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Abstract

The most common method to estimate a probability distribution function (PDF) from experimental data is to compute

a normalised histogram. This approximation implicitly assumes that the PDF is smooth at the scale of one histogram bin.
Usually, the normalised histogram is ill defined for the rarer events since the points are very scattered in that region. In
order to increase the quality of the PDF estimate, the assumption that the PDF is smooth can be used explicitly. A specially
designed regularisation method is constructed and tested on both synthetic and real turbulence signals. Using this procedure,
the estimated PDFs are now smooth and well-defined up to the unique rarest event (the last histogram point). Among its
direct applications, the method allows to get a better estimate of high order PDF moments and of PDFs convolution products.
©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this paper is to construct a procedure to improve the estimate of a probability distribution function
(PDF) from an experimental or numerical signal. This study has been motivated by turbulence problems. As in
many other physical systems, turbulence appears to be highly disorganised, quite unpredictable and presents a very
large range of physical scales. However, for given experimental conditions, the statistical properties of any signal
measured in turbulence are almost reproducible. These basic observations have induced physicists to look for a
probabilistic description of turbulence. For this purpose, PDFs of various physical quantities (velocity, velocity
increments, pressure, passive scalar, etc.) have been measured both experimentally and numerically. The question
of the intermittency of these signals has induced a strong interest for the rare (but large) events which correspond to
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Fig. 1. The example histografn;} (velocity gradient in a particular turbulent flow [2]), as a function of the bin nunitzerd computed for
N ~ 3.7 x 10 points.

the tails of the corresponding PDFs. To investigate the influence of these rare events, for instance by the measurement
of PDFs high order moments, it is necessary to record and process very long data signals, however limited at any
rate by numerical and experimental constraints. A recent state of the art can be found in [1] and in references therein.

We want, thus, to develop a regularisation method to increase, for a given data set, the accuracy of the PDF
estimate, and particularly for the rarest events. In a second article, we will present the results obtained on a real
turbulent velocity signal using this procedure. We will here present the method and discuss its validity. It is based
on the a priori constraint that the PDF is smooth (Section 2). It consists in the minimisation of the sum of two
functionals, one which measures the PDF smoothness (Section 3) and the other which characterises the likelihood
of the PDF to the histogram (Section 4). An adequate test is used to adjust the best compromise between these two
requirements (Section 5). The applications of the method to experimental histograms are discussed in Sections 6
and 7, before showing the benefits of the method on the example of a real turbulence signal (Section 8).

2. Basic principles

2.1. Histogram, cumulated histogram and rank ordering

For a start, let us consider a particular velocity gradient sigiigl measured as a function of time in one point
of a turbulent flow (see [2] for details). This signalr) is sampled at evenly spaced time intervals. t eienote
the time interval between consecutive samples. The signal is now a sequeNcsaaipled valuesy (nt) with
n=1,2 ..., N (N = 3.7 x 10’ for the example chosen). In order to characterise the statistjcstbé temporal
information has no importance. A first method is then to compute the histogram of the velocity gyadienthis,
the sampled values are binned into channels of widdnd centred aroung = (i — 1/2) A. The number of events
observed in théth bin is denoted by;. The resulting histograr;} is shown in Fig. 1 in the linear-logarithmic
representation in order to highlight the rarest events. An alternative is to consider the cumulated histogram, i.e., to
compute the number of events smaller thraand that, for each grid point The histogram is the discrete difference
of the cumulated histogram and thus contains strictly the same information: they are two ways of presenting the
same discrete data, the cumulated histogram being however smoother by construction. A striking consequence is
that the moments of order estimated from one or the other are strictly equal whereas the quantity to be integrated
to obtain the moment is much smoother with the cumulated histogram than with the histogram. There is, however,
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a possibility to construct a cumulative distribution function without binning, and thus keeping more information
than a binned histogram.

When the histogram (or the cumulated histogram) is computed, a part of the information contained in the signal
is lost: the whole list of the&v valuesy (nt) is no longer known exactly but is defined with an imprecision /2
on each sampled value. From the probabilistic point of view, this error is negligible for the rarest events (Fig. 1)
since the latter could have appear with the same probability several bins away from their real position. The direct
consequence is a large reduction of data without losing much information. For instance, instead of 81&x 10’
sampled values, the histogram of Fig. 1, obtained witk 2.16x 10~ 3y;ms, is composed by & 10° histogram bins
(from first to last empty bin). As a conclusion, the loss in information between the whole signal and the histogram
is not that important while the data compression between the two is massive. An alternative is the rank ordering
[3,4] which consists in keeping a part of the sampled values together with their rank.

2.2. On the normalised histogram as an (bad) approximation of a PDF

Before discussing the estimate of the velocity gradient PDF from this histogram, let us briefly recall its definition.
Roughly speakingp(y)dy is the probability of observing at an arbitrary time betweenandy + dy. To define
it more precisely, we have to consider first the cumulative distribution fun@igy) which is the probability to
observey smaller tharg at an arbitrary time. The cumulative distribution function increases from 0, for the smallest
accessible velocity gradient, to 1, for the largest one. Its derivatiy@ is positive and is by definition the PDF of
y. The PDFp(y) can evidently be either a function or a distribution (for instange @nly takes discrete values).
Usually, the PDFp (y) is directly deduced from the experimental histogfam via a normalisation by the factor:

n;
(i) m 1)

This estimate of the PDF can be justified by two successive approximations:

o Firstly, n; is an estimate of its average obtained with an infinite number of realisations of the experiment with
the same numbe¥ of sampled valuesi = (n;)). To say it in another wayj; /N is the probability that a point
falls in theith bin (7; = N(P(yi + A/2) — P(yi — A/2))).

e Secondly;z; /N A is itself a finite difference approximation of the PDF:

POt APy —AD)  Fi @
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The histogram points (Fig. 1) form a well-defined curve in the large probability region. On the contrary, in the
tails, the histogram is composed of bins containing only one geint= 1) separated by empty bing; = 0).
Besides, it is interesting to note that the linear-logarithmic representation of the histogram tails is problematic since
the bins for whichh; = 0 (In(n;) = —o0) cannot be shown (Fig. 1). To investigate the link between an histogram
and its corresponding PDF in the tails, let us consider an analytical PDF which exhibits large algebraic tails such
as for instance:

N
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The curver; is shown in Fig. 2 (solid line) together with a histogram example randomly generated using the
multinomial distribution and havingy = 4 x 10’ points (see Section 4). If the histogram is dispersed around the
PDF for large probability bingz; > 1), it is as previously composed by scattered points in the tailsz(for 1).
7; can be interpreted as the mean local density of points. If there is on the average less than one point per bin,
this density is of the order of the inverse of the distance between neighbouring points. For ingtaacg02
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Fig. 2. The PDR#;} (solid line) corresponding to Eg. (3) compared to an histograingenerated from it and containing = 4 x 10’ random
trials. The bins which do not contain any event are not shown. Note that in the tails, the distance between non empty bins is of th¢mprder of 1

corresponds, on the average, to one bin containing one éveat 1) surrounded by 1000 empty bins (Fig. 2). As
a conclusion, the last histogram points still capture some information, even if it is not directly accessible. It is this
information we want to use and reveal.

The PDF directly estimated by normalisation of the histogram (Eg. (1)) depends on the bimwidtdw does
its quality evolve whem\ is changed? FirstlyA should be sufficiently small to insure the validity of the second
approximation (Eqg. (2)). It is noteworthy that Eq. (2) requires the PDF be smooth at theAséade its radius of
curvature be everywhere much larger tharOn the other hand, the relative error made in the first approximation is
of the order offrl._l/2 and thus decreases when the mean number of points in a given channel increases. This means
that the second approximation requires a valua @fs large as possible. A compromise Arhas to be made. A
usual good choice foa is around 1/100 of the PDF typical radius of curvature (which is usually close to the root
mean square value) [4].

The conclusion that, at least for small values/afthe precision increases with (for fixed N) is somehow
paradoxical. Indeed, itis clear that the initial signal contains the whole available information (see Section 2.1). The
best estimate of the PDF, which uses the whole information, should, thus, correspond to the limA vemeis to
zero:

M1
p(y) =2 8y —y(r) 4)
n=1

This is in fact the best estimate of the PDF whastly uses the signal information. However, the usual estimate
(Eq. (1)) is better because the smoothness of the P@F over a scale\ is implicitly used. To say this in another
way, the smoothness of a PQKy) is an essential prior information which must addedto the information
contained in the signal. On the other hand, the problem of the PDF tails, i.e., of the rare events fully remains since it
corresponds to a region of the curwé/) where at least one of the approximations made is a bad one. This induces
a second paradoxical remark: to compute a PDF from a histogram using Eq. (1), the hypothesis that the PDF is
smooth is implicitly used but the resulting estimate of the PDF is not smooth at all.
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2.3. Regularisation methods

The aim of this article is, thus, to construct an alternative procedure to estimate the PDf bexdinily its
a priori smoothness. Our basic strategy is to fix a small bin wisltim order to use safely the finite difference
approximation of the derivative (Eq. (2)) and to concentrate on the estimgtef the mean histograrfi; from
the real realisatiorin; }. To fix the notations used beloy;} is the experimental histograrfyr;} is the real PDF
(forgetting the factotvV A) and we want to compute an estimdig} of this PDF. We consider non-normalised
histograms (in fact normalised t¥ but not divided byN A, neither rescaled by the standard deviation) both
because here the discrete nature of the histogram is of fundamental importance and because arrays of integers are
easier to manipulate than small real numbers (and thus save computer time). After the smoothing procedure, the
result{z;} can of course be normalised and rescaled.

In the particular example chosen here (Fig. 1), the PDF seems to be smooth in linear-logarithmic representation,
whereas it presents a sharper maximum in linear—linear representation (not shown). This choice of considering the
PDF logarithm is of course arbitrary, but related to our interest in the rarest events. We will, thus, consider in parallel
to the PDHr;}, its logarithm{e; }:

= eXHOl,') (5)

Using{«;} instead of{rr;} has the strong advantage of imposing the positive sigry @b that this constraint has
not to be specified explicitly. It will also simplify the requirement that the PDF logariilarhbe smooth.

The natural methods to use the a priori information {hgtis smooth are the so-called regularisation methods (see
[5] and references therein). The central idea of these methods is the minimisation of a furgtjonpith respect
to a set of unknownéy; }. This functionakyr[«;] quantify the compromise between two extreme requirements:

o the PDF should be perfectly smooth
o the PDF should pass through all the data.

o7 is thus defined as the sum of two positive functionals which have to be made explicit ¢; + Agps).
One, ¢ [a;], measures the agreement between the data (here, the histpgtarand the model (here, the PDF
{exp(e;)}). We will call it the likelihood, which does not mean only tHat} is close to the histografm; } but more
precisely tha{n;} can have occurred assuming tiwat} is the real PDF. The othepg[«;], reflects the smoothness
of the solution. is the relative weight of one requirement with respect to the other and can thus be interpreted as
a Lagrange multiplier. Finding the best solution corresponds to choosing a paramétéeh defines the ‘best’
compromise betweesmoothnesandlikelihood

In our case, the PDF is submitted to an additional constraint of normalisation:

Zexp(ai) = ZT[,’ =N (6)

Using the method of Lagrange multipliers, the new functiagnato minimise is defined as

o1 = QL + Aps + nen (7)
where
onlai]l =) _expla;) ®

and whereu is the Lagrange multiplier which has to be adjusted toggdtr;] = N.

We will now construct explicitly this regularisation method. The smoothing functipggt;] will be defined
in Section 3, the likelihood functional, [«;] in Section 4 and the criterion to adjust the Lagrange parameiter
Section 5. This construction will be made on the basis of the experimental histogram shown in Fig. 1.
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3. Construction of the smoothing functional

The role of the smoothing functionak[«;] is to specify the a priori belief that the PDF logarithm is smooth.
All the candidategq;} to be this PDF logarithm are not equivale@at]«;] must characterise their roughness and
thus theirprior probability to be the right one. One of the simplest possibility is to use a kind of bending energy of
the curvex; which has to be minimal. The local contribution to this bending energy depends quadratically on the
curvature of the curve. Using the finite difference approximation of the second derivative, the smoothing functional
reads

1 (da\> . 1 ,
pslo] = E/ <W> di ~ EXi:(aiH — 200 + 1) ()]

This smoothing functional is local in the sense that it links oneibimly to its two neighbours. In fact, it can
be generalised (and probably improved) by introducing a bending energy computed from the square modulus of
a wavelet transform of the curvg. The wavelet can then be slowly decaying (and defined on a large number of
bins), creating thus, a non-local smoothing constraint. Here, we use the basic discrete curvature (Eq. (9)) both for
the sake of simplicity and because a local constraint allows to save much computing time. It should be kept in mind
that the results can be straightforwardly extended to other forms of smoothing functionals.

In the mechanical analogy, the curveto be determined is an elastic line attracted by the histogram points. We
have now, in the likelihood functional, to specify the force field created by these points.

4. Construction of the likelihood functional
4.1. Construction

By analogy with the statistical negentropy, we consider for the likelihood functipifal;] the opposite of the
logarithm of the conditional probability that the experimental histogfafhwould be observed given thét;} is
the true PDF:

gL = —In(Proby[ni]) (10)

The problem is to model the real distribution PggHr;] in the case of a histogram. Let us suppose for the
moment that theV values set apart from the signal correspond/timdependent trials. As introduced abovey if
is the number of events observed in the interyaH A /2, y; + A /2] and7; its average over an infinite number
of realisations, the probability that a point falls in thk bin is7; /N . If we suppose thdtr; } is the true PDR7;},
the probability to obtain a particular realisatipn} is given by the multinomial distribution [6]:

N! 4 n™ N! —rexplain;)
Prol[ni] = Wnn_,' =NV —ni!l l 11)
i i

The negative of its logarithm can be decomposed in two parts, one which does not depend explicitly and
the other being the interesting part (the likelihood functional):

olei] = =) nia; (12)

With the simple form taken by, [«;]in Eq. (12), the Lagrange multipliet can be determined explicitly. Indeed,
the set{«;} which minimises the functional; verifies:
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0
Z% = D (uexpler) —n) = N(u ~1) =0 (13)

As a consequenceg, is equal to 1 and the functional simplifies in:

erleil =) |:eXp(Oti) —njo; + %(Oli+1 — 20; + ai—1)2] (14)
L
It is interesting to note that the normalisation of the P@2f} to N is a nonlocal constraint. Contrarily to other
smoothing filters which can be applied to the histogram, the regularisation method proposed here (see Section 3)
makes this constraint local in the sense that the Hessian of the funati@aband diagonal matrix with bandwidth
5. Thus, using the Levenberg—Marquardt algorithm to perform the minimisation of the estimatbe locality of
the potential to minimise allows to easily store and quickly invert its Hessian matrix.

4.2. Comparison with the ‘chi-square’ method

It should be noted that for quite high probability eve@s > 7; > 1), the multinomial distribution of Eq. (11)
can be normally approximated [6]:

(ni — m;)?
Proly;[n:] oc exp (-ZT> (15)
The negative of its logarithm, i.e., the corresponding negentropy is then simply

(= m)?

—In(Proby,y[n:]) ~ ZT (16)
which is Pearson’s ‘chi-square’ formula [7]. However, for small probability eve@ts,<« 1) the multinomial
distribution exhibits a strong deviation from Gaussianity. For the purpose of estimating the PDF in the tails, it is
very important to have captured this non-Gaussian feature which makes the difference with the usual ‘chi-square’
method [5]. Another empirical generalisation was also proposed by Holy [8].

4.3. Results

For a given Lagrange multiplier the solution of the minimisation verifies:

% = r(expla;) — n;) + (eiy2 — a1+ 6a; — et —1 +j—2) =0 a7)
To avoid any confusion, this solution will be denotediyr) and the corresponding PDF by(2.). Fig. 3 shows the
result of the minimisation on the example of the velocity gradient histogram introduced above (Fig. 1). The curve
7; (A) as a function of is plotted for three values of the Lagrange multipliein the limit wherei tends to 0 (when
the smoothing is not imposed) the estimated BPBE.) remains close to the experimental histogrant. For a
finite (but small) value of this parameter = 10%), the curvey; (1) is smoother but still feels the histogram points
individually. However, the curve is now continuous. For a larger vglue- 108), the peaks due to the separated
points are completely smoothed. The large probability region of the histogram appears to be more resistant to the
smoothing than the tails. These tails could be seen as rather arbitrary since they are below the scattered points
corresponding to large values. This can be understood by looking again at Fig. 2. For larger valugsgof
1 = 10'9) the histogram becomes even smoother but on a scale much larger than the curvature around 0 so that it
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Fig. 3. The PDFs; (1) estimated from the regularisation of the initial histograni for three values of the Lagrange multiplier= 10* (solid
line), » = 10° (dotted dashed line) ard= 102 (dashed line).

deviates strongly from the real histogrdm}. The curver; (1) quickly tends towards exponential tails which are
the natural asymptotes selected by the functignal

It can be seen from these observations that the regularisation procedure acts as a smoothing filter. By construction,
exp(—Aps[a;]) can be interpreted here as the prior probability foat be the true PDF logarithm. This probability
is Gaussian, with a variance equal tt\Ithe inverse of the Lagrange multiplier. The regularisation method can
thus be seen as a low pass filter in curvature with a typical curvature cut-off of otglér. However, it is better
than a Fourier transform filtering for at least two reasons. Firstly, it automatically conserves the PDF normalisation.
Secondly, the noise in the histogram tails cannot be removed by Fourier filtering since they are formed of localised
peaks with a large band signature on the Fourier transform. It is worth noting that it induces drastic problems to
compute PDFs convolution products using directly Fourier transforms. On the contrary, the method proposed here
solves this problem by taking into account the specific non-Gaussian statistic in the PDF tails.

4.4. Adding further constraints

It interesting to note that further constraints on the PDF can be easily introduced. For instance, the average of a
longitudinal velocity derivative should be zero (it is not the case on a finite signal, i.e., for a particular realisation).
This can be easily introduced by adding to the total functigrea new functionap 4 which specifies the constraint,

A
aloi] E/VP(V)dV ~ D Y (18)

and thus, a new Lagrange multipliey

Or = @L + ON + A@s + k@4 (19)

As previously, the Lagrange multiplierhas to be adjusted in order to verify the constraint= 0. Following this
example, any other constraint can (and should) be added in the regularisation.
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5. Construction of a criterion of selection for the lagrange multiplier
5.1. Construction

It can be seen in Fig. 3 that there exist between the smoothest@uevd 02) and the roughest ong = 10%),
a range of values of the Lagrange multipliewhich gives a correct estimate of the PBRX). We have now to
construct an objective criterion to select the ‘best’ value of the pararheBasically, we want to get the smoothest
estimater; (1) which does not contradict the hypothesis that ‘can’ have been generatedsif (1) is the real
PDF. In other words, we want to test if the dispersion of the histodragraround the curver; (1) approximately
corresponds to the dispersion predicted by the multinomial distribution. We chose among the possible criteria to
use the statistical negentropy defined by Egs. (10) and (11). Using the Stirling formula, it can be approximated

by:
~InGProty i) ~ i (%) (20)

The test consists in requiring this negentropy to be equal to the canonical negentropy. If we suppase)tieat
the real PDF, the canonical negentropy can be defined as the average of the negentropy (Eg. (20)) over the possible
realisationgn;}. It can be written in the form:

(= In(Proh[ni])) = =) _Prob[n;]In(Proby[ni]) = > T(mi, N) (21)
{ni} i

whereT (p, N) is the canonical negentropy considering only one bin of probahility and N independent trials,
as previously. Since the number of pointim this bin is distributed according to the binomial distributi@rip, N)
reads:

N n N—n
n N!' —p" (N —p) n

T(,N>E<m<_)>=_ PN =P |n<_) 2

g LRV NN &= pl(N —n)! LRV (22)

We chose to define the test quantity as the ratio between the two negentropies defined by Egs. (20) and (21):
> _iniIn(n; /)
LT = =T o 23
ol m) = SEEE (23)

The testis to require fromr to be equal to 1. Let us cally (1), the value taken by this test functional for the PDF
m; (A) and for the experimental histografm;} (x7(X) = xr[ni, 7:(A)]). Whena tends to infinity, the estimated
PDFr; (1) tends towards the histografm; }. By construction, the test quantify then tends to Qx 7 (+o00) = 0).

The Lagrange parameter should thus be decreased from infinity down to the.ydlrewhich the test quantity is
equal to 1(x7 (A7) = 1). The PDFx; (A7) is, from this point of view, the ‘best’ compromise between smoothness
and likelihood.

5.2. Interpretation of the selection criterion

There are many ways of constructing a test function whiclyagjuantifies the likelihood of a PDgr;} to the
histogram{n; }. Any selection criterion thus contains a part of arbitrariness. However the choice of the negentropy,
which is at least a natural quantity in the probability field, can be justified by several interesting properties.
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It should first be noted that for quite high probability events, the multinomial distribution can be normally
approximated (Eq. (16)). In this limit, the; test can be approximated by the Pearson ‘chi-square’ [2,3]:

o 2 ((nj —m)?/2m;)
x = >,1/2

The xr test appears, thus, as the natural adaptation for the multinomial case of the ‘chi-square’ test. This adaptation
is necessary as, in our case, the numerator of the ‘chi-square’ convemeédkly becomes zero in the tails), while
the denominator, which is simply the number of bins, tends to infinity. The ‘chi-square’ is thus here always zero
(x2 = 0). This is due to the strong non-Gaussianity of the multinomial distribution for rare events.

T(p, N) is plotted in Fig. 4 (a) as a function pffor N = 10°. It can be simply understood as the typical weight
in xr of a bin which would have a probability/N. In the case of the ‘chi-square’ this weight is independent of
the probability and is equal to/2 (dashed line). As predicted, for a large mean number of evénts p < N)
the curveT (p, N) appears to be almost constant and equal to 1/2. It has a maximum aredridand tends to
zero both wherm tends to zero (asp In(p)) and whenpo becomes of the order of the total number of pdih{as
(1 — p/N)/2). The negentropy (Eqg. (21)) can, thus, be interpreted as an effective number of useful bins, the real
number of bins being recoveredsf is larger than 1.

The test quantityyr can be interpreted as a measure of the dispersion of the data around the cajadidate
Assuming that the realisations are multinomially dispersed around the{PDFwe can compute for each bin
the typical dispersion of any virtual realisation (Eq. (21)). Ideally, we should compare it to the dispersion for
each bin over many real realisationsmf But in our case we only have one realisation of the experiment, the
histogram{n;}. In fact, the statistical negentropy (Eq. (17)) measures the gap between the cafidipated our
particular realisatiorin; } by averaging over all the bins. Thg- test can, thus, be interpreted as the condition that
the multinomial dispersion around the candid@tg} correspond to the real dispersion{ef} averaged over the
bins.

Whatever the real PDFr;} can be, from a probabilistic point of view, any histogr&m} containingN points
can occur. The 7 test can be understood as a reduction of these probabilities to only two values: all the histograms
{n;} which verify xr[n;, 7;] < 1 are equiprobable, and all the others cannot be realisatiofis JofReciprocally,
the conditionyr[n;, ;] < 1 defines, from a known realisati¢n;}, a border for the possiblgr;} that can have
generated it. In the regularisation method, we start from a BfpE=(n; for A = 0) which is automatically inside
the region of possible PDFgf[n;, n;] = 0). Smoother and smoother PDFs are computed until the bgider 1
be crossed.

We can check that this negentropy test = 1) is a good criterion by computing; for many (real) realisations
{n;} of a known PDF7}. We then estimate the corresponding PDFef In the case of the analytical POF;}
(Eq. (3)) shown in Fig. 2, the PDFs gf- are computed numerically fav = 10?2, N = 10° andN = 10® points
and presented in Fig. 4(b). They are effectively centred on 1 and have, even for few points, standard deviations
small compared to 1 (0.079 fo¥ = 107, 0.031 forN = 10° and 0.014 forN = 10°). This indicates that all the
realisations of a known PDgr; } nearly verify the criterioryy = 1. Thus, a valug in the vicinity of 1 is at least a
necessary condition for a histogram to be a realisation of the{RBFAs an indirect but interesting consequence,
it is then possible (and recommended) to use it to quantify the quality of any histogram fit. If the valuésdar
from 1 this means that, however nice looking it may be, the fit is not statistically realistic.

(24)

5.3. Results

For the example of the velocity gradient PDF (Fig. 43 () is plotted in Fig. 5. It is a increasing function which
tends to 0 when. tends to 07 (1) crosses 1 foi; ~ 6.64 x 10°. The corresponding wavelength cut-off is of
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Fig. 4. (a) The canonical negentrofiy(p, N) as a function ofp and computed fol = 10° independent trials. It corresponds to the mean
weight in thexr test quantity of one bin which would have a probabilityN to occur. For a Gaussian statistic, the canonical negentropy (the
weight in the ‘chi-square’) is always 1/2 (dashed line). (b) PDF of the value taken by the test quarfittyhistograms randomly generated
from the PDF shown in Fig. 2 favV = 107 points (solid line), forN = 10° points (dotted-dashed line) and for = 108 points (dashed line).
Even with few points, the standard deviation is small compared to 1 (0.079 ferl(?, 0.031 forN = 10° and 0.014 fotv = 1C8).

the order of 14 yyms, FoOr A larger thani 7, the increase in is very rapid and becomes slower for smalleiThe
selected valug 7 approximately corresponds to the inflection point of the curve. This means that it does not ‘cost’
much in likelihood to filter all the histogram peaks in the PDF. On the other hand, increasing too much the Lagrange
parameteh increases drasticallyr since it moves the whole curve (1) away from the real PDF (see Fig. 3). The
shape of the curvgr (1) also indicates that the selection value (initially 1 (dashed line)) can be slightly increased
without serious consequences.

We investigated for realisatioris;} of a given PDR7;}, the mean value ofr as a function ofA: it appears to
scale approximately as—2 for small values of this parameter. This first confirms tha.t;l/2 is directly related
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Fig. 5. The evolution of the test quantigs (1) as a function of the Lagrange multipligrfor the histogram shown in Fig. 1. The optimal value
of the test, 1 (dashed line), is obtained fgr ~ 6.64 x 1.
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Fig. 6. The velocity gradient histografn; } and the corresponding optimal PDF estimaté\.r) as functions of the bin number

to a typical curvature of the PDF logarithm. Moreover, the results are roughly independempro¥ided that this
parameter be small enough (see Sections 2.1 and 2.2).

The ‘best’ estimate of the PDF; (A7) is shown in Fig. 6 together with the initial histogrdm}. Itis, as required,
a smooth function which interpolates, at least by eye, the histogram.
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6. On the possible deviations to the multinomial model

Itis in fact surprising that the PD#; (A7) shown in Fig. 6 ‘can have generated’ the histogfam according to
the multinomial distribution. There are in fact many reasons for which an experimental histogram could be over-
dispersed, by comparison to the ideal multinomial case. It should first be noted that the noise in the measurement of
the signal essentially convolves the PDF and thus has a tendency to smooth the PDF rather than to make it rougher.
The noise is thus a source of error but not a source of dispersion of the histogram.

A second experimental problem which can be encountered is a drift of the experiment control parameters in
particular if the total record timé/z is too large. There can be in this case a slow change of the real PDF during
the experiment, and thus strictly speaking no global probability distribyfighn The natural model for this drift is
the so called ‘Poisson case’ fat independent trials. For a given hinthe dispersiori(n; — 7;)?) is affected by an
additive term of ordeciiﬁi2 /N, where&fri2 is the variance of th&; drift. This corresponds to a relative over-dispersion
of orderSﬁiz/(Nﬁi) which should not affect strongly the regularisation method in most of the cases.

The third problem encountered regularising experimental histograms is even more serious: it is linked to the
physical system studied and to the data sampling. Indeed, the sampling iinme general chosen much smaller
than the typical correlation time, because one wants both to access to the small time scale features and to get a
numberN of sampled values as large as possible. For the example of the velocity gradient presented in Fig. 1, the
signal is smooth and thus strongly correlated at the sampling time scale. This means that there is a redundancy
in the data. This is problematic since the multinomial distribution requires that the data samples be completely
independent and uncorrelated.

There is no way to escape from this over-sampling problem. However, it has different consequences depending
on the bin widthA. This effect is illustrated schematically in Fig. 7 where we consider a smooth signal. On the
left, the bin widthA is large so that when one event falls in thie bin, there is a strong probability that the next
event also falls in théth bin. On the rightA is smaller so that the probability that the next event felactlyin
theith bin is not much increased. In fact, when one event falls intth®in there is a strong probability that the
next one falls in a birtloseto it. Only looking at one given bin, each trial can be considered as independent from

— T

<>
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° °
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Fig. 7. A schematic of the over-sampling effect. If the signal is correlated at the scale of the sampling timedntheralis a strong probability
that two consecutive points fall imeighbouringbins (left histogram). It is better in this case to chose a small bin widtlo that two correlated
points will rarely fall in thesamebin (right histogram).
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the previous one: the number of points in this bin is reasonably given by the binomial distribution. However, there
should be a drastic effect on the covariaege — 7;)(n; — 77;)). For the multinomial distribution it is a negative
quantity (equal to-77;77; /N): the negative sign corresponds to the fact that if an event falls iithhzn, it cannot
also be in thejth one. On the other hand, for an over-sampled histogram, this quantity should be positinel if
j are close to each other: if there are too much paimts> 7;) in theith bin, there is a strong probability that it
will be the same in the neighbouring bins. This will have some consequences on the PDF moments estimate (see
Section 4.3). As a conclusion, there are two simple solutions which can be tried if the histogram appears to be really
over dispersed: decreasing the bin widtland increasing the sampling time

The fourth problem we want to discuss can also explain an over-dispersion. It may appear when an analog-digital
converter is used to acquire the signal. If the number of quantified levels by bin is too small, the quantification of the
signal can appear in the histogram. In this case, the apparent widffa given bin can quantitatively differ from
the real width which takes into account the signal quantification. This problem can be corrected either by increasing
the bin widthA or paradoxically by adding a random noise to the sampled signal: adding a random real number
between-0.5 and 0.5 to all the integer values allows in general to overcome the problem.

7. On the tails of the estimated probability distribution function
7.1. Test on a synthetic PDF exhibiting algebraic tails

If the validity of the regularisation procedure is quite clear in the large probability region of the PDF (Fig.

6), the tails could at first sight be seen as rather arbitrary. In particular, the smoothing potential selects exponential
asymptotes. This arbitrariness is intrinsically due to the principle of the method which adds a priori some information
on the nature of a PDF. We will thus investigate the estimated tails on the synthetic example of Fig. 2 for which the
real PDFr; is known.

The PDF estimater; (A7) is shown on Fig. 8 (a). It is a continuous curve with, however, some remaining
oscillationsaroundthe real PDFz;. This demanding example clearly shows that the estimated PDF tails are not
at all arbitrary extrapolations but still reflect the local point density. Moreover, it can be seen that the exponential
asymptotes only start after the last histogram points.

We also observe on Fig. 8(a) the main limit of the smoothing functional. To give a visual interpretation of the
parametei.7, an arc of parabola of same curvature is drawn above the histogram. It appears to be clearly too large
compared to the curvature in the central part of the histogram. However, it corresponds well to the slight oscillations
remaining in the tails. This means that the central part of the histogram is too much constrained. In the central region,
the curve has the highest resistance to smoothing : the eutigcannot be moved away from the large histogram
points. As a consequence, increasinghe test function becomes larger than 1 because of the discrepancy in this
central region. As a consequence, the estimated PDF remains rough in the tails where the curvature is lower. The
regularly spaced bins together with the basic smoothing functional thus lead to some problems as the curvature is
not constant along the histogram (Fig. 8(a)). This suggests to make a change of variable and more generally to adapt
the smoothing functional in order to obtain a more regularly dispatched curvature and then to regularise completely
the tails.

The positive counterpart of this problem is that a ‘corrupted’ prior information cannot be forced (contrarily to a fit)
since the estimated PDF has to be plausible (selection criterion). The example (Fig. 8(a)) shows that the histogram
cannot be over-smoothed and that its effect is easy to diagnose. This observation emphasises the fundamental
difference between this regularisation method and a fit, which always gives by construction a result corresponding
to the attempt. This again shows the interest of the critegior= 1 (and more generally of chi-square like quantities)
to check the likelihood of a fit to the data.
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Fig. 8. The PDF and the synthetic histogram of Fig. 2. (a) The optimal PDF estifi{ate) (dashed line) using the variahléor the smoothing
potential. The parabola corresponds to the curvature cut-off of the filter. (b) The PDF estimatesfor two changes of variable: one with a
power law asymptote (dashed line) and the other with a logarithmic asymptote (dotted dashed line).

7.2. Change of variable and generalisation of the smoothing functional

A first possible modification is to change the variable used to compute the smoothing functional (Eq. (9)). Even
if the natural coordinate is that chosen to compute the histogram, another cooxdinaimy be easily introduced
andgg modifies in:
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1 [ (Ra)? 1 1 " (i 2
pslo] = E/ <§02[> dx ~ EZW [(Oli+1 — 20 +aj_1) — %(%H - Oli—l)] (25)

Compared to the previous definition (Eqg. (9)), this modified smoothing functional has two interests. It allows to
weight the terms in the sum and thus to selectively smooth the different parts of the histogram. Following the
mechanical analogy, this weight corresponds to a distribution of elasticity along the curve. For the two examples
discussed above (Figs. 6 and 8(a)), the tails have to be stiffened: this corresponds to a defi¥atitech should
decrease from the centre to the tails. The other additive term can be interpreted as a reference curvature. The null
bending energy no longer corresponds to an exponentiabimt to an exponential in(i). In other terms, the
elastic line is no more straight at rest (when no external force field is applied to it) but already has a nontrivial
shape specified by(i). These observations suggest a generalisation of the smoothing potential which keeps the
two positive aspects of the change of variable:
e in order to improve the PDF tails, they have generally to be more smoothed than the high probability
regions;
o the curvature should be compared to a reference which roughly describes the prior shape of the PDF.
Introducing a smoothness weighting and a curvature refereneg the smoothing functional can then be written
in the general form:

1
pslai] = Ezwi[(ai—s—l — 20 + 1) — ¢i(ctig1 — o] (26)

The difference with the simple change of variables is just the independence of the weight and the curvature reference.
Some criteria are now needed to determine objectivglgndc;.

7.3. Guidelines for the generalised smoothing functional selection

A first guideline originates in the difference highlighted on Fig. 8(a) between the regularisation method (or a
series of local fits) and a global fit. Namely, if the smoothing procedure is not adapted to the histogram considered,
then the result is not good. This means that the result does not correspond to the prior assumptions made. In Fig.
8(a), this leads to remaining oscillations in the tails together with a sudden change of behaviour around the last
points. This suggests an intuitive self-consistency criterion: if the result does not exhibit the properties assumed,
this means that these assumptions are not good. On the contrary, we can expect that if the hypotheses made are
finally verified by the estimate, they are reasonable.

A second test to check the validity of the prior assumptions is the stability of the method. Once a PDF is estimated,
it can be used to produce several realisations (Monte Carlo method see [5]), which can in turn leads to estimated
PDFs, and so on and so forth. The stability of the procedure can be investigated by looking at the difference between
the successive estimated PDFs and the first one.

The next step in this work is to use these principles (self-consistency and stability) to build a self-adaptive
procedure to determine for each histogram the ‘best’ smoothing functional (the optimal weight curvature
referencer;), without adding by hand any information. In particular, it would allow to get rid of the prior choice
of variable. We can imagine an iterative procedure which starts from the basic smoothing funeticad éand
w; = 1) to obtain a first PDF estima{ail}. The next step is to determine the ‘best’ parametgrandc; if this
PDF{nl.l} is the real one. As explained abO\{ail} allows to generate ‘false’ realisations, each leading to other
estimateqr; 114. We can for instance ask the average of these estimates to be equal to the f{vg’t}oM!e can
also try to minimise the standard deviation of these estimates al{m}r}advith respect to the set of parameters
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andc;. If this is achieved, a second estim@m,?} can be computed from the initial histogram and the algorithm can
be iterated.

However, there are still some difficulties (due for instance to the nontrivial selection of the Lagrange multiplier
A, to the attraction towards the stable estimate= 0 if n; = 0...), and the work has still to be done. Before this
general method, we can however use the criteria defined above to determine semi-empirically a working procedure,
for instance in the particular case of turbulent-like signals. After having shown the effect of a simple change of
variables (Section 7.4), a working smoothing functional will be presented (Section 7.5).

7.4. Test of the change of variable

The PDF shown in Fig. 8(a) (Eq. (24)) exhibits algebraic tails: the best choice for the change of variable should
thus have a logarithmic asymptote. It should also be linear around the PDF maximum. Using a change of variable
which verifies these two constraints, the regularisation method gives a PDF estjiiiate(Fig. 8(b), dotted dashed
line) which is smooth everywhere and which nearly collapses the real7/RDBy construction of the change of
variable, the smoothed histograrn(Ar) exhibits far algebraic tails.

In order to investigate the effect of this asymptote, we tested a change of variable which is also linear around the
position of the PDF maximum but which exhibits a 0.5 power law asympidaig « i%®). The corresponding PDF
estimater; (A7) is shown by the dashed line in Fig. 8(b). It is again a smooth curve which is also very close to the
exact PDF (solid line in Fig. 8(b)). It exhibits by construction a stretched exponential asymptote which starts only
afterthe last histogram points. Thus, there is only a slight dependence on the change of variable: the two results with
algebraic and stretched exponential asymptotes are close to each other and to the original PDF up to the last point.
So we could say that even with a selected asymptote in stretched exponential, an algebraic behaviour is recovered
with the smoothing procedure. This was already obtained in Fig. 8(a), which shows that even with exponential
asymptotes the algebraic tails are reasonably well approximated. A fortiori, distributions close to a Gaussian or an
exponential, which are particular stretched exponentials, can be well fitted up to the last point.

As a conclusion, if the selected asymptote fits very badly the histogram tails, there remains some oscillations
in the PDF tails. These tails consequently exhibit statistically larger deviations to the real PDF. Reciogally
reasonable change of variable (and it appeared to be a loose condition) allows to estimate the tails up to the last
histogram points.

7.5. Working regularisation method

An interest of the change of variable is, as noted above, to assign naturally a weight to each bin in the smoothing
potential. This weight is directly related to the change of variatgi¢, which is itself determined by the PDF
curvature in the tails. Ifo; } is concavey’ (i) will decrease from the centre and the tails will be more smoothed than
with the simple method. Ife;} is convex, the tails will be less smoothed than with the variab@hecking this
property on various synthetic PDFs, we observed that the tails also require to be more smoothed in this case. The
simple change of variable is thus only a partial improvement of the tails estimate, and the generalised smoothing
function should be used.

We introduce here a parametrised curvature reference. The basic regularisation method (Egs. (14) and (23)) is
applied to get afirstidea of the PII{JE}}. We determine from this initial estima{eil}, the curvature reference under
the forme; = 64 /(i — ig) whereig is the position of the PDF maximum a#dg (respectivelyd_) is obtained by
minimisation of the curvature (Eq. (26) withy = 1) in the positive tail (respectively the negative one). An algebraic
tail correspond t@. = —0.05. The other values @f. corresponds to stretched (or compressed) exponential tails
(6+ = 0 for the exponential angl. = 0.5 for the Gaussian).
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Fig. 9. The velocity gradient histografn; } and the corresponding PDF estimatéi7) using the modified smoothing functional.

The weightw; has to be adjusted to prevent two extreme effects. If a region has locally a too low weight (a large
flexibility), some oscillations remain (Figs. 6 and 8(a)). On the contrary, if the weight is too large (a very rigid curve),
the exponential behaviour (inor x(i)) is forced. If this exponential asymptote is locally a good fit of the PDF, the
estimate becomes very good (Fig. 8(b)). But if it is not the case, the ¢urytbreaks’ into portions of lines joined
in nearly singular places around isolated points, which concentrate the essential of the bending energy. There is
also in this case a strong dependence of the resulting curve on the particular starting higteptareaking of the
stability criterion). The best compromise we could achieve uses a second time the basic regularigeﬁl}PWE
construct a weight which is almost constant in the large probability regios 0) and increases in the tails a,%:

AN 2
w; = (In <1+ 2ni )) = (IN2 + exp(—a;)))? @

1

It should be noted that the weight is computed once for all with the initial PDF estimate and must not be minimised in
¢t . The final velocity gradient PDF, estimated with this complete regularisation method (including the null average
(see Section 4.4)), is plotted in Fig. 9. This new estimate collapses with the previous one (Fig. 6) in the central region
but the oscillations due to the two largest points have been smoothed. Finally, the results become self-consistent
and reasonably stable, and the test which is strictly verified for the whole histogram (by construction), is also
approximately verified locally.

8. Benefits of the regularisation method
8.1. Improvement of the PDF estimate
We will now test the efficiency of the complete regularisation method constructed in the previous parts. For this

purpose, synthetic histograms were generated from a known PDF . We chose to use the velocity gradient PDF shown
in Fig. 9 as this real PDF (Monte Carlo method, see Section 7.3 and [5]). One thousand histograms were generated
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Fig. 10. The relative error statistically made on the PDF estimated by direct normalisation of the histgraf  1)2), dashed line) and
using the regularisation methot£; /7; — 1)2), solid line). The two curves correspond to the two sides of the PDF.

using the multinomial distribution with the same number of poi¥its: 3.7 x 10 as initially. The regularisation
method was applied to each of these histograms and gives thus 1000 estimategd(PDRnotedr; below for
simplicity). We computed the average over the 1000 trials of the quantitigs — 1)% and(r; /7#; — 1) for each

bin. ((n; /7; — 1)2) and ((; /71; — 1)) are, respectively, the relative statistical error{éf} estimated by direct
normalisation of the histogram and using the regularisation method. The resulting functions are both plotted in
Fig. 10 as a function of;; (see also Fig. 9 for the correspondence betweand ;). The two sides of the PDF
correspond to the two curves (in solid line) shown in Fig. 10.

The precision of the PDF obtained using the regularisation method is much better than the direct normalisation
of the histogram{n;}, and that even in the tails (fo¥; < 1). For the example chosen, a 10% uncertainty on
#i(((ri /7 — 12 = 1072) is obtained forr; ~ 0.4 with the regularisation method and for = 100 with the
direct histogram normalisation. Similarly, the limit of 100% er¢aer; /7; — 1)2) = 1) is reached forr; ~ 102
with ; (A7) and forz; = 1 with ;. The change of slope of the statistical ertor; /7; — 1)2) corresponds to the
region where the last histogram points are statistically observed. As a conclusion, the;0H} is a very good
estimate of the real PDfz;} up to the last histogram point (the rarer event).

8.2. Improvement of the PDF moments estimate

If it is clear that the estimate of the PDF is improved by the regularisation method, it is less evident that there can
be a gain on the computation of PDF moments. Indeed, a moment is a quantity which uses all the histogram bins
and which is thus less sensitive to the dispersion of the data than the PDF itself.

If we consider an estimatfg; } of the PDF (this can be, for instance, directly the histogfarhor the regularised
PDF{m;(A7))}, the PDF moment of ordet, M[q, 77;], can be approximated, if the bin widthis sufficiently small,

by:

1
Mlq, pi] E/qu(y)dy ~ D Py (28)



130 B. Andreotti, S. Douady / Physica D 132 (1999) 111-132

As in the previous part, the statistical erect{g, p;] on these moments, defined as

o v [ (Malel )
[q,pl]_<(Mq[ﬁi] 1)> 29)

will be used to quantify the improvement. As in the previous part, the simplest method is to generate a large number
of ‘false’ realisations of the PDF estimate (Fig. 9) and to compute these errors by averaging over this synthetic set.
At this step, it is important to note that the statistical etréfq, p;] is directly related to thésx;} covariant matrix:

(S04 = 0s = 7]
[Ziyiqﬁi]z

This expression brings us back to the discussion of Section 4.2. Ingiged ;] (for the basic estimatép; } = {n;})
directly depends on the dispersion of the histogram and thus on the possible redundancy in the sampling. There
is thus potentially a difference between the ‘multinomial’ variance (den@%qq, pi] below) computed from
synthetic histograms and the real experimental o@g)[q, oil-

A possible trick consists of computing from the signahistograms which contaiv/m points, and this for
several values ofi. m = 1 corresponds to the initial histogram. We used for commodity powers of two for both
N andm (m = 1,2,...,128). For each subdivision, the sum of thehistograms is strictly equal to the initial
N point histogram. We can thus computeestimates of the PDF moments based\ofin points histograms, and
this, for each value ofi. M[q, p;, m, j] denotes thgth estimate (ovet:) of the moment of ordej (Eq. (28)). The
variance on this moment, considering realisation®/gfz points is denoted by?[¢, p;, m] (with the interesting
relation $?[q, p;, 1] = oezxp[q, pi]). This variance can be approached by an averaging ovemthealisations
considered:

o?lq. pil = (30)

m

1 mMylpi,m, 1 \?
S2lq, pi,m] ~ ( d 31
L. pi.m] m—ljzzl ST My Lo m k] — 1 (1)

We obtain finally the variance on the PDF moment of orgleas a function of the number of points used to
compute it. This variance is plotted in Fig. 11(a) for the fourth order moment, as a functienfof both {x;}
(black diamonds) anglr;} (black squares)s?[4, n;, m] is everywhere larger thas?[4, ;, m]. In order to turn to
the interesting quantitfygxp[q, pi]lwe have to extrapolate the cur§&[q, p;, m]to m = 1. As for multinomial trials,
$2[q, pi, m] appears to be proportional e for both {r;} and{=;}. This allows to fit objectively the experimental
points (dashed lines) and finally to compute the statistical ear@g,sq, oil-

The four curvess3fq. nil, 04lq. mil. 02,[q. ni] and 62, [q. 7] are shown on Fig. 11(b). The diamonds
correspond to the basic estimdig} = {n;} and the circles to the regularisation methad = {z;}. The black
points are those measured experimentally by subdivision of the histogram and the white ones are computed by
averaging over the synthetic multinomial trials. In both cases, there is an improvement of the PDF moments in using
the regularisation method which allows to compute higher moments than what is directly possible. For instance,
the limit of 75% error is reached fgr ~ 5 for {n;} andp ~ 7 for {x;}. For ordersg lower than 3 (in the high
probability region of the PDF), the curves collapse two by two: the two methods are there strictly equivalent. In the
same zone, we observe that the experimental error is much larger than in the strict multinomial case. This is the
confirmation that there is a quite high redundancy in the sampled data (see Section 6). However, for higher orders
the regularisation method seems to be insensitive to this effect. This also means that the variance of the high order
moments estimated from the regularised PDF may be precisely computed by the Monte Carlo method developed
above.
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Fig. 11. (a) The relative error statistically made on the PDF fourth moment by direct normalisation of the hiss#jam (m], black diamonds)

and using the regularisation metha&?[4, ;, m], black squares) for sub-histograms containiign points. The shift between the two curves
indicates an improvement of the moment estimate by the regularisation method. The fit by a linear funet@iowt to measure the statistical

error for the complete histogram (which contains the whélgoints). (b) The relative statistical error on #a¢DF moments as a function of

the ordely using the direct normalisation (diamonds) and the regularisation method (squares) on both the experimental histogram (black points)

and synthetic multinomial trials (white points).

9. Concluding remarks

The estimate of a PDIr;} from an experimental histografm;} was investigated. A specifically designed
regularisation method was constructed to take advantage of the PDF smoothness. The PDFs estimated this way
are precisely defined up to the last point of the histogram tails (the rarest event). Using this method, the statistical
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errors approximately correspond to what was obtained classically with an experimental sampling time a hundred
times longer [1]. This clearly demonstrates the importance of using prior information on the nature of the PDF
(smoothness, null moments, inequalities between PDFs, etc.). The regularisation procedure presented here takes
into account the smoothness of the PDF logarithm and can be easily extended to any other constraint.

Our method assumes that the dispersion of histograms around a PDF follows the multinomial distribution. This
allowed to discuss some experimental problems (over-sampling, discretisation due to analog-digital conyerters
which induce an over-dispersion of histograms. The regularisation method is thus also a very useful tool to ‘in-
spect’ experimental histograms. The essential point igthtest (Eq. (23)) developed to characterise a histogram
dispersion. It is for instance an objective criterion to test some PDF models (fittedgisingy as defined above
instead of the usual chi-square).

It is noteworthy that this smoothing procedure does not correspond to a fit. Although the first simple form (Eq.
(9)) is improved using a parametrised change of variable (Eq. (25)) and more generally a change in the smoothing
functional Eg. (26), this smoothing procedure still fundamentally differs from a simple fit. It can be understood
as a series of local fits, which local form imposes a loose enough constraint so that a different dependence can be
globally recovered. Another evidence of this is that if the guess used is really wrong, it is directly shown by the
result which is then not consistent with the guess. This self-consistency criterion is very useful to choose the form
of the smoothing functional. More work is still needed to take profit from stability and self-consistency criteria to
construct a general regularisation method powerful in any cases.

Finally, the precision in the computation of the PDFs moments is improved using the regularisation method and
the statistical errors can be correctly estimated. However, we want to emphasise that models directly on PDFs shapes
would be easier to test objectively (wigr test for instance) than models on the moments. In a forthcoming article,
we will present the results obtained on experimental and numerical turbulence signals using this procedure.
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