proof of (6.4). □ 
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Proof of lemma 6.3. Some of the ideas in this proof are from section 4.3 of [7].
In this proof, we use both the supremum norm ‖ ‖∞ and the L1 norm ‖ ‖1. When a property 

holds for both norms, we simply write it with ‖ ‖.
Note the following basic properties of our operators: for f , g ∈ L∞(R) ∪ L1(R), m  >  0 

and t  >  0, we have for either norm that

‖Cmf − Cmg‖ � ‖f − g‖, ‖Gtf‖ � ‖f‖. (6.6)

For the supremum norm, we also have that

‖Cmf − f‖∞ = max
(
‖f‖∞ − m, 0

)
. (6.7)

For w : R → [0,∞), δ > 0 and x ∈ R,

C1eδw(x) = min(eδw(x), 1) = eδ min(w(x), e−δ) = eδCe−δw(x). (6.8)

Using (6.8), we can rewrite un,δ,− as

un,δ,− = [eδGδCe−δ ]n v = [GδC1eδ]n v = Gδ[C1eδGδ]
n−1C1eδ v. (6.9)

We can also write un,δ,+ as

un,δ,+ = [C1eδGδ]
n vδ,+ = C1eδGδ[C1eδGδ]

n−1 vδ,+. (6.10)

Now let

f := eδGδ[C1eδGδ]
n−1 vδ,+ − eδGδ[C1eδGδ]

n−1 v,

and let g := un,δ,+ − un,δ,− − f . By the triangle inequality, we have
∥∥g

∥∥
∞ �

∥∥un,δ,+ − eδGδ[C1eδGδ]
n−1 vδ,+

∥∥
∞ +

∥∥eδGδ[C1eδGδ]
n−1 v − un,δ,−∥∥

∞.

By our expression for un,δ,+ in (6.10) and the properties of Gδ and C1 in (6.6) and (6.7) respec-
tively, the first term on the right hand side is bounded above by eδ − 1. A second application 
of the triangle inequality then yields
∥∥g

∥∥
∞ � eδ − 1 + (eδ − 1)

∥∥Gδ[C1eδGδ]
n−1 v

∥∥
∞ +

∥∥Gδ[C1eδGδ]
n−1 v − un,δ,−∥∥

∞.

Clearly 
∥∥Gδ[C1eδGδ]

n−1 v
∥∥
∞ � 1 by (6.6). Replacing un,δ,− by its expression in (6.9) gives

∥∥g
∥∥
∞ � 2(eδ − 1) +

∥∥Gδ[C1eδGδ]
n−1v − Gδ[C1eδGδ]

n−1C1eδv
∥∥
∞

� 2(eδ − 1) + eδ(n−1)
∥∥v − C1eδv

∥∥
∞,

where (6.6) was used repeatedly in the second inequality. But 
∥∥v − C1eδv‖∞ =∥∥C1v − C1eδv‖∞ � eδ − 1 by (6.6), and so

∥∥g
∥∥
∞ � 2(eδ − 1) + eδ(n−1)(eδ − 1) � (2 + eδn)(eδ − 1). (6.11)
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By (6.6) applied repeatedly, for either norm we have

‖f‖ � eδn‖vδ,+ − v‖.

We now need to consider two cases.

 •  If µ0 = −∞, then, by our definition of vδ,+ in (6.2), we have ‖vδ,+ − v‖∞ = δ and so 
‖f‖∞ � eδnδ.

 •  If µ0 ∈ R, then by our definition of vδ,+ in (6.1), ‖vδ,+ − v‖1 � δ  and so ‖f‖1 � eδnδ .

In either case, if A � 1
2  then

∫ A

−A
|f (x)| dx � 2Aeδnδ � 2Aeδn(eδ − 1).

By (6.11), we also have
∫ A

−A
|g(x)| dx � 2A(2 + eδn)(eδ − 1).

By a final application of the triangle inequality to un,δ,+ − un,δ,− = f + g, the result follows.
 □ 

7. Proof of the Feynman–Kac results from section 3

Before proving proposition 3.1, we need the following result:

Lemma 7.1. Let f : [0, 1] → R ∪ {−∞} be continuous with f (0) < 0 and f (1) < 0. Let 
(ξt)t∈[0,1] denote a Brownian bridge (with diffusivity 

√
2) from 0 to 0 in time 1. Then

P
(
min
s�1

(ξs − f (s)) = 0
)

= 0.

Proof. By a union bound, we have that

P
(
min
s�1

(ξs − f (s)) = 0
)

� P
(
min
s�1/2

(ξs − f (s)) = 0
)
+ P

(
min
s�1/2

(ξ1−s − f (1 − s)) = 0
)

.

Given any fixed continuous function b : [0,∞) → R with b(0) = 0, there is exactly one value 
of z ∈ R such that

min
s�1/2

{b(s) + 2sz − f (s)} = 0.
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Thus, recalling the definition of p t in (3.1),

P
(
min
s�1/2

(ξs − f (s)) = 0
)

= E
[
P
[
min
s�1/2

(ξs − f (s)) = 0
∣∣∣∣ ξ1/2

]]

=

∫ ∞

−∞
dz p1/4(z)P

(
min
s�1/2

{
1√
2
ξ2s + 2sz − f (s)

}
= 0

)

= E
[∫ ∞

−∞
dz p1/4(z)1{mins�1/2{ 1√

2
ξ2s+2sz−f (s)}=0}

]

= 0,

where the second equality holds since ξs ∼ N(0, 2s(1 − s)) and since conditional on 
ξ1/2 = z, (ξs)s∈[0,1/2] has the law of a Brownian bridge (with diffusivity 

√
2) from 0 to z in 

time 1
2), the third equality follows by Fubini’s theorem and the last equality follows because 

for each realisation of (ξs)s∈[0,1] there is exactly one value of z for which the integrand is non-
zero. By the same argument,

P
(
min
s�1/2

(ξ1−s − f (1 − s)) = 0
)

= 0,

and the result follows. □ 

Proof of proposition 3.1. Fix (x, t) ∈ A. We begin by proving the result under condition 1.  
For σ ∈ [0, τ ], let

Mσ = w(Bσ , t − σ)eIσ +

∫ σ

0
dr S(Br, t − r)eIr , where Iσ =

∫ σ

0
K(Bs, t − s) ds.

Since w is C2,1 on A, for σ � τ , we apply Itô’s formula (with no leading 1
2 in front of the ∂2

x  
term because (Bs)s�0 has diffusivity 

√
2):

dMσ = ∂xw(Bσ , t − σ)eIσdBσ + ∂2
x w(Bσ , t − σ)eIσdσ

− ∂tw(Bσ , t − σ)eIσdσ + w(Bσ , t − σ)eIσK(Bσ , t − σ)dσ + S(Bσ , t − σ)eIσdσ

= ∂xw(Bσ , t − σ)eIσdBσ + [−∂tw + ∂2
x w + Kw + S](Bσ , t − σ)eIσdσ

= ∂xw(Bσ , t − σ)eIσdBσ ,

where we used (3.2) in the last line, since (Bσ , t − σ) ∈ A for σ � τ . We see that (Mσ)σ�τ  is 
a local martingale. Therefore, since (Mσ)σ�τ  is bounded, we have that

w(x, t) = Ex[M0] = Ex[Mτ ],

which yields the result (3.3) under condition 1.
We now turn to condition 2, with A = {(x, t) : t ∈ (0, T), x > µt} and 

τ = inf
{

s � 0 : Bs � µt−s
}
∧ t. The stopping time τ  is the first time that (Bτ , t − τ) ∈ ∂A. 

For ε > 0 and δ > 0, introduce the stopping times

τε,δ = inf
{

s � 0 : Bs � µt−s + δ
}
∧ (t − ε), τε = inf

{
s � 0 : Bs � µt−s

}
∧ (t − ε) = τ ∧ (t − ε).
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By (3.3) under condition 1 with stopping time τε,δ we have that for x > µt,

w(x, t) = Ex

[
w(Bτε,δ , t − τε,δ)e

∫ τε,δ
0 K(Bs,t−s) ds +

∫ τε,δ

0
dr S(Br, t − r)e

∫ r
0 K(Bs,t−s) ds

]
.

We now take the limit δ → 0. Since µ is continuous, τε,δ → τε as δ → 0, and since w and S are 
bounded and K is bounded from above, and w is continuous on Ā ∩ (R× (0,∞)), we obtain, 
by continuity and dominated convergence,

w(x, t) = Ex

[
w(Bτε , t − τε)e

∫ τε
0 K(Bs,t−s) ds +

∫ τε

0
dr S(Br, t − r)e

∫ r
0 K(Bs,t−s) ds

]
.

 

(7.1)

We now take the limit ε → 0 to prove (3.3) under condition 2. Note that τε ↗ τ  as ε ↘ 0; 
as S is bounded and K is bounded from above, by dominated convergence

Ex

[∫ τε

0
dr S(Br, t − r)e

∫ r
0 K(Bs,t−s) ds

]
→ Ex

[∫ τ

0
dr S(Br, t − r)e

∫ r
0 K(Bs,t−s) ds

]
as ε ↘ 0.

We now turn to the first term on the right hand side of (7.1). As above, for r � 0, let 
Ir =

∫ r
0 K(Bs, t − s) ds. Write

Ex
[
w(Bτε , t − τε)eIτε

]
= Ex

[
w(Bτε , t − τε)eIτε1{τ<t}

]
+ Ex

[
w(Bt−ε, ε)eIt−ε1{τ=t}

]

(we used that τε = t − ε when τ = t). Since w and eI are bounded, and w is continuous on 
Ā ∩ (R× (0,∞)), by continuity and dominated convergence the first term on the right hand 
side converges to Ex

[
w(Bτ , t − τ)eIτ1{τ<t}

]
 as ε ↘ 0. For the second term, write

Ex

[
w(Bt−ε, ε)eIt−ε1{τ=t}

]
= Ex

[
w(Bt−ε, ε)eIt−ε

(
1{τ=t} − 1{τ�t−ε}

)]

+ Ex

[
w(Bt−ε, ε)eIt−ε1{τ�t−ε}

]
− Ex

[
w(Bt, ε)eIt1{τ=t}

]

+ Ex

[
w(Bt, ε)eIt1{τ=t}

]
.

 (7.2)

(In this equation, we set w(Bt, ε) to an arbitrary bounded value when Bt < µε.) It is clear by 
dominated convergence that the first line on the right hand side of (7.2) goes to 0 as ε ↘ 0.

Let us now show that the second line of (7.2) goes to 0 as ε ↘ 0. Define φr(y; x, t) as

φr(y; x, t) = Ex

[
δ(Br − y)eIr1{τ�r}

]
= pr(x − y)Ex

[
eIr1{τ�r}

∣∣∣Br = y
]
.

 
(7.3)

(This is the density of the probability, weighted by eIr, that the path of length r started from 
(x, t) arrives at (y, t − r) without touching the left boundary.) By integrating over the value of 
Br, we have that for r � t ,

Ex

[
w(Br, ε)eIr1{τ�r}

]
=

∫ ∞

−∞
dy w(y, ε)φr(y; x, t).

Thus, the second line of (7.2) can be written as

Ex

[
w(Bt−ε, ε)eIt−ε1{τ�t−ε}

]
− Ex

[
w(Bt, ε)eIt1{τ=t}

]
=

∫ ∞

−∞
dy w(y, ε)

(
φt−ε(y; x, t)− φt(y; x, t)

)
.

 (7.4)
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To show that the second line of (7.2) goes to zero as ε ↘ 0, it is then sufficient to show that ∣∣φt−ε(y; x, t)− φt(y; x, t)
∣∣ is bounded by an integrable function and goes to 0 as ε ↘ 0.

Let (ξt)t∈[0,1] denote a Brownian bridge (with diffusivity 
√

2) from 0 to 0 in time 1 and 
introduce, for x, y  fixed,

F(ξ, s, r) =
√

rξ + x + s
y − x

r
,

so that (F(ξs/r, s, r))s�r is a Brownian bridge from x to y  in time r. Then by (7.3),

φr(y; x, t) = pr(x − y)Ex

[
eIr1{τ�r}

∣∣∣Br = y
]

= pr(x − y)Ex

[
e
∫ r

0 K(Bs,t−s)ds1{µt−s<Bs ∀s<r}

∣∣∣Br = y
]

= pr(x − y)E
[
e
∫ r

0 K
(

F(ξs/r ,s,r),t−s
)

ds
1{µt−s<F(ξs/r ,s,r) ∀s<r}

]
.

Set r = t − ε and take the ε ↘ 0 limit. Now by the continuity of ξ,

1{µt−s<F(ξs/t ,s,t) ∀s<t} � lim inf
ε↘0

1{µt−s<F(ξs/(t−ε),s,t−ε) ∀s<t−ε}

� lim sup
ε↘0

1{µt−s<F(ξs/(t−ε),s,t−ε) ∀s<t−ε} � 1{µt−s�F(ξs/t ,s,t) ∀s<t}.

Since x > µt, for y > µ0  we can apply lemma 7.1, which yields that the probability that the 
lower and upper bounds above are different is zero. We can conclude, by dominated conv-
ergence, that

lim
ε↘0

φt−ε(y; x, t) = φt(y; x, t).

For y < µ0 , we have that y < µε for ε sufficiently small, and so for ε sufficiently small,

φt−ε(y; x, t) = 0 = φt(y; x, t).

Since t  >  0, and φt−ε(y; x, t) � pt−ε(x − y)etK by (7.3), it is easy to see that φt−ε(·; x, t) can 
be uniformly bounded for ε < t/2 by a function with Gaussian tails. Therefore, by dominated 
convergence we see that (7.4) (which is the second line of (7.2)) goes to 0 as ε ↘ 0.

It only remains to consider the third line of (7.2). Using (7.3), we can write

Ex

[
w(Bt, ε)eIt1{τ=t}

]
=

∫ ∞

−∞
dy w(y, ε)φt(y; x, t). (7.5)

Since w is bounded, φt(y; x, t) � pt(x − y)etK and w(·, ε) → w(·, 0) in L1
loc as ε ↘ 0, we have 

that
∫ ∞

−∞
dy w(y, ε)φt(y; x, t) →

∫ ∞

−∞
dy w(y, 0)φt(y; x, t) = Ex

[
w(Bt, 0)eIt1{τ=t}

]
as ε ↘ 0.

This completes the proof. □ 

For completeness, we now give a statement and proof of the comparison principle, because 
we could not find a statement in the literature which applies to solutions of (1.1) with merely 
measurable initial conditions.
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Proposition 7.2. Fix T  >  0. Suppose u1, u2 ∈ C2,1(R× (0, T]), v1, v2 : R → R are meas-
urable and for i ∈ {1, 2}, ui satisfies

{
∂tui = ∂2

x ui + fi(ui) for x ∈ R, t ∈ (0, T],
ui(·, t) → vi in L1

loc as t ↘ 0.
 (7.6)

Assume furthermore that u1 and u2 are bounded on R× (0, T], i.e. that there exist A, B ∈ R 
such that ui(x, t) ∈ [A, B] ∀x ∈ R, t ∈ (0, T], i ∈ {1, 2}. Also assume that f 1, f 2 are continuous, 
and that there exists λ such that u �→ f2(u)− λu is decreasing on [A, B]. (For instance, it is 
sufficient to have f 2 Lipschitz on [A, B].) Then

f1 � f2 and v1 � v2 implies u1 � u2 on R× (0, T].

Proof. Introduce ũi(x, t) = e−γtui(x, t)/(1 + x2) with γ  a constant to be chosen later. Direct 
substitution gives

∂tũi = ∂2
x ũi +

4x
1 + x2 ∂xũi + f̃i(ũi, x, t) for x ∈ R, t ∈ (0, T], (7.7)

where

f̃i(ũi, x, t) =
fi
(
eγt(1 + x2)ũi

)
eγt(1 + x2)

− γũi +
2

1 + x2 ũi.

Then, by choosing γ > λ+ 2 (where λ is as in the proposition), one can easily check that for 
fixed (x, t), the map ũ �→ f̃2(ũ, x, t) is decreasing on [e−γt(1 + x2)−1A, e−γt(1 + x2)−1B], the 
range of values that ũ2(x, t) can take. Notice also that ũi(x, t) → 0 as |x| → ∞ uniformly in 
t ∈ (0, T] because we assumed ui to be bounded.

Assuming f1 � f2 and v1 � v2, call M the infimum of ũ2 − ũ1 on R× (0, T]. Then there 
exists a sequence (xn, tn) ∈ R× (0, T] such that

ũ2(xn, tn)− ũ1(xn, tn) → M := inf
R×(0,T]

(ũ2 − ũ1) as n → ∞.

We need to show that M � 0 to conclude the proof. We consider two cases:

 •  If (xn)
∞
n=1 is not a bounded sequence, then M  =  0 because ũi(x, t) → 0 as |x| → ∞ uni-

formly in t ∈ (0, T].
 •  If instead (xn)

∞
n=1 is a bounded sequence, then up to extracting a subsequence one can 

assume that

(xn, tn) → (xM , tM) ∈ R× [0, T] as n → ∞.

  We then consider two subcases:
  –  If tM  >  0, then by continuity of the ũi one has M = ũ2(xM , tM)− ũ1(xM , tM). Hence the 

infimum M is in fact a minimum reached at the point (xM , tM), and one must have, at 
(xM , tM),

∂xũ2 = ∂xũ1, ∂tũ2 � ∂tũ1, and ∂2
x ũ2 � ∂2

x ũ1.

(The case ∂tũ2 < ∂tũ1 can only occur if tM  =  T; for tM ∈ (0, T), one must 
in fact have ∂tũ2(xM , tM) = ∂tũ1(xM , tM).) Then by (7.7), one obtains that 
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f̃2(ũ2, xM , tM) � f̃1(ũ1, xM , tM). But f̃1(ũ1, xM , tM) � f̃2(ũ1, xM , tM) and f̃2(·, xM , tM) is 
decreasing, so necessarily ũ2 � ũ1 at (xM , tM) and hence M � 0.

  –  If tM  =  0, we go back to considering the ui rather than the ũi. By the Feynman–Kac 
formula (3.3) (with K  =  0, S(y, s) = fi(ui(y, s)) and τ = t), we have

u2(x, t) � pt ∗ v2(x) + at and u1(x, t) � pt ∗ v1(x) + bt

where a = infu∈[A,B] f2(u) and b = supu∈[A,B] f1(u) (since f 1 and f 2 are continuous on 
[A, B], a and b are finite). Then

u2(x, t)− u1(x, t) � pt ∗ (v2 − v1)(x) + (a − b)t � (a − b)t

because v2 � v1. Since tn → 0 as n → ∞, it is clear that limn→∞[u2(xn, tn)− u1(xn, tn)] � 0 
and therefore that M � 0. □ 

Acknowledgments

JB and EB thank E Presutti and A De Masi for their hospitality at the GSSI, Italy where part 
of this work was conducted.

EB was partially supported by ANR grant ANR-16-CE93-0003 (ANR MALIN).
JB was partially supported by ANR grants ANR-14-CE25-0014 (ANR GRAAL) and ANR-

14-CE25-0013 (ANR NONLOCAL).

ORCID iDs

Julien Berestycki  https://orcid.org/0000-0001-8783-4937

References

	 [1]	 Aronson D G and Weinberger H F 1975 Nonlinear diffusion in population genetics, combustion, 
and nerve pulse propagation Partial Differential Equations and Related Topics (Berlin: Springer) 
pp 5–49

	 [2]	 Berestycki J, Brunet É and Derrida B 2017 Exact solution and precise asymptotics of a Fisher–KPP 
type front J. Phys. A: Math. Theor. 51 035204

	 [3]	 Bramson M D 1978 Maximal displacement of branching Brownian motion Commun. Pure Appl. 
Math. 31 531–81

	 [4]	 Brunet É and Derrida B 2015 An exactly solvable travelling wave equation in the Fisher–KPP class 
J. Stat. Phys. 161 801–20

	 [5]	 Cannon J R 1984 The One-Dimensional Heat Equation (Cambridge: Cambridge University Press)
	 [6]	 De Masi  A, Ferrari  P  A, Presutti  E and Soprano-Loto  N 2019 Hydrodynamics of the N-BBM 

process Stochastic Dynamics Out of Equilibrium 282 523–49
	 [7]	 De Masi A, Ferrari P A, Presutti E and Soprano-Loto N 2017 Non local branching Brownians with 

annihilation and free boundary problems Electronic Journal of Probability 24
	 [8]	 Durrett R 1996 Stochastic Calculus: a Practical Introduction (Boca Raton, FL: CRC Press)
	 [9]	 Ebert  U and van Saarloos  W 2000 Front propagation into unstable states: universal algebraic 

convergence towards uniformly translating pulled fronts Physica 146 1–99
	[10]	 Graham C 2019 Precise asymptotics for Fisher–KPP fronts Nonlinearity 32 1967
	[11]	 Gupta S C 2003 The classical Stefan problem: basic concepts, modelling, and analysis (Amsterdam: 

Elsevier)
	[12]	 Hamel F, Nolen J, Roquejoffre J-M and Ryzhik L 2013 A short proof of the logarithmic Bramson 

correction in Fisher–KPP equations Netw. Heterog. Media 8 275–9

J Berestycki et alNonlinearity 32 (2019) 3912

https://orcid.org/0000-0001-8783-4937
https://orcid.org/0000-0001-8783-4937
https://doi.org/10.1088/1751-8121/aa899f
https://doi.org/10.1088/1751-8121/aa899f
https://doi.org/10.1002/cpa.3160310502
https://doi.org/10.1002/cpa.3160310502
https://doi.org/10.1002/cpa.3160310502
https://doi.org/10.1007/s10955-015-1350-6
https://doi.org/10.1007/s10955-015-1350-6
https://doi.org/10.1007/s10955-015-1350-6
https://doi.org/10.1007/978-3-030-15096-9_18
https://doi.org/10.1007/978-3-030-15096-9_18
https://doi.org/10.1007/978-3-030-15096-9_18
https://doi.org/10.1214/19-EJP324
https://doi.org/10.1016/S0167-2789(00)00068-3
https://doi.org/10.1016/S0167-2789(00)00068-3
https://doi.org/10.1016/S0167-2789(00)00068-3
https://doi.org/10.1088/1361-6544/aaffe8
https://doi.org/10.1088/1361-6544/aaffe8
https://doi.org/10.3934/nhm.2013.8.275
https://doi.org/10.3934/nhm.2013.8.275
https://doi.org/10.3934/nhm.2013.8.275


3939

	[13]	 Karatzas I and Shreve S 2012 Brownian Motion and Stochastic Calculus (Berlin: Springer)
	[14]	 Kolmogorov A N, Petrovsky I G and Piskunov N S 1937 Etude de l’équation de la diffusion avec 

croissance de la quantité de matière et son application à un problème biologique Moscow Univ. 
Math. Bull 1 1–25

	[15]	 Lamé G and Clapeyron B 1831 Mémoire sur la solidification par refroidissement d’un globe liquide 
Ann. Chim. Phys. 47 250–2561

	[16]	 Lee J 2017 A free boundary problem in biological selection models (arXiv:1707.01232)
	[17]	 McKean H P 1975 Application of Brownian motion to the equation of Kolmogorov–Petrovskii–

Piskunov Commun. Pure Appl. Math. 28 323–31
	[18]	 Nolen J, Roquejoffre J-M and Ryzhik L 2016 Refined long time asymptotics for the Fisher–KPP 

fronts (https://doi.org/10.1142/S0219199718500724)
	[19]	 Uchiyama K 1978 The behavior of solutions of some nonlinear diffusion equations for large time 

J. Math. Kyoto Univ. 18 453–508

J Berestycki et alNonlinearity 32 (2019) 3912

http://arxiv.org/abs/1707.01232
https://doi.org/10.1002/cpa.3160280302
https://doi.org/10.1002/cpa.3160280302
https://doi.org/10.1002/cpa.3160280302
https://doi.org/10.1142/S0219199718500724
https://doi.org/10.1215/kjm/1250522506
https://doi.org/10.1215/kjm/1250522506
https://doi.org/10.1215/kjm/1250522506

	Global existence for a free boundary problem of Fisher–KPP type
	Abstract
	1. Main results and introduction
	2. Context
	3. Feynman–Kac formulae
	4. Proof of theorem 1.2
	5. Proof of proposition 1.3
	6. Proof of uniqueness
	7. Proof of the Feynman–Kac results from section 3
	Acknowledgments
	ORCID iDs
	References


