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Abstract

The most common method to estimate a probability distribution function (PDF) from experimental data is to compute
a normalised histogram. This approximation implicitly assumes that the PDF is smooth at the scale of one histogram bin.
Usually, the normalised histogram is ill defined for the rarer events since the points are very scattered in that region. In
order to increase the quality of the PDF estimate, the assumption that the PDF is smooth can be used explicitly. A specially
designed regularisation method is constructed and tested on both synthetic and real turbulence signals. Using this procedure,
the estimated PDFs are now smooth and well-defined up to the unique rarest event (the last histogram point). Among its
direct applications, the method allows to get a better estimate of high order PDF moments and of PDFs convolution products.
©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this paper is to construct a procedure to improve the estimate of a probability distribution function
(PDF) from an experimental or numerical signal. This study has been motivated by turbulence problems. As in
many other physical systems, turbulence appears to be highly disorganised, quite unpredictable and presents a very
large range of physical scales. However, for given experimental conditions, the statistical properties of any signal
measured in turbulence are almost reproducible. These basic observations have induced physicists to look for a
probabilistic description of turbulence. For this purpose, PDFs of various physical quantities (velocity, velocity
increments, pressure, passive scalar, etc.) have been measured both experimentally and numerically. The question
of the intermittency of these signals has induced a strong interest for the rare (but large) events which correspond to
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Fig. 1. The example histogram{ni} (velocity gradient in a particular turbulent flow [2]), as a function of the bin numberi and computed for
N ≈ 3.7 × 107 points.

the tails of the corresponding PDFs. To investigate the influence of these rare events, for instance by the measurement
of PDFs high order moments, it is necessary to record and process very long data signals, however limited at any
rate by numerical and experimental constraints. A recent state of the art can be found in [1] and in references therein.

We want, thus, to develop a regularisation method to increase, for a given data set, the accuracy of the PDF
estimate, and particularly for the rarest events. In a second article, we will present the results obtained on a real
turbulent velocity signal using this procedure. We will here present the method and discuss its validity. It is based
on the a priori constraint that the PDF is smooth (Section 2). It consists in the minimisation of the sum of two
functionals, one which measures the PDF smoothness (Section 3) and the other which characterises the likelihood
of the PDF to the histogram (Section 4). An adequate test is used to adjust the best compromise between these two
requirements (Section 5). The applications of the method to experimental histograms are discussed in Sections 6
and 7, before showing the benefits of the method on the example of a real turbulence signal (Section 8).

2. Basic principles

2.1. Histogram, cumulated histogram and rank ordering

For a start, let us consider a particular velocity gradient signalγ (t) measured as a function of time in one point
of a turbulent flow (see [2] for details). This signalγ (t) is sampled at evenly spaced time intervals. Letτ denote
the time interval between consecutive samples. The signal is now a sequence ofN sampled values:γ (nτ) with
n = 1, 2, . . . , N (N ≈ 3.7× 107 for the example chosen). In order to characterise the statistics ofγ , the temporal
information has no importance. A first method is then to compute the histogram of the velocity gradientγ . For this,
the sampled values are binned into channels of width1 and centred aroundγi = (i −1/2)1. The number of events
observed in theith bin is denoted byni . The resulting histogram{ni} is shown in Fig. 1 in the linear-logarithmic
representation in order to highlight the rarest events. An alternative is to consider the cumulated histogram, i.e., to
compute the number of events smaller thanγi and that, for each grid pointi. The histogram is the discrete difference
of the cumulated histogram and thus contains strictly the same information: they are two ways of presenting the
same discrete data, the cumulated histogram being however smoother by construction. A striking consequence is
that the moments of orderp estimated from one or the other are strictly equal whereas the quantity to be integrated
to obtain the moment is much smoother with the cumulated histogram than with the histogram. There is, however,
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a possibility to construct a cumulative distribution function without binning, and thus keeping more information
than a binned histogram.

When the histogram (or the cumulated histogram) is computed, a part of the information contained in the signal
is lost: the whole list of theN valuesγ (nτ) is no longer known exactly but is defined with an imprecision±1/2
on each sampled value. From the probabilistic point of view, this error is negligible for the rarest events (Fig. 1)
since the latter could have appear with the same probability several bins away from their real position. The direct
consequence is a large reduction of data without losing much information. For instance, instead of theN ≈ 3.7×107

sampled values, the histogram of Fig. 1, obtained with1 = 2.16×10−3γrms, is composed by 3×103 histogram bins
(from first to last empty bin). As a conclusion, the loss in information between the whole signal and the histogram
is not that important while the data compression between the two is massive. An alternative is the rank ordering
[3,4] which consists in keeping a part of the sampled values together with their rank.

2.2. On the normalised histogram as an (bad) approximation of a PDF

Before discussing the estimate of the velocity gradient PDF from this histogram, let us briefly recall its definition.
Roughly speaking,p(γ )dγ is the probability of observingγ at an arbitrary time betweenγ andγ + dγ . To define
it more precisely, we have to consider first the cumulative distribution functionP(g) which is the probability to
observeγ smaller thang at an arbitrary time. The cumulative distribution function increases from 0, for the smallest
accessible velocity gradient, to 1, for the largest one. Its derivativep(γ ) is positive and is by definition the PDF of
γ . The PDFp(γ ) can evidently be either a function or a distribution (for instance ifγ only takes discrete values).

Usually, the PDFp(γ ) is directly deduced from the experimental histogram{ni} via a normalisation by the factor:

p(γi) ≈ ni

N1
(1)

This estimate of the PDF can be justified by two successive approximations:
• Firstly,ni is an estimate of its averageπ̃i obtained with an infinite number of realisations of the experiment with

the same numberN of sampled values (̃π ≡ 〈ni〉). To say it in another way,̃πi/N is the probability that a point
falls in theith bin (π̃i ≡ N(P (γi + 1/2) − P(γi − 1/2))).

• Secondly,π̃i/N1 is itself a finite difference approximation of the PDF:

p(γi) ≈ P(γi + 1/2) − P(γi − 1/2)

1
≈ π̃i

N1
(2)

The histogram points (Fig. 1) form a well-defined curve in the large probability region. On the contrary, in the
tails, the histogram is composed of bins containing only one point(ni = 1) separated by empty bins(ni = 0).
Besides, it is interesting to note that the linear-logarithmic representation of the histogram tails is problematic since
the bins for whichni = 0 (ln(ni) = −∞) cannot be shown (Fig. 1). To investigate the link between an histogram
and its corresponding PDF in the tails, let us consider an analytical PDF which exhibits large algebraic tails such
as for instance:

π̃i ∝ N

(1 + (ai)2)2
(3)

The curveπ̃i is shown in Fig. 2 (solid line) together with a histogram example randomly generated using the
multinomial distribution and havingN = 4 × 107 points (see Section 4). If the histogram is dispersed around the
PDF for large probability bins(π̃i ≥ 1), it is as previously composed by scattered points in the tails (forπ̃i ≤ 1).
π̃i can be interpreted as the mean local density of points. If there is on the average less than one point per bin,
this density is of the order of the inverse of the distance between neighbouring points. For instance,π̃i = 10−3
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Fig. 2. The PDF{π̃i} (solid line) corresponding to Eq. (3) compared to an histogram{ni} generated from it and containingN = 4× 107 random
trials. The bins which do not contain any event are not shown. Note that in the tails, the distance between non empty bins is of the order of 1/π̃i .

corresponds, on the average, to one bin containing one event(ni = 1) surrounded by 1000 empty bins (Fig. 2). As
a conclusion, the last histogram points still capture some information, even if it is not directly accessible. It is this
information we want to use and reveal.

The PDF directly estimated by normalisation of the histogram (Eq. (1)) depends on the bin width1. How does
its quality evolve when1 is changed? Firstly,1 should be sufficiently small to insure the validity of the second
approximation (Eq. (2)). It is noteworthy that Eq. (2) requires the PDF be smooth at the scale1, i.e., its radius of
curvature be everywhere much larger than1. On the other hand, the relative error made in the first approximation is
of the order ofπ̃−1/2

i and thus decreases when the mean number of points in a given channel increases. This means
that the second approximation requires a value of1 as large as possible. A compromise on1 has to be made. A
usual good choice for1 is around 1/100 of the PDF typical radius of curvature (which is usually close to the root
mean square value) [4].

The conclusion that, at least for small values of1, the precision increases with1 (for fixed N ) is somehow
paradoxical. Indeed, it is clear that the initial signal contains the whole available information (see Section 2.1). The
best estimate of the PDF, which uses the whole information, should, thus, correspond to the limit when1 tends to
zero:

p(γ ) =
N∑

n=1

1

N
δ(γ − γ (nτ)) (4)

This is in fact the best estimate of the PDF whichonly uses the signal information. However, the usual estimate
(Eq. (1)) is better because the smoothness of the PDFp(γ ) over a scale1 is implicitly used. To say this in another
way, the smoothness of a PDFp(γ ) is an essential prior information which must beaddedto the information
contained in the signal. On the other hand, the problem of the PDF tails, i.e., of the rare events fully remains since it
corresponds to a region of the curvep(γ ) where at least one of the approximations made is a bad one. This induces
a second paradoxical remark: to compute a PDF from a histogram using Eq. (1), the hypothesis that the PDF is
smooth is implicitly used but the resulting estimate of the PDF is not smooth at all.



B. Andreotti, S. Douady / Physica D 132 (1999) 111–132 115

2.3. Regularisation methods

The aim of this article is, thus, to construct an alternative procedure to estimate the PDf by usingexplicitly its
a priori smoothness. Our basic strategy is to fix a small bin width1 in order to use safely the finite difference
approximation of the derivative (Eq. (2)) and to concentrate on the estimate{πi} of the mean histogram̃πi from
the real realisation{ni}. To fix the notations used below,{ni} is the experimental histogram,{πi} is the real PDF
(forgetting the factorN1) and we want to compute an estimate{πi} of this PDF. We consider non-normalised
histograms (in fact normalised toN but not divided byN1, neither rescaled by the standard deviation) both
because here the discrete nature of the histogram is of fundamental importance and because arrays of integers are
easier to manipulate than small real numbers (and thus save computer time). After the smoothing procedure, the
result{πi} can of course be normalised and rescaled.

In the particular example chosen here (Fig. 1), the PDF seems to be smooth in linear-logarithmic representation,
whereas it presents a sharper maximum in linear–linear representation (not shown). This choice of considering the
PDF logarithm is of course arbitrary, but related to our interest in the rarest events. We will, thus, consider in parallel
to the PDF{πi}, its logarithm{αi}:

πi = exp(αi) (5)

Using {αi} instead of{πi} has the strong advantage of imposing the positive sign ofπi so that this constraint has
not to be specified explicitly. It will also simplify the requirement that the PDF logarithm{αi} be smooth.

The natural methods to use the a priori information that{αi} is smooth are the so-called regularisation methods (see
[5] and references therein). The central idea of these methods is the minimisation of a functionalϕT [αi ] with respect
to a set of unknowns{αi}. This functionalϕT [αi ] quantify the compromise between two extreme requirements:
• the PDF should be perfectly smooth
• the PDF should pass through all the data.

ϕT is thus defined as the sum of two positive functionals which have to be made explicit(ϕT = ϕL + λϕS).
One,ϕL[αi ], measures the agreement between the data (here, the histogram{ni}) and the model (here, the PDF
{exp(αi)}). We will call it the likelihood, which does not mean only that{πi} is close to the histogram{ni} but more
precisely that{ni} can have occurred assuming that{πi} is the real PDF. The other,ϕS [αi ], reflects the smoothness
of the solution.λ is the relative weight of one requirement with respect to the other and can thus be interpreted as
a Lagrange multiplier. Finding the best solution corresponds to choosing a parameterλ which defines the ‘best’
compromise betweensmoothnessandlikelihood.

In our case, the PDF is submitted to an additional constraint of normalisation:∑
i

exp(αi) =
∑

i

πi = N (6)

Using the method of Lagrange multipliers, the new functionalϕT to minimise is defined as

ϕT = ϕL + λϕS + µϕN (7)

where

ϕN [αi ] ≡
∑

i

exp(αi) (8)

and whereµ is the Lagrange multiplier which has to be adjusted to getϕN [αi ] = N .
We will now construct explicitly this regularisation method. The smoothing functionalϕS [αi ] will be defined

in Section 3, the likelihood functionalϕL[αi ] in Section 4 and the criterion to adjust the Lagrange parameterλ in
Section 5. This construction will be made on the basis of the experimental histogram shown in Fig. 1.
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3. Construction of the smoothing functional

The role of the smoothing functionalϕS [αi ] is to specify the a priori belief that the PDF logarithm is smooth.
All the candidates{αi} to be this PDF logarithm are not equivalent:ϕS [αi ] must characterise their roughness and
thus theirprior probability to be the right one. One of the simplest possibility is to use a kind of bending energy of
the curveαi which has to be minimal. The local contribution to this bending energy depends quadratically on the
curvature of the curve. Using the finite difference approximation of the second derivative, the smoothing functional
reads

ϕS [αi ] ≡ 1

2

∫ (
d2α

di2

)2

di ≈ 1

2

∑
i

(αi+1 − 2αi + αi−1)
2 (9)

This smoothing functional is local in the sense that it links one bini only to its two neighbours. In fact, it can
be generalised (and probably improved) by introducing a bending energy computed from the square modulus of
a wavelet transform of the curveαi . The wavelet can then be slowly decaying (and defined on a large number of
bins), creating thus, a non-local smoothing constraint. Here, we use the basic discrete curvature (Eq. (9)) both for
the sake of simplicity and because a local constraint allows to save much computing time. It should be kept in mind
that the results can be straightforwardly extended to other forms of smoothing functionals.

In the mechanical analogy, the curveαi to be determined is an elastic line attracted by the histogram points. We
have now, in the likelihood functional, to specify the force field created by these points.

4. Construction of the likelihood functional

4.1. Construction

By analogy with the statistical negentropy, we consider for the likelihood functionalϕL[αi ] the opposite of the
logarithm of the conditional probability that the experimental histogram{ni} would be observed given that{πi} is
the true PDF:

ϕL = − ln(Prob{πi }[ni ]) (10)

The problem is to model the real distribution Prob{πi }[ni ] in the case of a histogram. Let us suppose for the
moment that theN values set apart from the signal correspond toN independent trials. As introduced above, ifni

is the number of events observed in the interval [γi − 1/2, γi + 1/2] andπ̃i its average over an infinite number
of realisations, the probability that a point falls in theith bin isπ̃i/N . If we suppose that{πi} is the true PDF{π̃i},
the probability to obtain a particular realisation{ni} is given by the multinomial distribution [6]:

Prob{πi }[ni ] ≡ N !

NN

∏
i

πni

ni !
= N !

NN

∏
i

exp(αini)

ni !
(11)

The negative of its logarithm can be decomposed in two parts, one which does not depend explicitly on{πi}, and
the other being the interesting part (the likelihood functional):

ϕL[αi ] ≡ −
∑

i

niαi (12)

With the simple form taken byϕL[αi ] in Eq. (12), the Lagrange multiplierµ can be determined explicitly. Indeed,
the set{αi} which minimises the functionalϕT verifies:
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∑
i

∂ϕT

∂αi

=
∑

i

(µexp(αi) − ni) = N(µ − 1) = 0 (13)

As a consequence,µ is equal to 1 and the functionalϕT simplifies in:

ϕT [αi ] ≡
∑

i

[
exp(αi) − niαi + λ

2
(αi+1 − 2αi + αi−1)

2
]

(14)

It is interesting to note that the normalisation of the PDF{πi} to N is a nonlocal constraint. Contrarily to other
smoothing filters which can be applied to the histogram, the regularisation method proposed here (see Section 3)
makes this constraint local in the sense that the Hessian of the functionalϕ is a band diagonal matrix with bandwidth
5. Thus, using the Levenberg–Marquardt algorithm to perform the minimisation of the estimatorϕT , the locality of
the potential to minimise allows to easily store and quickly invert its Hessian matrix.

4.2. Comparison with the ‘chi-square’ method

It should be noted that for quite high probability events(N � πi � 1), the multinomial distribution of Eq. (11)
can be normally approximated [6]:

Prob{πi }[ni ] ∝ exp

(
−
∑

i

(ni − πi)
2

2πi

)
(15)

The negative of its logarithm, i.e., the corresponding negentropy is then simply

− ln(Prob{πi }[ni ]) ≈
∑

i

(ni − πi)
2

2πi

(16)

which is Pearson’s ‘chi-square’ formula [7]. However, for small probability events,(πi � 1) the multinomial
distribution exhibits a strong deviation from Gaussianity. For the purpose of estimating the PDF in the tails, it is
very important to have captured this non-Gaussian feature which makes the difference with the usual ‘chi-square’
method [5]. Another empirical generalisation was also proposed by Holy [8].

4.3. Results

For a given Lagrange multiplierλ the solution of the minimisation verifies:

∂ϕT

∂αi

= λ(exp(αi) − ni) + (αi+2 − 4αi+1 + 6αi − 4αi−1 + αi−2) = 0 (17)

To avoid any confusion, this solution will be denoted byαi(λ) and the corresponding PDF byπi(λ). Fig. 3 shows the
result of the minimisation on the example of the velocity gradient histogram introduced above (Fig. 1). The curve
πi(λ) as a function ofi is plotted for three values of the Lagrange multiplierλ. In the limit whereλ tends to 0 (when
the smoothing is not imposed) the estimated PDFπi(λ) remains close to the experimental histogram{ni}. For a
finite (but small) value of this parameter(λ = 104), the curveαi(λ) is smoother but still feels the histogram points
individually. However, the curve is now continuous. For a larger value(λ = 108), the peaks due to the separated
points are completely smoothed. The large probability region of the histogram appears to be more resistant to the
smoothing than the tails. These tails could be seen as rather arbitrary since they are below the scattered points
corresponding to large values. This can be understood by looking again at Fig. 2. For larger values ofλ (e.g.,
λ = 1012) the histogram becomes even smoother but on a scale much larger than the curvature around 0 so that it
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Fig. 3. The PDFsπi(λ) estimated from the regularisation of the initial histogram{ni} for three values of the Lagrange multiplier:λ = 104 (solid
line), λ = 108 (dotted dashed line) andλ = 1012 (dashed line).

deviates strongly from the real histogram{ni}. The curveπi(λ) quickly tends towards exponential tails which are
the natural asymptotes selected by the functionalϕT .

It can be seen from these observations that the regularisation procedure acts as a smoothing filter. By construction,
exp(−λϕS [αi ]) can be interpreted here as the prior probability that{αi} be the true PDF logarithm. This probability
is Gaussian, with a variance equal to 1/λ the inverse of the Lagrange multiplier. The regularisation method can
thus be seen as a low pass filter in curvature with a typical curvature cut-off of order 1/

√
λ. However, it is better

than a Fourier transform filtering for at least two reasons. Firstly, it automatically conserves the PDF normalisation.
Secondly, the noise in the histogram tails cannot be removed by Fourier filtering since they are formed of localised
peaks with a large band signature on the Fourier transform. It is worth noting that it induces drastic problems to
compute PDFs convolution products using directly Fourier transforms. On the contrary, the method proposed here
solves this problem by taking into account the specific non-Gaussian statistic in the PDF tails.

4.4. Adding further constraints

It interesting to note that further constraints on the PDF can be easily introduced. For instance, the average of a
longitudinal velocity derivative should be zero (it is not the case on a finite signal, i.e., for a particular realisation).
This can be easily introduced by adding to the total functionalϕT a new functionalϕA which specifies the constraint,

ϕA[αi ] ≡
∫

γp(γ ) dγ ≈ 1

N

∑
i

ρiγi (18)

and thus, a new Lagrange multiplierκ,

ϕT = ϕL + ϕN + λϕS + κϕA (19)

As previously, the Lagrange multiplierκ has to be adjusted in order to verify the constraintϕA = 0. Following this
example, any other constraint can (and should) be added in the regularisation.
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5. Construction of a criterion of selection for the lagrange multiplier

5.1. Construction

It can be seen in Fig. 3 that there exist between the smoothest curve(λ = 1012) and the roughest one(λ = 104),
a range of values of the Lagrange multiplierλ which gives a correct estimate of the PDFπi(λ). We have now to
construct an objective criterion to select the ‘best’ value of the parameterλ. Basically, we want to get the smoothest
estimateπi(λ) which does not contradict the hypothesis that{ni} ‘can’ have been generated ifπi(λ) is the real
PDF. In other words, we want to test if the dispersion of the histogram{ni} around the curveπi(λ) approximately
corresponds to the dispersion predicted by the multinomial distribution. We chose among the possible criteria to
use the statistical negentropy defined by Eqs. (10) and (11). Using the Stirling formula, it can be approximated
by:

− ln(Prob{πi }[ni ]) ≈
∑

i

ni ln

(
ni

πi

)
(20)

The test consists in requiring this negentropy to be equal to the canonical negentropy. If we suppose thatπi(λ) is
the real PDF, the canonical negentropy can be defined as the average of the negentropy (Eq. (20)) over the possible
realisations{ni}. It can be written in the form:

〈− ln(Prob{πi }[ni ])〉 ≡ −
∑
{ni }

Prob{πi }[ni ] ln(Prob{πi }[ni ]) =
∑

i

T (πi, N) (21)

whereT (ρ, N) is the canonical negentropy considering only one bin of probabilityρ/N andN independent trials,
as previously. Since the number of pointsη in this bin is distributed according to the binomial distribution,T (ρ, N)

reads:

T (ρ, N) ≡
〈
η ln

(
η

ρ

)〉
= N !

NN

N∑
n=0

ρn(N − ρ)N−n

η!(N − η)!
η ln

(
η

ρ

)
(22)

We chose to define the test quantityχT as the ratio between the two negentropies defined by Eqs. (20) and (21):

χT [ni, πi ] =
∑

ini ln(ni/πi)∑
iT (πi, N)

(23)

The test is to require fromχT to be equal to 1. Let us callχT (λ), the value taken by this test functional for the PDF
πi(λ) and for the experimental histogram{ni} (χT (λ) = χT [ni, πi(λ)]). Whenλ tends to infinity, the estimated
PDFπi(λ) tends towards the histogram{ni}. By construction, the test quantityχT then tends to 0(χT (+∞) = 0).
The Lagrange parameter should thus be decreased from infinity down to the valueλT for which the test quantity is
equal to 1(χT (λT ) = 1). The PDFπi(λT ) is, from this point of view, the ‘best’ compromise between smoothness
and likelihood.

5.2. Interpretation of the selection criterion

There are many ways of constructing a test function which, asχT , quantifies the likelihood of a PDF{πi} to the
histogram{ni}. Any selection criterion thus contains a part of arbitrariness. However the choice of the negentropy,
which is at least a natural quantity in the probability field, can be justified by several interesting properties.
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It should first be noted that for quite high probability events, the multinomial distribution can be normally
approximated (Eq. (16)). In this limit, theχT test can be approximated by the Pearson ‘chi-square’ [2,3]:

χ2 =
∑

i ((ni − πi)
2/2πi)∑

i1/2
(24)

TheχT test appears, thus, as the natural adaptation for the multinomial case of the ‘chi-square’ test. This adaptation
is necessary as, in our case, the numerator of the ‘chi-square’ converge (ni quickly becomes zero in the tails), while
the denominator, which is simply the number of bins, tends to infinity. The ‘chi-square’ is thus here always zero
(χ2 = 0). This is due to the strong non-Gaussianity of the multinomial distribution for rare events.

T (ρ, N) is plotted in Fig. 4 (a) as a function ofρ for N = 105. It can be simply understood as the typical weight
in χT of a bin which would have a probabilityρ/N . In the case of the ‘chi-square’ this weight is independent of
the probability and is equal to 1/2 (dashed line). As predicted, for a large mean number of events(1 � ρ � N)

the curveT (ρ, N) appears to be almost constant and equal to 1/2. It has a maximum aroundρ = 1 and tends to
zero both whenρ tends to zero (as−ρ ln(ρ)) and whenρ becomes of the order of the total number of pointN (as
(1 − ρ/N)/2). The negentropy (Eq. (21)) can, thus, be interpreted as an effective number of useful bins, the real
number of bins being recovered ifπi is larger than 1.

The test quantityχT can be interpreted as a measure of the dispersion of the data around the candidate{πi}.
Assuming that the realisations are multinomially dispersed around the PDF{πi}, we can compute for each bin
the typical dispersion of any virtual realisation (Eq. (21)). Ideally, we should compare it to the dispersion for
each bin over many real realisations ofni . But in our case we only have one realisation of the experiment, the
histogram{ni}. In fact, the statistical negentropy (Eq. (17)) measures the gap between the candidate{πi} and our
particular realisation{ni} by averaging over all the bins. TheχT test can, thus, be interpreted as the condition that
the multinomial dispersion around the candidate{πi} correspond to the real dispersion of{ni} averaged over the
bins.

Whatever the real PDF{π̃i} can be, from a probabilistic point of view, any histogram{ni} containingN points
can occur. TheχT test can be understood as a reduction of these probabilities to only two values: all the histograms
{ni} which verify χT [ni, πi ] ≤ 1 are equiprobable, and all the others cannot be realisations of{π̃i}. Reciprocally,
the conditionχT [ni, πi ] ≤ 1 defines, from a known realisation{ni}, a border for the possible{πi} that can have
generated it. In the regularisation method, we start from a PDF (πi = ni for λ = 0) which is automatically inside
the region of possible PDFs (χT [ni, ni ] = 0). Smoother and smoother PDFs are computed until the borderχT = 1
be crossed.

We can check that this negentropy test(χT = 1) is a good criterion by computingχT for many (real) realisations
{ni} of a known PDF{π̃}. We then estimate the corresponding PDF ofχT . In the case of the analytical PDF{π̃i}
(Eq. (3)) shown in Fig. 2, the PDFs ofχT are computed numerically forN = 102, N = 105 andN = 108 points
and presented in Fig. 4(b). They are effectively centred on 1 and have, even for few points, standard deviations
small compared to 1 (0.079 forN = 102, 0.031 forN = 105 and 0.014 forN = 108). This indicates that all the
realisations of a known PDF{π̃i} nearly verify the criterionχT = 1. Thus, a valueχT in the vicinity of 1 is at least a
necessary condition for a histogram to be a realisation of the PDF{πi}. As an indirect but interesting consequence,
it is then possible (and recommended) to use it to quantify the quality of any histogram fit. If the value ofχT is far
from 1 this means that, however nice looking it may be, the fit is not statistically realistic.

5.3. Results

For the example of the velocity gradient PDF (Fig. 1),χT (λ) is plotted in Fig. 5. It is a increasing function which
tends to 0 whenλ tends to 0.χT (λ) crosses 1 forλT ≈ 6.64× 106. The corresponding wavelength cut-off is of
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Fig. 4. (a) The canonical negentropyT (ρ, N) as a function ofρ and computed forN = 105 independent trials. It corresponds to the mean
weight in theχT test quantity of one bin which would have a probabilityρ/N to occur. For a Gaussian statistic, the canonical negentropy (the
weight in the ‘chi-square’) is always 1/2 (dashed line). (b) PDF of the value taken by the test quantityχT for histograms randomly generated
from the PDF shown in Fig. 2 forN = 102 points (solid line), forN = 105 points (dotted-dashed line) and forN = 108 points (dashed line).
Even with few points, the standard deviation is small compared to 1 (0.079 forN = 102, 0.031 forN = 105 and 0.014 forN = 108).

the order of 1.4γrms, Forλ larger thanλT , the increase inλ is very rapid and becomes slower for smallerλ. The
selected valueλT approximately corresponds to the inflection point of the curve. This means that it does not ‘cost’
much in likelihood to filter all the histogram peaks in the PDF. On the other hand, increasing too much the Lagrange
parameterλ increases drasticallyχT since it moves the whole curveπi(λ) away from the real PDF (see Fig. 3). The
shape of the curveχT (λ) also indicates that the selection value (initially 1 (dashed line)) can be slightly increased
without serious consequences.

We investigated for realisations{ni} of a given PDF{π̃i}, the mean value ofλT as a function of1: it appears to
scale approximately as1−2 for small values of this parameter. This first confirms that1λ

−1/2
T is directly related
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Fig. 5. The evolution of the test quantityχT (λ) as a function of the Lagrange multiplierλ for the histogram shown in Fig. 1. The optimal value
of the test, 1 (dashed line), is obtained forλT ≈ 6.64× 106.

Fig. 6. The velocity gradient histogram{ni} and the corresponding optimal PDF estimateπi(λT ) as functions of the bin numberi.

to a typical curvature of the PDF logarithm. Moreover, the results are roughly independent of1 provided that this
parameter be small enough (see Sections 2.1 and 2.2).

The ‘best’ estimate of the PDFπi(λT ) is shown in Fig. 6 together with the initial histogram{ni}. It is, as required,
a smooth function which interpolates, at least by eye, the histogram.
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6. On the possible deviations to the multinomial model

It is in fact surprising that the PDFπi(λT ) shown in Fig. 6 ‘can have generated’ the histogram{ni} according to
the multinomial distribution. There are in fact many reasons for which an experimental histogram could be over-
dispersed, by comparison to the ideal multinomial case. It should first be noted that the noise in the measurement of
the signal essentially convolves the PDF and thus has a tendency to smooth the PDF rather than to make it rougher.
The noise is thus a source of error but not a source of dispersion of the histogram.

A second experimental problem which can be encountered is a drift of the experiment control parameters in
particular if the total record timeNτ is too large. There can be in this case a slow change of the real PDF during
the experiment, and thus strictly speaking no global probability distribution{π̃i}. The natural model for this drift is
the so called ‘Poisson case’ forN independent trials. For a given bini, the dispersion〈(ni − π̃i)

2〉 is affected by an
additive term of orderδπ̃2

i /N , whereδπ̃2
i is the variance of thẽπi drift. This corresponds to a relative over-dispersion

of orderδπ̃2
i /(Nπ̃i) which should not affect strongly the regularisation method in most of the cases.

The third problem encountered regularising experimental histograms is even more serious: it is linked to the
physical system studied and to the data sampling. Indeed, the sampling timeτ is in general chosen much smaller
than the typical correlation time, because one wants both to access to the small time scale features and to get a
numberN of sampled values as large as possible. For the example of the velocity gradient presented in Fig. 1, the
signal is smooth and thus strongly correlated at the sampling time scale. This means that there is a redundancy
in the data. This is problematic since the multinomial distribution requires that the data samples be completely
independent and uncorrelated.

There is no way to escape from this over-sampling problem. However, it has different consequences depending
on the bin width1. This effect is illustrated schematically in Fig. 7 where we consider a smooth signal. On the
left, the bin width1 is large so that when one event falls in theith bin, there is a strong probability that the next
event also falls in theith bin. On the right,1 is smaller so that the probability that the next event fallsexactlyin
the ith bin is not much increased. In fact, when one event falls in theith bin there is a strong probability that the
next one falls in a bincloseto it. Only looking at one given bin, each trial can be considered as independent from

Fig. 7. A schematic of the over-sampling effect. If the signal is correlated at the scale of the sampling time intervalτ , there is a strong probability
that two consecutive points fall inneighbouringbins (left histogram). It is better in this case to chose a small bin width1 so that two correlated
points will rarely fall in thesamebin (right histogram).
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the previous one: the number of points in this bin is reasonably given by the binomial distribution. However, there
should be a drastic effect on the covariance〈(ni − π̃i)(nj − π̃j )〉. For the multinomial distribution it is a negative
quantity (equal to−π̃i π̃j /N ): the negative sign corresponds to the fact that if an event falls in theith bin, it cannot
also be in thej th one. On the other hand, for an over-sampled histogram, this quantity should be positive ifi and
j are close to each other: if there are too much points(ni > π̃i) in the ith bin, there is a strong probability that it
will be the same in the neighbouring bins. This will have some consequences on the PDF moments estimate (see
Section 4.3). As a conclusion, there are two simple solutions which can be tried if the histogram appears to be really
over dispersed: decreasing the bin width1 and increasing the sampling timeτ .

The fourth problem we want to discuss can also explain an over-dispersion. It may appear when an analog-digital
converter is used to acquire the signal. If the number of quantified levels by bin is too small, the quantification of the
signal can appear in the histogram. In this case, the apparent width1 of a given bin can quantitatively differ from
the real width which takes into account the signal quantification. This problem can be corrected either by increasing
the bin width1 or paradoxically by adding a random noise to the sampled signal: adding a random real number
between−0.5 and 0.5 to all the integer values allows in general to overcome the problem.

7. On the tails of the estimated probability distribution function

7.1. Test on a synthetic PDF exhibiting algebraic tails

If the validity of the regularisation procedure is quite clear in the large probability region of the PDF (Fig.
6), the tails could at first sight be seen as rather arbitrary. In particular, the smoothing potential selects exponential
asymptotes. This arbitrariness is intrinsically due to the principle of the method which adds a priori some information
on the nature of a PDF. We will thus investigate the estimated tails on the synthetic example of Fig. 2 for which the
real PDFπ̃i is known.

The PDF estimateπi(λT ) is shown on Fig. 8 (a). It is a continuous curve with, however, some remaining
oscillationsaroundthe real PDFπ̃i . This demanding example clearly shows that the estimated PDF tails are not
at all arbitrary extrapolations but still reflect the local point density. Moreover, it can be seen that the exponential
asymptotes only start after the last histogram points.

We also observe on Fig. 8(a) the main limit of the smoothing functional. To give a visual interpretation of the
parameterλT , an arc of parabola of same curvature is drawn above the histogram. It appears to be clearly too large
compared to the curvature in the central part of the histogram. However, it corresponds well to the slight oscillations
remaining in the tails. This means that the central part of the histogram is too much constrained. In the central region,
the curve has the highest resistance to smoothing : the curveπi(λ) cannot be moved away from the large histogram
points. As a consequence, increasingλ, the test function becomes larger than 1 because of the discrepancy in this
central region. As a consequence, the estimated PDF remains rough in the tails where the curvature is lower. The
regularly spaced bins together with the basic smoothing functional thus lead to some problems as the curvature is
not constant along the histogram (Fig. 8(a)). This suggests to make a change of variable and more generally to adapt
the smoothing functional in order to obtain a more regularly dispatched curvature and then to regularise completely
the tails.

The positive counterpart of this problem is that a ‘corrupted’ prior information cannot be forced (contrarily to a fit)
since the estimated PDF has to be plausible (selection criterion). The example (Fig. 8(a)) shows that the histogram
cannot be over-smoothed and that its effect is easy to diagnose. This observation emphasises the fundamental
difference between this regularisation method and a fit, which always gives by construction a result corresponding
to the attempt. This again shows the interest of the criterionχT = 1 (and more generally of chi-square like quantities)
to check the likelihood of a fit to the data.
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Fig. 8. The PDF and the synthetic histogram of Fig. 2. (a) The optimal PDF estimateπi(λT ) (dashed line) using the variablei for the smoothing
potential. The parabola corresponds to the curvature cut-off of the filter. (b) The PDF estimatesπi(λT ) for two changes of variable: one with a
power law asymptote (dashed line) and the other with a logarithmic asymptote (dotted dashed line).

7.2. Change of variable and generalisation of the smoothing functional

A first possible modification is to change the variable used to compute the smoothing functional (Eq. (9)). Even
if the natural coordinate is that chosen to compute the histogram, another coordinatex(i) may be easily introduced
andϕS modifies in:
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ϕS [αi ] ≡ 1

2

∫ (
d2α

dx2

)2

dx ≈ 1

2

∑
i

1

x′(i)3

[
(αi+1 − 2αi + αi−1) − x′′(i)

2x′(i)
(αi+1 − αi−1)

]2

(25)

Compared to the previous definition (Eq. (9)), this modified smoothing functional has two interests. It allows to
weight the terms in the sum and thus to selectively smooth the different parts of the histogram. Following the
mechanical analogy, this weight corresponds to a distribution of elasticity along the curve. For the two examples
discussed above (Figs. 6 and 8(a)), the tails have to be stiffened: this corresponds to a derivativex′(i) which should
decrease from the centre to the tails. The other additive term can be interpreted as a reference curvature. The null
bending energy no longer corresponds to an exponential ini but to an exponential inx(i). In other terms, the
elastic line is no more straight at rest (when no external force field is applied to it) but already has a nontrivial
shape specified byx(i). These observations suggest a generalisation of the smoothing potential which keeps the
two positive aspects of the change of variable:
• in order to improve the PDF tails, they have generally to be more smoothed than the high probability

regions;
• the curvature should be compared to a reference which roughly describes the prior shape of the PDF.
Introducing a smoothness weightingwi and a curvature referenceci , the smoothing functional can then be written
in the general form:

ϕS [αi ] = 1

2

∑
i

wi [(αi+1 − 2αi + αi−1) − ci(αi+1 − αi−1)]
2 (26)

The difference with the simple change of variables is just the independence of the weight and the curvature reference.
Some criteria are now needed to determine objectivelywi andci .

7.3. Guidelines for the generalised smoothing functional selection

A first guideline originates in the difference highlighted on Fig. 8(a) between the regularisation method (or a
series of local fits) and a global fit. Namely, if the smoothing procedure is not adapted to the histogram considered,
then the result is not good. This means that the result does not correspond to the prior assumptions made. In Fig.
8(a), this leads to remaining oscillations in the tails together with a sudden change of behaviour around the last
points. This suggests an intuitive self-consistency criterion: if the result does not exhibit the properties assumed,
this means that these assumptions are not good. On the contrary, we can expect that if the hypotheses made are
finally verified by the estimate, they are reasonable.

A second test to check the validity of the prior assumptions is the stability of the method. Once a PDF is estimated,
it can be used to produce several realisations (Monte Carlo method see [5]), which can in turn leads to estimated
PDFs, and so on and so forth. The stability of the procedure can be investigated by looking at the difference between
the successive estimated PDFs and the first one.

The next step in this work is to use these principles (self-consistency and stability) to build a self-adaptive
procedure to determine for each histogram the ‘best’ smoothing functional (the optimal weightwi and curvature
referenceci), without adding by hand any information. In particular, it would allow to get rid of the prior choice
of variable. We can imagine an iterative procedure which starts from the basic smoothing functional (ci = 0 and
wi = 1) to obtain a first PDF estimate{π1

i }. The next step is to determine the ‘best’ parameterswi andci if this
PDF {π1

i } is the real one. As explained above,{π1
i } allows to generate ‘false’ realisations, each leading to other

estimates{π ′
i
1}k. We can for instance ask the average of these estimates to be equal to the first one{π1

i }. We can
also try to minimise the standard deviation of these estimates around{π1

i } with respect to the set of parameterswi
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andci . If this is achieved, a second estimate{π2
i } can be computed from the initial histogram and the algorithm can

be iterated.
However, there are still some difficulties (due for instance to the nontrivial selection of the Lagrange multiplier

λ, to the attraction towards the stable estimateπi = 0 if ni = 0 . . . ), and the work has still to be done. Before this
general method, we can however use the criteria defined above to determine semi-empirically a working procedure,
for instance in the particular case of turbulent-like signals. After having shown the effect of a simple change of
variables (Section 7.4), a working smoothing functional will be presented (Section 7.5).

7.4. Test of the change of variable

The PDF shown in Fig. 8(a) (Eq. (24)) exhibits algebraic tails: the best choice for the change of variable should
thus have a logarithmic asymptote. It should also be linear around the PDF maximum. Using a change of variable
which verifies these two constraints, the regularisation method gives a PDF estimateπi(λT ) (Fig. 8(b), dotted dashed
line) which is smooth everywhere and which nearly collapses the real PDFπ̃i . By construction of the change of
variable, the smoothed histogramπi(λT ) exhibits far algebraic tails.

In order to investigate the effect of this asymptote, we tested a change of variable which is also linear around the
position of the PDF maximum but which exhibits a 0.5 power law asymptote(x(i) ∝ i0.5). The corresponding PDF
estimateπi(λT ) is shown by the dashed line in Fig. 8(b). It is again a smooth curve which is also very close to the
exact PDF (solid line in Fig. 8(b)). It exhibits by construction a stretched exponential asymptote which starts only
afterthe last histogram points. Thus, there is only a slight dependence on the change of variable: the two results with
algebraic and stretched exponential asymptotes are close to each other and to the original PDF up to the last point.
So we could say that even with a selected asymptote in stretched exponential, an algebraic behaviour is recovered
with the smoothing procedure. This was already obtained in Fig. 8(a), which shows that even with exponential
asymptotes the algebraic tails are reasonably well approximated. A fortiori, distributions close to a Gaussian or an
exponential, which are particular stretched exponentials, can be well fitted up to the last point.

As a conclusion, if the selected asymptote fits very badly the histogram tails, there remains some oscillations
in the PDF tails. These tails consequently exhibit statistically larger deviations to the real PDF. Reciprocallyany
reasonable change of variable (and it appeared to be a loose condition) allows to estimate the tails up to the last
histogram points.

7.5. Working regularisation method

An interest of the change of variable is, as noted above, to assign naturally a weight to each bin in the smoothing
potential. This weight is directly related to the change of variablex(i), which is itself determined by the PDF
curvature in the tails. If{αi} is concave,x′(i) will decrease from the centre and the tails will be more smoothed than
with the simple method. If{αi} is convex, the tails will be less smoothed than with the variablei. Checking this
property on various synthetic PDFs, we observed that the tails also require to be more smoothed in this case. The
simple change of variable is thus only a partial improvement of the tails estimate, and the generalised smoothing
function should be used.

We introduce here a parametrised curvature reference. The basic regularisation method (Eqs. (14) and (23)) is
applied to get a first idea of the PDF{π1

i }. We determine from this initial estimate{π1
i }, the curvature reference under

the formci = θ±/(i − i0) wherei0 is the position of the PDF maximum andθ+ (respectivelyθ−) is obtained by
minimisation of the curvature (Eq. (26) withwi = 1) in the positive tail (respectively the negative one). An algebraic
tail correspond toθ± = −0.05. The other values ofθ± corresponds to stretched (or compressed) exponential tails
(θ± = 0 for the exponential andθ± = 0.5 for the Gaussian).
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Fig. 9. The velocity gradient histogram{ni} and the corresponding PDF estimateπi(λT ) using the modified smoothing functional.

The weightwi has to be adjusted to prevent two extreme effects. If a region has locally a too low weight (a large
flexibility), some oscillations remain (Figs. 6 and 8(a)). On the contrary, if the weight is too large (a very rigid curve),
the exponential behaviour (ini or x(i)) is forced. If this exponential asymptote is locally a good fit of the PDF, the
estimate becomes very good (Fig. 8(b)). But if it is not the case, the curve{αi} ‘breaks’ into portions of lines joined
in nearly singular places around isolated points, which concentrate the essential of the bending energy. There is
also in this case a strong dependence of the resulting curve on the particular starting histogram{ni} (breaking of the
stability criterion). The best compromise we could achieve uses a second time the basic regularised PDF{π1

i }. We
construct a weight which is almost constant in the large probability region(αi > 0) and increases in the tails asα2

i :

wi =
(

ln

(
1 + 2πi

πi

))2

= (ln(2 + exp(−αi)))
2 (27)

It should be noted that the weight is computed once for all with the initial PDF estimate and must not be minimised in
ϕT . The final velocity gradient PDF, estimated with this complete regularisation method (including the null average
(see Section 4.4)), is plotted in Fig. 9. This new estimate collapses with the previous one (Fig. 6) in the central region
but the oscillations due to the two largest points have been smoothed. Finally, the results become self-consistent
and reasonably stable, and the testχT , which is strictly verified for the whole histogram (by construction), is also
approximately verified locally.

8. Benefits of the regularisation method

8.1. Improvement of the PDF estimate

We will now test the efficiency of the complete regularisation method constructed in the previous parts. For this
purpose, synthetic histograms were generated from a known PDF . We chose to use the velocity gradient PDF shown
in Fig. 9 as this real PDF (Monte Carlo method, see Section 7.3 and [5]). One thousand histograms were generated
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Fig. 10. The relative error statistically made on the PDF estimated by direct normalisation of the histogram (〈(ni/π̃i − 1)2〉, dashed line) and
using the regularisation method (〈(πi/π̃i − 1)2〉, solid line). The two curves correspond to the two sides of the PDF.

using the multinomial distribution with the same number of pointsN ≈ 3.7 × 107 as initially. The regularisation
method was applied to each of these histograms and gives thus 1000 estimated PDFπi(λT ) (notedπi below for
simplicity). We computed the average over the 1000 trials of the quantities(ni/π̃ − 1)2 and(πi/π̃i − 1)2 for each
bin. 〈(ni/π̃i − 1)2〉 and〈(πi/π̃i − 1)2〉 are, respectively, the relative statistical error on{π̃i} estimated by direct
normalisation of the histogram and using the regularisation method. The resulting functions are both plotted in
Fig. 10 as a function ofπi (see also Fig. 9 for the correspondence betweeni andπi). The two sides of the PDF
correspond to the two curves (in solid line) shown in Fig. 10.

The precision of the PDF obtained using the regularisation method is much better than the direct normalisation
of the histogram{ni}, and that even in the tails (for̃πi < 1). For the example chosen, a 10% uncertainty on
π̃i(〈(πi/π̃i − 1)2〉 = 10−2) is obtained forπi ≈ 0.4 with the regularisation method and forπi = 100 with the
direct histogram normalisation. Similarly, the limit of 100% error(〈(πi/π̃i − 1)2〉 = 1) is reached forπi ≈ 10−5

with πi(λT ) and forπi = 1 with ni . The change of slope of the statistical error〈(πi/π̃i − 1)2〉 corresponds to the
region where the last histogram points are statistically observed. As a conclusion, the PDF{πi(λT )} is a very good
estimate of the real PDF{π̃i} up to the last histogram point (the rarer event).

8.2. Improvement of the PDF moments estimate

If it is clear that the estimate of the PDF is improved by the regularisation method, it is less evident that there can
be a gain on the computation of PDF moments. Indeed, a moment is a quantity which uses all the histogram bins
and which is thus less sensitive to the dispersion of the data than the PDF itself.

If we consider an estimate{ρi} of the PDF (this can be, for instance, directly the histogram{ni} or the regularised
PDF{πi(λT ))}, the PDF moment of orderq, M[q, π̃i ], can be approximated, if the bin width1 is sufficiently small,
by:

M[q, ρi ] ≡
∫

γ qp(γ ) dγ ≈ 1

N

∑
i

ρi(1γi)
q (28)
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As in the previous part, the statistical errorσ 2[q, ρi ] on these moments, defined as

σ 2[q, ρi ] ≡
〈(

Mq [ρi ]

Mq [π̃i ]
− 1

)2
〉

(29)

will be used to quantify the improvement. As in the previous part, the simplest method is to generate a large number
of ‘false’ realisations of the PDF estimate (Fig. 9) and to compute these errors by averaging over this synthetic set.
At this step, it is important to note that the statistical errorσ 2[q, ρi ] is directly related to the{πi} covariant matrix:

σ 2[q, ρi ] =
[∑

i,j (γiγj )
q〈(ρi − π̃i)(ρj − π̃j )〉

]
[∑

iγ
q
i π̃i

]2 (30)

This expression brings us back to the discussion of Section 4.2. Indeed,σ 2[q, ni ] (for the basic estimate{ρi} = {ni})
directly depends on the dispersion of the histogram and thus on the possible redundancy in the sampling. There
is thus potentially a difference between the ‘multinomial’ variance (denotedσ 2

mul[q, ρi ] below) computed from
synthetic histograms and the real experimental one,σ 2

exp[q, ρi ].
A possible trick consists of computing from the signalm histograms which containN/m points, and this for

several values ofm. m = 1 corresponds to the initial histogram. We used for commodity powers of two for both
N andm (m = 1, 2, . . . , 128). For each subdivision, the sum of them histograms is strictly equal to the initial
N point histogram. We can thus computem estimates of the PDF moments based onN/m points histograms, and
this, for each value ofm. M[q, ρi, m, j ] denotes thej th estimate (overm) of the moment of orderq (Eq. (28)). The
variance on this moment, considering realisations ofN/m points is denoted byS2[q, ρi, m] (with the interesting
relation S2[q, ρi, 1] = σ 2

exp[q, ρi ]). This variance can be approached by an averaging over them realisations
considered:

S2[q, ρi, m] ≈ 1

m − 1

m∑
j=1

(
mMq [ρi, m, j ]∑m

k=1Mq [ρi, m, k] − 1

)2

(31)

We obtain finally the variance on the PDF moment of orderq, as a function of the number of points used to
compute it. This variance is plotted in Fig. 11(a) for the fourth order moment, as a function ofm, for both {ni}
(black diamonds) and{πi} (black squares).S2[4, ni, m] is everywhere larger thanS2[4, πi, m]. In order to turn to
the interesting quantityσ 2

exp[q, ρi ] we have to extrapolate the curveS2[q, ρi, m] to m = 1. As for multinomial trials,

S2[q, ρi, m] appears to be proportional tom for both{ni} and{πi}. This allows to fit objectively the experimental
points (dashed lines) and finally to compute the statistical errorsσ 2

exp[q, ρi ].

The four curvesσ 2
exp[q, ni ], σ 2

exp[q, πi ], σ 2
mul[q, ni ] and σ 2

mul[q, πi ] are shown on Fig. 11(b). The diamonds
correspond to the basic estimate{ρi} = {ni} and the circles to the regularisation method{ρi} = {πi}. The black
points are those measured experimentally by subdivision of the histogram and the white ones are computed by
averaging over the synthetic multinomial trials. In both cases, there is an improvement of the PDF moments in using
the regularisation method which allows to compute higher moments than what is directly possible. For instance,
the limit of 75% error is reached forp ≈ 5 for {ni} andp ≈ 7 for {πi}. For ordersq lower than 3 (in the high
probability region of the PDF), the curves collapse two by two: the two methods are there strictly equivalent. In the
same zone, we observe that the experimental error is much larger than in the strict multinomial case. This is the
confirmation that there is a quite high redundancy in the sampled data (see Section 6). However, for higher orders
the regularisation method seems to be insensitive to this effect. This also means that the variance of the high order
moments estimated from the regularised PDF may be precisely computed by the Monte Carlo method developed
above.
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Fig. 11. (a) The relative error statistically made on the PDF fourth moment by direct normalisation of the histogram (S2[4, ni , m], black diamonds)
and using the regularisation method (S2[4, πi , m], black squares) for sub-histograms containingN/m points. The shift between the two curves
indicates an improvement of the moment estimate by the regularisation method. The fit by a linear function ofm allows to measure the statistical
error for the complete histogram (which contains the wholeN points). (b) The relative statistical error on theq PDF moments as a function of
the orderq using the direct normalisation (diamonds) and the regularisation method (squares) on both the experimental histogram (black points)
and synthetic multinomial trials (white points).

9. Concluding remarks

The estimate of a PDF{πi} from an experimental histogram{ni} was investigated. A specifically designed
regularisation method was constructed to take advantage of the PDF smoothness. The PDFs estimated this way
are precisely defined up to the last point of the histogram tails (the rarest event). Using this method, the statistical
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errors approximately correspond to what was obtained classically with an experimental sampling time a hundred
times longer [1]. This clearly demonstrates the importance of using prior information on the nature of the PDF
(smoothness, null moments, inequalities between PDFs, etc.). The regularisation procedure presented here takes
into account the smoothness of the PDF logarithm and can be easily extended to any other constraint.

Our method assumes that the dispersion of histograms around a PDF follows the multinomial distribution. This
allowed to discuss some experimental problems (over-sampling, discretisation due to analog-digital converters. . . )
which induce an over-dispersion of histograms. The regularisation method is thus also a very useful tool to ‘in-
spect’ experimental histograms. The essential point is theχT test (Eq. (23)) developed to characterise a histogram
dispersion. It is for instance an objective criterion to test some PDF models (fitted usingϕL + ϕN as defined above
instead of the usual chi-square).

It is noteworthy that this smoothing procedure does not correspond to a fit. Although the first simple form (Eq.
(9)) is improved using a parametrised change of variable (Eq. (25)) and more generally a change in the smoothing
functional Eq. (26), this smoothing procedure still fundamentally differs from a simple fit. It can be understood
as a series of local fits, which local form imposes a loose enough constraint so that a different dependence can be
globally recovered. Another evidence of this is that if the guess used is really wrong, it is directly shown by the
result which is then not consistent with the guess. This self-consistency criterion is very useful to choose the form
of the smoothing functional. More work is still needed to take profit from stability and self-consistency criteria to
construct a general regularisation method powerful in any cases.

Finally, the precision in the computation of the PDFs moments is improved using the regularisation method and
the statistical errors can be correctly estimated. However, we want to emphasise that models directly on PDFs shapes
would be easier to test objectively (withχT test for instance) than models on the moments. In a forthcoming article,
we will present the results obtained on experimental and numerical turbulence signals using this procedure.
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