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Using the nonlinear dependence of sound propagation speed with pressure, we evidence the anomalous

elastic softness of a granular packing in the vicinity of the jamming transition. Under gravity and close to a

free surface, the acoustic propagation is only possible through surface modes guided by the stiffness

gradient. These Rayleigh-Hertz modes are evidenced in a controlled laboratory experiment. The shape and

the dispersion relation of both transverse and sagittal modes are compared to the prediction of nonlinear

elasticity including finite size effects. These results allow one to access the elastic properties of the

packing under vanishing confining pressure.
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The evidence of anomalous mechanical properties in
static, disordered granular assemblies of frictionless
spheres has brought a new perspective on glassy systems
[1]. In such a noncohesive material, the external pressure is
the only source of confinement that may jam the packing in
the rigid phase. Thus, at zero thermal agitation, a solid-
fluid transition would be reached under a vanishing con-
fining pressure, i.e., when the packing becomes a marginal
solid with just the minimal amount of contacts per grain Z
suited to sustain a large scale elastic network, i.e., at
isostaticity (Z ¼ Ziso). Near jamming, this model system
presents excess low frequency modes, called ‘‘soft
modes,’’ whose spatial extension diverges at the critical
point [2] and which cause a nonaffine linear response. It
has been shown numerically and theoretically that these
weak floppy modes make the ratio G=K of shear modulus
to bulk modulus vanish at the jamming transition [2]. This
is similar to the behavior of many other disordered con-
densed systems—mostly multistable systems such as regu-
lar fluids trapped in a glassy phase [3]—that also lose their
shear rigidity (characteristic of ordinary solids) when they
are on the verge of yielding. Can this anomalous linear
response be evidenced experimentally? Is this simplified
jamming scenario robust enough to describe real granular
matter that includes frictional contacts [4,5], gravity load-
ing, or nonspherical particles? These are fundamental
questions when one seeks to establish a generic picture
for the glassy transition of weak solids viewed from the
jammed phase.

In this Letter, we show that the propagation of surface
sound waves provides insights into the structure of the
elastic networks in the vicinity of jamming. This experi-
mental technique allows one to measure the elastic prop-
erties of a granular packing under vanishing pressure, i.e.,
close to a free surface and under gravity loading. In ordi-
nary elastic solids, surface waves (called Rayleigh waves)
are a combination of compression and shear waves, and
they travel at a speed slightly smaller than bulk shear

waves (� 5000 m=s for glass). Acoustic measurements
in granular matter with a free surface have been performed
in the context of ethology [6]—numerous species living at
the desert surface use sound waves to probe their environ-
ment—and seismic geology [7,8]. In both cases, a surpris-
ingly low speed of sound (� 50 m=s) was observed.
However, it is only recently that two independent theoreti-
cal calculations based on slightly different models of non-
linear elasticity [9,10] have shown that these surface waves
should be ascribed to a gravity induced index gradient,
which plays the role of a waveguide and allows for the
propagation of an infinite collection of surface modes.
To clarify the theoretical issues addressed here, let us

rephrase in the framework of nonlinear elasticity the pre-
dictions of Wyart et al. [2] on the elastic anomaly induced
by soft modes. For geometrical reasons, the Hertz contact
force between two grains depends nonlinearly on their
relative interpenetration. On this basis, the macroscopic
elastic free energy of an isotropic granular packing can be
written in a general form [11]:

F ¼ Eð2
5B�5=2 þA�1=2u0iju

0
ijÞ; (1)

where uij is the coarse-grained strain tensor, � ¼ �TrðuijÞ
is the volumic compression, and u0ij ¼ uij þ �

3 �ij is the

traceless strain tensor. A and B are two dimensionless
elastic coefficients that characterize the material stiffness
under shear and compression, respectively. We assume that
the average number of contacts per grain Z is sufficient to
characterize the microscopic packing geometry and thus
that A and B are functions of Z. Indeed, in a frictional
packing, different values of Z can be obtained under the
same pressure p; Z and p are thus independent state
variables [5]. It should be emphasized that F is not sup-
posed to describe the stress-strain curve obtained from a
loading test, which is composed by a series of elastic
loadings at fixed Z and of plastic events during which Z
changes.
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Assuming homogeneity and identifying macroscopic
and microscopic strains, mean-field theory (see [12] and
references therein) predicts that A and B vary linearly in
Z and thus remain finite when p ! 0 [10]. However,
jamming theory [2] predicts that upon approaching isosta-
ticity, the shear modulus G presents a critical behavior,

G ¼ AE2=3ðP=BÞ1=3 � ðZ�ZisoÞP1=3, coming through
its coupling with the excess of contacts above the isostatic

value, which itself scales as Z�Ziso � P1=3. Then, the

ratio of shear to bulk modulus K ¼ ðBEÞ2=3P1=3 should

vanish with pressure as G=K ¼ A=B� P1=3. In
Ref. [10], the surface elastic modes were derived for the
free energy (1). The guided waves propagate through an
infinite though discrete collection of modes polarized sag-
ittally (i.e., a compound of vertical and longitudinal dis-
placements vibrating in quadrature) or transversely. The
mode labeled n of wavelength � penetrates the sample over
a typical depth n� and thus feels a typical pressure p ¼
�gn�. Consequently, the mean-field theory predicts a ve-

locity dependence of the form v� ðn�Þ1=6. Alternatively,
for low frequency modes where elastic coupling with shear
stiffness is dominant, the soft-modes theory would predict

v� ðn�Þ1=3. Consequently, the dispersion relation of sur-
face waves constitutes a direct experimental test for the
existence of a shear stiffness anomalous scaling. Let us
emphasize again that the reality of the jamming point as a
critical point was assessed for frictionless soft spheres, but
there are several indications that this line of ideas could be
generalized to frictional packing [4,13] and even to glasses
[14].

As confirmed by preliminary experiments [15], the weak
dependence of the speed of sound on n makes the experi-
ment very difficult to control and almost impossible to
analyze. Indeed, using any standard source, a huge number
of propagating modes are excited that remain superim-
posed over large distances. To bypass this problem, we
have successfully designed an experiment that isolates the
first sagittal and transverse modes. For this, measurements
are performed in a rectangular channel of width W ¼
20 cm and length 180 cm, which serves as a second
waveguide [Fig. 1(a)]: the lateral boundary conditions
impose a relation between the measured wavelength �
and the wavelength �1 that would be selected in an infi-
nitely large channel, at the same frequency:

�1 ¼
�
1

�2
þ

�
m

2W

�
2
��1=2

; (2)

where m is the transverse mode number (m ¼ 1 here).
Moreover, the sources are conceived and tuned to excite
essentially the modes n ¼ 1: sagittal waves are produced
by an electromagnetic shaker (without any spring) whose
axis is finely guided by a ball bearing slider coupled to a
very rigid transverse metallic blade; transverse waves are
produced by a rough cylinder inside which a permanent
magnet vibrates under the action of a magnetic field

[Fig. 1(b)]. The channel is filled of glass beads (E ¼
70 GPa, d ¼ 150� 25 �m) over the height H ¼ 20 cm.
For such an aspect ratio, with smooth boundaries, the
Janssen effect is negligible [16] so that the pressure is
expected to vary linearly in depth. The acoustic isolation
is insured by 20-cm-thick boundaries. The experiment is
also designed to prevent another problem. As the sample
presents random heterogeneities, the acoustic signal is
composed by an effective medium response and a coda
related to speckle effect [17]. Their relative amplitude is
controlled by the number of grains in contact with the
transducer. We have chosen to work with accelerometers
of diameter D ¼ 13 mm, which allow one to measure the
three components of the acceleration in the bulk of the
sample. Around 3� 104 grains are in contact with the
transducer and the measured amplitude of the coda tail is
around 5% of the coherent signal. By comparison, other
techniques like a laser vibrometer would only probe the
rough surface of the packing and, due to the small size of
the spot (5 mm), would only average over �400 grains,
yielding a coda and a coherent signal of the same order of
magnitude. We have also checked that the propagation is
not affected by the presence of other accelerometers be-
tween the source and the receiver. Besides, the transducer
size D should be at least a fraction of the wavelength �,
which imposes to work at rather low frequencies f <
1 kHz. In summary, the experiment has to be analyzed
keeping in mind the hierarchy of length scales: d � D<
�<H.
The typical vibration amplitude we use is �10 nm,

although the propagation properties remain the same up
to �100 nm, i.e., a strain of 10�6. Above, new peaks
appear in the signal and period doubling is observed in
the coda, and nonlinear coupling between modes may then
happen. Therefore, here we dwell far from the nonlinear
propagation conditions (soliton waves) as evidenced ear-
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FIG. 1. (a) Experimental setup. Acoustic source of sagittal
waves. (b) Acoustic source of transverse waves. (c) Signal of
the accelerometer mounted on the source. (d),(e) Transverse
wave packets received at x ¼ 60 cm from the source, for two
preparations of the granular packing (see text). Note the shift of
the wave-packet center (d) and of the phase (�).
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lier in nonlinear Hertz chains [18]. The preparation of the
sample is amongst the most difficult parts of the experi-
ment. Prior to each measurement, we systematically sweep
a thin blade longitudinally and transversely through the
packing in order to remove any memory effect due to the
granular initial filling or the subsequent accelerometers
manipulation. The extra sand above the level of the channel
is then gently removed, leaving a flat surface. Figure 1
compares a typical signal obtained with this procedure
[panel (d)] to that obtained when pouring the grains and
flattening the surface by tapping with a hammer on a
plaster float [panel (e)]. In the first case, the phase and
the travel time of the wave packet is reproducible. By
contrast, the apparent phase velocity and group velocity
can vary up to 25% from one sample to the other, although
they are macroscopically identical. This nonuniversality is
the first important conclusion of this Letter: the packing
elastic properties depend on the preparation protocol.
Figure 2 shows the positions of the center of the wave
packet and of an isophase event as a function of time. For
this, we prepared �20 realizations of the packing. For
each, the signals of four accelerometers placed at different
positions are acquired and fitted by a Gaussian wave
packet. The propagation of a coherent mode—and not
speckle—is clearly evidenced by the linear relationship
between space and time and by the reproducibility over
independent microscopic realizations. The slopes of the
relations give the group and the phase velocities vg and v�,

respectively. Looking now in depth, the vibration ampli-
tude is observed to decrease over a distance � of the order
of a half wavelength [Fig. 3(b)]. The sagittal waves are
elliptically polarized, with their principal axis in the verti-
cal direction and along the direction of propagation.
Figure 3 shows that the shape of the first mode is in fair
agreement with the prediction of our model [10], which
confirms that the first mode has been successfully isolated,
as desired.
We have measured vg and v�, as well as their statistical

uncertainty, every 3 Hz, up to 750 Hz for sagittal waves and
up to 550 Hz for transverse waves. These values are used to
reconstruct accurately a single dispersion relation fð��1Þ
(Fig. 4) that simultaneously fits the group and phase veloc-
ities in the least square sense. As expected, the propagation
is dispersive since vg and v� are different. This can be

related to the two wave-guide effects previously men-
tioned. The propagation suddenly stops below 180�
20 Hz, an effect due to the finite depth and width. For
sagittal waves, we observed that this cutoff frequency is
associated to a sharp resonance at 192 Hz, with a Q factor
of 70. The group velocity is expected to vanish at this
frequency and the phase velocity to diverge, which ex-
plains the increase of the ratio vg=v� with f. Below

300 Hz, we have observed that the wave packets were
very distorted and it was not possible to determine vg

and v�. At high frequency, an asymptotic behavior con-

trolled by the pressure induced wave guide is reached in the
limit of wavelengths � small in front of the channel trans-
verse dimensions (H and W). The ratio vg=v� tends to a

constant equal to 0:82� 0:04 for the preparation described
above. As vg is the slope of the dispersion relation, vg=v�

is the scaling exponent between f and ��1. The measured
value is very close to that expected ifA does not vanish at
the surface (5=6). Thus, our experimental results fully
confirm the Hertzian picture down to �� 250d and does
not show any evidence of anomalous exponent (2=3) when
p ! 0, which would be associated to a critical behavior at
the jamming point [2,13]. It would be interesting to pursue
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FIG. 2. Space-time diagram showing the wave-packet propa-
gation. Starting from the raw signals received at different posi-
tions, the wave packet is roughly localized by computing the
signal envelope. Then, a local fit by a Gaussian wave packet
allows one to determine the center of the wave packet (d) and its
phase with respect to the source (the symbols j show the space-
time coordinates of an isophase event). The best fit (thin lines)
allows one to extract the group and phase velocities.
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FIG. 3. First sagittal mode. (a) Amplitude of the vertical (d)
and horizontal (�) displacement as a function of depth, for f ¼
315 Hz (� ’ 21:5 cm). (b) Length� over which the vibration
decays as a function of the wavelength �.
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this technique to lower the probing wavelengths in order to
push the limits to weaker confining pressures. But to this
purpose, the limitations due to finite probe size, prepara-
tion sensitivity, and speckle noise have to be overcome.

Globally, one can compare the experimental data to the
prediction of the model, assuming that A does not vanish
at the surface and remains nearly constant at the scale �
and taking into account the finite width and depth (lines in
Fig. 4). The agreement is excellent (within 5%). The
dispersion relations of transverse and sagittal modes turn
out to be nearly equal (Fig. 4). This striking behavior is one
of the robust outputs of our model [10]. For ratiosB=A ¼
Oð1Þ, the difference would only be of 10% and would be
almost indistinguishable when, say,A< 0:2B. The physi-
cal reason is that the restoring force for both modes is the
shear elasticity (parameter A). In the limit � � H, the
dispersion relation of the first modes takes the following
form:

f ¼ �ðE=�Þ1=3g1=6��5=6
1 ; with � ’ 0:77A1=2B�1=6:

(3)

The best fit gives f�5=61 ’ 77� 1 m5=6s�1, which corre-

sponds to a value of A1=2B�1=6 � 0:23. By contrast, the
mean-field expectation is 0.40 for frictionless grains and
0.61 for infinite friction. Thus, the measured shear stiffness
is 3 to 5 times smaller than predicted by the mean-field
theory, as observed in numerical simulations [12]. The
soft-mode theory is the only one explaining this mean-field
failure. Still, to be consistent with our results, one has to
conclude that the packing does not tend to isostaticity at the
surface: for frictional packings prepared in a simple way,Z
remains significantly larger than Ziso under vanishing
pressure.
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FIG. 4. (a) Dispersion relation of sagittal (�) and longitudinal waves (4): frequency f as a function of the rescaled wave number
H=�. The cutoff frequencies (d andm) below which no propagation is observed are measured independently. (b) Corresponding group
vg (open symbols) and phase v� (solid symbols) velocities. (c) Ratio of the group and phase velocities vg=v� as a function of H=�. In

the three graphs, only one-fifth of the measured points are shown. The predictions of the model, including the finite width and depth,
are shown as solid (sagittal) and dotted (transverse) lines.
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