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Solid particles floating at a liquid interface exhibit a long-ranged
attraction mediated by surface tension. In the absence of bulk
elasticity, this is the dominant lateral interaction of mechanical
origin. Here, we show that an analogous long-range interaction
occurs between adjacent droplets on solid substrates, which crucially
relies on a combination of capillarity and bulk elasticity. We experi-
mentally observe the interaction between droplets on soft gels and
provide a theoretical framework that quantitatively predicts the
interaction force between the droplets. Remarkably, we find that,
although on thick substrates the interaction is purely attractive
and leads to drop–drop coalescence, for relatively thin substrates
a short-range repulsion occurs, which prevents the two drops
from coming into direct contact. This versatile interaction is the
liquid-on-solid analog of the “Cheerios effect.” The effect will
strongly influence the condensation and coarsening of drops on
soft polymer films, and has potential implications for colloidal as-
sembly and mechanobiology.
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The long-ranged interaction between particles trapped at a
fluid interface is exploited for the fabrication of microstructured

materials via self-assembly and self-patterning (1–5) and occurs
widely in the natural environment when living organisms or fine
particles float on the surface of water (6, 7). In a certain class of
capillary interactions, the particles deform the interface because of
their shape or chemical heterogeneity (8–10). In this case, the
change in interfacial area upon particle–particle approach causes an
attractive capillary interaction between the particles. In the so-called
Cheerios effect, the interaction between floating objects is mainly
due to the change in gravitational potential energy associated to the
weight of the particles, which deform the interface while being
supported by surface tension (11), and the same principle applies
when the interface is elastic (12–14). The name “Cheerios effect” is
reminiscent of breakfast cereals floating on milk and sticking to
each other or to the walls of the breakfast bowl.
Here, we consider a situation opposite to that of the Cheerios

effect, liquid drops deposited on a solid. The solid is sufficiently
soft to be deformed by the surface tension of the drops, resulting
in a lateral interaction. Recent studies have provided a detailed
view of statics of single-drop wetting on deformable surfaces (15–
19). The length scale over which the substrate is deformed is set
by the ratio of the droplet surface tension γ and the substrate
shear modulus G. The deformation can be seen as an elasto-
capillary meniscus, or “wetting ridge,” around the drop (Fig. 1 A
and B). Interestingly, the contact angles at the edge of the drop
are governed by Neumann’s law, just as for oil drops floating on
water. In contrast to the statics of soft wetting, its dynamics has
only been explored recently. New effects such as stick–slip mo-
tion induced by substrate viscoelasticity (20, 21) and droplet
migration due to stiffness gradients (22) have been revealed. The

possibility that elastocapillarity induces an interaction between neigh-
boring drops is of major importance for applications such as drop
condensation on polymer films (23) and self-cleaning surfaces
(24–27). The interaction between drops on soft surfaces might
also provide insights into the mechanics of cell locomotion (28–
30) and cell–cell interaction (31).
Here, we show experimentally that long-ranged elastic deforma-

tions lead to an interaction between neighboring liquid drops on a
layer of cross-linked polydimethylsiloxane (PDMS). The layer is
sufficiently soft for significant surface tension-induced deformations
to occur (Fig. 1). The interaction we observe can be thought of as
the inverse Cheerios effect, because the roles of the solid and liquid
phases are exchanged. Remarkably, the interaction can be either
attractive or repulsive, depending on the geometry of the gel. We
propose a theoretical derivation of the interaction force from a free-
energy calculation that self-consistently accounts for the deform-
ability of both the liquid drop and the elastic solid.

Experiment: Attraction Versus Repulsion
Here, the inverted Cheerios effect is observed with submillimeter
drops of ethylene glycol on a PDMS gel. The gel is a reticulated
polymer network formed by crosslinking small multifunctional
prepolymers—contrary to hydrogels, there is no liquid phase
trapped inside the network. The low shear modulus of the PDMS
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gel gives an elastocapillary length ℓ= γ=G= 0.17 mm sufficiently
large to be measurable in the optical domain.
The interaction between two neighboring liquid drops is

quantified by tracking their positions while they are sliding under
the effect of gravity along the surface of a soft solid held verti-
cally. The interaction can be either attractive (Fig. 1A) or re-
pulsive (Fig. 1B): drops on relatively thick gel layers attract
each other, whereas drops on relatively thin layers experience
a repulsion.
The drop–drop interaction induces a lateral motion that can

be quantified by measuring the horizontal component of the
relative droplet velocity, Δvx (Δvx > 0 implies repulsion). In Fig.
1C, we report Δvx as a function of the separation d, defined as
the shortest distance between the surfaces of the drops. The
drops (R ’ 0.5− 0.8 mm) exhibit attraction when sliding down a
thick layer (h0 = 8 mm, black curve), whereas they repel on a
thin layer (h0 = 0.04 mm, red curve). The value of Δvx is larger at
close proximity, signaling an increase in the interaction force.
Spontaneous merging occurs where drops come into direct
contact. Importantly, these interactions provide a new mecha-
nism for droplet coarsening (or ordering) by coalescence (or its
suppression) that has no counterpart on rigid surfaces.
The interaction force F can be inferred from the relative ve-

locities between the drops, by using an effective “drag law”,
where the drag is due to sliding on the gel. We first calibrate this
drag law by considering drops that are sufficiently separated, so
that they do not experience any mutual interaction. The motion
is purely downward and driven only by a gravitational force
Fg =Mg (inertia is negligible). Fig. 1D shows that the droplet
velocity vy approximately scales as F2

g . This force–velocity cali-
bration curve is in good agreement with viscoelastic dissipation
in the gel, based on which one expects the scaling law (21):

v∼
ℓ
τ

�
F

2πRγ

�1=n

. [1]

Here, n is the rheological exponent that emerges from the scale
invariance of the gel network (32–34), and τ is a characteristic
timescale. The parameter values n ’ 0.61 and τ ’ 0.68  s are cali-
brated in a rheometer (SI Materials and Methods). Eq. 1 is valid
for v below the characteristic rheological speed, ℓ=τ. Our ap-
proach is justified here because ℓ=τ∼ 0.25 mm=s for the silicone
gel, whereas the reported speeds reach at most ∼ 100 nm=s. The
large viscoelastic dissipation in the gel exceeds the dissipation
within the drop by orders of magnitude, and explains these ex-
tremely slow drop velocities observed experimentally (21, 35). In
this case, it was also shown that all of the dissipation occurs in a

very narrow region around the wetting ridge (21). Therefore, the
dynamic substrate deformation approaches the corresponding
static deformation beyond a distance vτK 60  nm from the contact
line. The force–distance relation for the inverse Cheerios effect can
now be measured directly using the independently calibrated
force–velocity relation (Fig. 1D and Eq. 1). By monitoring how
the trajectories are deflected with respect to the downward motion
of the drops, we obtain F (seeMaterials and Methods for additional
details). Despite the different origins of calibration and interaction
forces, both are balanced by the same dissipative mechanism be-
cause the dissipative viscoelastic force is nearly perfectly localized
at the contact line (21), which corroborates the validity of our
calibration routine.
The key result is shown in Fig. 2, where we report the interaction

force F as a function of distance d. Fig. 2A shows experimental data
for the attractive force (F < 0) between drops on thick layers (black
dots), together with the theoretical prediction outlined below.
Movie S1 shows an example of attractive drop–drop interaction.
The attractive force is of the order of micronewtons, which is
comparable to both the capillary force scale γR and the elastic
force scale GR2. The force decreases for larger distance and its
measurable influence was up to d∼R.
Fig. 2B shows the interaction force between drops on thin layers.

The dominant interaction is now repulsive (dJ h0) (Movie S2).
Intriguingly, we find that the interaction is not purely repulsive, but
displays an attractive range at very small distance. It is possible to
access this range experimentally in case the motion of the indi-
vidual drops are sufficiently closely aligned (Movie S3). The
“neutral” distance for which the interaction force changes sign
appears when the separation is comparable to the substrate thick-
ness h0, suggesting that the key parameter governing whether the
drops attract or repel is the thickness of the gel.

Mechanism of Interaction: Rotation of Elastic Meniscus
We explain the attraction versus repulsion of neighboring drops
by computing the total free energy E of drops on gel layers of
different thicknesses. The interaction force between the drops is
equal to the energy gradient with respect to the separation,
−∂E=∂d, which in the experiment is balanced by the forces due to
viscoelastic dissipation in the vicinity of the contact line. In contrast
to the normal Cheerios effect, which involves two rigid particles,
both the droplet and the elastic substrate are deformable, and
their shapes will change upon varying the distance d. Hence,
the interaction force involves both the elastic and the surface
tension contributions to the free energy. The free energy
emerges from self-consistently computed shapes of the drops
and elastic deformations.
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Fig. 1. The inverse Cheerios effect for droplets on soft solids. Two liquid drops sliding down a soft gel exhibit a mutual interaction mediated by the elastic
deformation of the substrate. (A) Drops sliding down a thick elastic layer attract each other, providing a new mechanism for coalescence. (B) Drops sliding
down a thin elastic layer (thickness h0) repel each other. (C) Measurement of the horizontal relative velocities Δvx of droplet pairs, as a function of separation
distance d. This measurement quantifies the interaction strength. (D) Sliding velocity of isolated droplets on the thick layer as a function of their volume.
These data are used to calibrate the relation between force (gravity) and sliding velocity.

2 of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1601411113 Karpitschka et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601411113/-/DCSupplemental/pnas.201601411SI.pdf?targetid=nameddest=STXT
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1601411113/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1601411113/video-2
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1601411113/video-3
www.pnas.org/cgi/doi/10.1073/pnas.1601411113


To reveal the mechanism of interaction, we first consider 2D
drops, for which the free energy can be written as follows:

E½h�= Eeℓ½h�+
Z
dry

dx  γSV
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ h′2

p

+
Z
wet

dx
h
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+H′2

p
+ γSL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ h′2

p i
.

[2]

The geometry is sketched in Fig. 3 B and C, and further details
are given in Supporting Information and Fig. S1. The elastic
energy Eeℓ is a functional of the profile hðxÞ describing the
shape of the elastic solid: the functional explicitly depends
on the layer thickness and is ultimately responsible for the
change from attraction to repulsion. The function HðxÞ repre-
sents the shape of the liquid–vapor interface. The integrals in
Eq. 2 represent the interfacial energies; they depend on the
surface tensions γ, γSL, γSV associated with the liquid–vapor,
solid–liquid, and solid–vapor interfaces, respectively. For the
sake of simplicity, we ignore here the possibility of a depen-
dence of surface energy on the elastic strain. In absence of the
Shuttleworth effect (36), surface stress and surface energy
are equal.
At equilibrium, the droplet shapes can be found by analyzing

the changes in the free energy upon variations of the functions
hðxÞ and HðxÞ. The variation of the contact line positions provide
the relevant boundary conditions (19). However, when two drops
are separated by a finite distance d, the drops are not at equi-
librium: the gradient in free energy results into an overdamped
motion in which changes in free energy are dissipated in the
solid. To compute the interaction force f (per unit length in the
2D model), one therefore needs to consider the work done by
the dissipative force −f that we can assume to be localized near
the inner contact line. This allows one to determine the in-
teraction force f =−∂E=∂d, with the convention that attractive
forces correspond to f < 0 (see Supporting Information and
Fig. S2 for details).
The energy minimization reveals the mechanism of drop–drop

interaction: the interaction force f appears in the boundary
condition for the contact angles,

f = γ cos θ+ γSL cos θSL − γSV cos θSV , [3]

where the angles are defined in Fig. 3. Eq. 3 can be thought of as
an “imbalance” of the static Neumann boundary condition. The
resulting interaction force due to the elastocapillary energy gra-
dient is balanced by the dissipation due to the viscoelastic nature
of the substrate. For a single droplet, the contact angles satisfy
Neumann’s law, which is Eq. 3 with f = 0 (Fig. 3A). On a thick
elastic layer, the overall shape of the wetting ridge is of the
following form (18, 19):

hðxÞ∼ γ

G
 Ψ

�
x

γs=G

�
, [4]

where the horizontal scale is set by the elastocapillary length
based on the solid surface tension γs. The origin of f can be
understood from the principle of superposition. Due to the sub-
strate deformation of a single drop, a second drop approaching
the first one will see a surface that is locally rotated by an angle
φ∼ h′∼ γ=γs. The elastic meniscus near the inner contact line of
this approaching drop will correspondingly be rotated by an an-
gle φ (Fig. 3B). Importantly, changes in the liquid angle θ scale as
∼ h=R∼ γ=ðGRÞ, which for large drops can be ignored. As a
consequence, this meniscus rotation induces a net resultant sur-
face tension forces according to Eq. 3, which is balanced by the
dissipative force f due to the viscoelastic nature of the substrate

(21). For small rotations, one obtains f ’ γφ, where φ follows
from the single-drop deformation (Eq. 4). There is no resultant
interaction force from the stress below the drop, which, due to
deformability of the drop, results only in a uniform pressure on
the solid-liquid interface.
The inverted Cheerios effect is substantially different from the

Cheerios effect between two particles floating at the surface of a
liquid. Apart from the drop being deformable, we note that the
energy driving the interaction is different in the two cases:
whereas the liquid interface shape is determined by the balance
between gravity and surface tension in the Cheerios effect, the
solid shape is determined by elastocapillarity in the inverted
Cheerios effect. Another difference is the mechanism by which
the interaction is mediated. The Cheerios effect is primarily
driven by a change in gravitational potential energy, which im-
plies a vertical displacement of particles: a heavy particle slides
downward, like a bead on a string, along the deformation created
by a neighboring particle (11). A similar interaction was recently
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Fig. 2. Measured interaction force F (symbols) as a function of their separation
d, compared with the 3D theory (red lines, no adjustable parameters). (A) At-
traction on a thick elastic layer (h0 ≈ 8 mm � R � ℓ). (B) Repulsion and at-
traction on a thin layer (R � ℓJh0 ≈40 μm). Each data point represents an
average over ∼10 realizations, with the error bars giving the SD. Measurements
are based on pairs of ethylene glycol drops whose radii are in the range
R∼ 0.7± 0.1 mm. The elastic substrate has a static shear modulus of 0.28 kPa.
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discussed for rigid cylinders that deform an elastic surface due to
gravity (14). In contrast, the inverted Cheerios effect discussed
here does not involve gravity and can be totally ascribed to
elastocapillary tilting of the solid interfaces, as shown in Fig. 3.
The rotation of contact angles explains why the drop–drop in-

teraction can be either attractive or repulsive. On a thick substrate,
the second drop experiences solid contact angles that are rotated
counterclockwise, inducing an attractive force (Fig. 3B). In contrast,
on a thin substrate, the elastic deformation induced by the second
drop has a nonmonotonic profile hðxÞ. This is due to volume con-
servation of the substrate: lifting the gel near the contact line cre-
ates a depression at larger distances (Fig. 3C). The rotation of the
contact angles thus changes sign, and, accordingly, the interaction
force changes from attractive to repulsive. The relevant length
scale for this phenomenon is set by the layer thickness h0.

Three-Dimensional Theory
The extension of the theory to three dimensions is straightforward
and allows for a quantitative comparison with the experiments. For
the 3D case, we compute the shape of the solid numerically, by first
solving for the deformation field induced by a single drop using an
axisymmetric elastic Green’s function (18). Adding a second drop
on this deformed surface gives an intricate deformation that is
shown in Fig. 4 and Fig. S3. The imbalance of the Neumann law

applies everywhere around the contact line: the background de-
formation induces a rotation of the solid contact angles around the
drop. According to Eq. 3, these rotations result into a distribution
of force per unit length contact line~f = f ðβÞ~er, where~er is the radial
unit vector and β is the azimuthal angle (Fig. 4). The resultant
interaction force~F is obtained by integration along the contact line,
~F =R

R
dβ~f ðβÞ (see Supporting Information and Fig. S4 for details).

By symmetry, this force is oriented along the line connecting the
two drops.
The interaction force obtained by the 3D theory is indicated by

the red curves in Fig. 2 A and B. The theory gives an excellent
description of the experimental data without adjustable parame-
ters. The quantitative agreement indicates that the interaction
mechanism is indeed caused by the rotation of the elastic meniscus.

Discussion
In summary, we have shown that liquid drops can exhibit a mutual
interaction when deposited on soft surfaces. The interaction is
mediated by substrate deformations, and its direction (repulsive
versus attractive) can be tuned by varying the thickness of the layer.
The measured force/distance relation is in quantitative agreement
with the proposed elastocapillary theory. The current study reveals
that multiple “pinchings” of an elastic layer by localized tractions γ
lead to an interaction having a range comparable to γ=G. The key
insight is that interaction emerges from the rotation of the elastic
surface, providing a generic mechanism that should be applicable
to a wide range of objects interacting on soft media.
Our model provides general concepts that are applicable to a

wide range of experimental settings, whenever objects exert dipolar
or quadrupolar forces on their substrate [the integral force must
vanish in this case, however, as is the case, e.g., for cells (37)]. The
length scale of interaction is governed by the ratio of two quanti-
ties: the force (per unit length) γ, and the substrate shear modulus
G. This can range from nanometers for small forces or stiff sub-
strates, to hundreds of microns for strong forces or soft substrates.
In biological settings, elastocapillary interactions may play a role in
cell–cell interactions, which are known to be sensitive to substrate
stiffness (31). One example would be stem cell aggregates that in-
teract with their extracellular matrix (38). In addition, the elastic
interaction could also play a role in cell–extracellular matrix inter-
actions, as a purely passive force promoting aggregation between
anchor points on the surface of adhered biological cells. For ex-
ample, it has been demonstrated that a characteristic distance of
about 70 nm between topographical features enables the clustering
of integrins. These transmembrane proteins are responsible for cell
adhesion to the surrounding matrix, mediating the formation of
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Fig. 4. Three-dimensional calculation of interface deformation for a pair of
axisymmetric drops. The elastocapillary meniscus between the two drops is
clearly visible, giving a rotation of the contact angle around the drop. The total
interaction force~F is obtained by integration of the horizontal force~f (indicated
in red) and is related to the free-energy gradient associated with a change in
separation between the drops. Parameter values are ℓ=R= 0.1, γ=γs = 1.
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Fig. 3. Mechanism of interaction between two liquid drops on a soft solid.
(A) Deformation hðxÞ induced by a single droplet on a thick substrate. The
zoom near the contact line illustrates that the contact angles satisfy the
Neumann condition. (B) A second drop placed on a thick substrate experi-
ences a background profile due to the deformation induced by the neigh-
boring drop on the right. This background profile is shown in red. As a
consequence, the solid angles near the elastic meniscus rotate by an angle φ
(see zoom). This rotation perturbs the Neumann balance, yielding an at-
tractive force f. In the experiment, this force is balanced by the dissipative
force due to the viscoelastic deformation of the wetting ridge. (C) On a thin
substrate the single-drop profile yields a nonmonotonic elastic deformation.
The zoom illustrates a rotation φ of the Neumann triangle in the opposite
direction, leading to a repulsive interaction.
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strong anchor points when cells adhere to substrates (39, 40).
Assuming that the topographical features “pinch” the cell with a
force likely comparable to the cell’s cortical tension, which takes
values in the range 0.1–1 mN/m (41–44), and an elastic modulus
of 103–104 Pa in the physiological range of biological tissues (45),
one predicts a range of interaction consistent with observations.
More generally, substrate-mediated interactions could be dy-

namically programmed using the responsiveness of many gels to
external stimuli (pH, temperature, electric fields). Possible ap-
plications range from fog harvesting and cooling to self-cleaning
or anti-fouling surfaces, which rely on controlling drop migration
and coalescence. The physical mechanisms revealed here, in com-
bination with the fully quantitative elastocapillary theory we pro-
pose, pave the way for new design strategies for smart soft surfaces.

Materials and Methods
Supporting Information provides further technical information, the deriva-
tion underlying Eq. 3, and the numerical scheme used for the calculations
of Figs. 2 and 4. Movies S1–S3 show typical experiments of drop–drop
interactions.

Substrate Preparation. The twoprepolymer components (DowCorning; CY52-276
A and B) were mixed in a ratio of 1.3:1 (A:B). Thick elastic layers (∼8 mm) were
prepared in Petri dishes (diameter, ∼90 mm). Thin layers (∼40 μm) were
prepared by spin-coating the gel onto silicon wafers. The thickness was
determined by color interferometry. See SI Materials and Methods for de-
tails on substrate curing and rheology (Fig. S5).

Determining the Interaction Between Drops. Droplets of ethylene glycol (V∼ 0.3–
0.8 μL) were pipetted onto a small region near the center of the cured substrate.

The sample was then mounted vertically so that gravity acts along the sur-
face (−y direction; compare Fig. 1 A and B). The droplets were observed in
transmission (thick layers) or reflection (thin layers) with collimated illumi-
nation, using a telecentric lens (JenMetar 1×) and a digital camera (pco
1200). Images were taken every 10 s. The contours of the droplets were
determined by a standard correlation technique.

At large separation, droplets move downward due to gravity. The grav-
itational force on each droplet is proportional to its volume. The relation
between force and velocity follows the same power law as the rheology, as
was explained recently (21).

Individual droplets have different volumes and move with different velocities.
Thus their distances change with time. Whenever two droplets approach each
other, their trajectories change due to their interaction. Drops on thick
substrates (Fig. 1C, black) attract and eventually merge. On a rigid surface,
these droplets would not have merged. The opposite holds for droplets on
thin layers (red): the droplets repel each other, which prevents coalescence.

To determine the interaction forces, we first evaluate the velocity vector of each
individual droplet. The droplets move in a quasi-stationary manner, and the total
force vector actingoneachdroplet is alignedwith its velocity vector. Themagnitude
of the total force is obtained through calibration from the data shown in Fig. 1D.
The interaction force is obtained by subtracting the gravitational force from the
total force. Fig. 2A shows data from nine individual droplet pairs, corresponding to
different times and different locations on the substrate. Fig. 2B shows data from 18
different droplet pairs. The raw data have been averaged over distance bins,
taking the SD as error bar.
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