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Elastocapillary instability under partial wetting conditions: Bending versus buckling
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The elastocapillary instability of a flexible plate plunged in a liquid bath is analyzed theoretically. We show
that the plate can bend due to two separate destabilizing mechanisms, when the liquid is partially wetting the
solid. For contact angles θe > π/2, the capillary forces acting tangential to the surface are compressing the
plate and can induce a classical buckling instability. However, a second mechanism appears due to capillary
forces normal to surface. These induce a destabilizing torque that tends to bend the plate for any value of the
contact angle θe > 0. We denote these mechanisms as “buckling” and “bending,” respectively and identify the
two corresponding dimensionless parameters that govern the elastocapillary stability. The onset of instability
is determined analytically and the different bifurcation scenarios are worked out for experimentally relevant
conditions.
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I. INTRODUCTION

Water-walking arthropods like water striders are able to
float, despite their density, thanks to surface tension forces [1].
Their superhydrophobic legs are submitted to a repulsive force
along the contact line where the three phases (liquid, vapor,
and solid) meet. As the legs are long and flexible, they deform
under these capillary forces [2]. Figure 1 shows an experiment
performed with extremely slender artificial legs made of a soft
solid, which is plunged into a liquid bath. One observes an
elastocapillary instability that is triggered by increasing the
contact angle θe: the initially immersed solid is pushed out of
the liquid to the free surface, whenever θe is sufficiently large.

In the limiting case of complete wetting, i.e., θe = 0,
a compressive force is exerted on an elastic rod initially
immersed in a liquid when its end pierces the liquid interface
[3–5]. Such a rod buckles when the compressive force exceeds
Euler’s critical load. Consider the case of a plate of thickness
H much smaller than its length L and its width W . It is
submitted to a capillary force equal to the water surface tension
γLV times the perimeter �2W . The critical force is equal to
(π/2)2BW/L2, where B is the bending stiffness, which can
be expressed as B = EI/W (1 − ν2), where E is the Young’s
modulus, ν the Poisson ratio, I the moment of inertia and W

the width of the plate. Therefore buckling occurs if the plate
is longer than a critical length Lcr = (π/2)

√
B/(2γLV ). It is

proportional to the elastocapillary length

�EC =
(

B

γLV

)1/2

, (1)

which is the length scale controlling a large class of elastocap-
illary problems [4–12].

One may wonder if the instability observed in Fig. 1
is of the same physical nature. Indeed, one can expect a
buckling instability if the contact angle θe is larger than
π/2. Namely, the total downward force that the reservoir
exerts on the solid is proportional to γLV cos θe, and hence
changes from “stretching” to “compressing” when the contact
angle exceeds π/2. However, there is a second mechanism

that can lead to elastic deformations. Figure 2 compares the
capillary energy of an extremely flexible object that either
remains vertical or floats on the free surface of the liquid.
The free energy difference is proportional to the spreading
parameter S = γSV − γSL − γLV , where γSV , γSL, and γLV

are, respectively, the surface tensions of the solid-vapor,
solid-liquid, and liquid-vapor interfaces. As a consequence,
bending is favorable under partial wetting conditions, S < 0,
whatever the value of the contact angle θe. This is manifestly
different from the buckling instability, which can only occur
for θe > π/2. Indeed, the mechanism for instability is not the
vertically compressing force, but is a bending induced by the
capillary torque exerted near the contact line [2].

In this paper we investigate theoretically the instability of a
two-dimensional, elastic plate plunged in a liquid of the same
density. In light of former studies, we wish to address different
issues. What are the mechanisms for instability: bending,
buckling, or a combination of the two? What is the relevant
length L for the instability in the situation of Fig. 1, where the
plate can be supposed to be infinite? What are the parameters
controlling the instability?

To illustrate the two mechanisms of elastocapillary instabil-
ity, bending, and buckling, we consider a long elastic plate that
is hanging freely under the influence of gravity. We assume
the thickness to be sufficiently small to allow for a thin plate
elastic description. The bottom of the plate is brought into
contact with a liquid reservoir that partially wets the solid,
with an equilibrium contact angle θe. To reveal the effect of
surface wettability, we focus on the case where both sides of
the plate are wetted by the same angle. This is fundamentally
different from the situation prior to piercing of an elastic solid
through a meniscus [2–5], for which one of the contact lines is
pinned to the edge of the solid—in that case the contact angle
can attain any value. Our goal is to compute the shape of the
plate and to analytically determine the threshold of instability
for different θe.

Our main finding is that the elastocapillary instability can
occur even when θe < π/2, which is the regime where the
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FIG. 1. (a), (b) Photographs of an elastomeric wire of radius
R = 300 μm and density ρ = 1.02 × 103 kg/m3 brought into contact
with a mixture of ethanol and water. From (a) to (b), the contact
angle is increased continuously by decreasing the concentration of
ethyl alcohol. The wire exhibits a buckling instability above a critical
contact angle. (c), (d) Independent determination of the contact angle,
using drops of the same mixture on a plane substrate made of the same
elastomer as in (a) and (b). On the left, the advancing contact angle
is 60◦ with a 50%; volumic solution of ethyl alcohol in water. On the
right, the advancing contact angle is 95◦ with a 5%; volumic solution
of ethyl alcohol in water. In this figure we provide an illustrative
example corresponding to an elastomeric wire, while in the rest of
the paper we analyze a thin elastic plate—instability mechanisms are
qualitativly similar for these two different systems.

capillary forces are pulling on the plate and no “buckling” is
to be expected. Indeed, this is due to the bending mechanism
described in Fig. 2, due to the partial wettability of the

(a) (b)

FIG. 2. Capillary energy of a partially immersed plate, in the
absence of gravity and elasticity. (a) Two sides of the plate are
immersed, representing an energy of 2γSL per immersed length.
(b) When bending toward the surface, one of the sides is no
longer wetted and part of the liquid-vapor interface is covered.
The associated energy per length is γSV + γSL − γLV . The energy
difference between (b) and (a) equals the spreading parameter
S = γSV − γSL − γLV . For the partially wetting case S < 0, so that
state (b) is energetically more favorable than state (a).

substrate. In general, the threshold of instability depends
on two dimensionless parameters that can be associated to
bending and buckling, respectively. Interestingly, we will find
that the bending parameter is not only determined by the
elastocapillary length �EC , but also involves the characteristic
size of the meniscus, serving as a moment arm for the
capillary torque. For the two-dimensional plates considered
here, this moment arm is proportional to the capillary length
�γ = (γLV /ρg)1/2, where ρ is the density of the liquid, which
thus appears as a new length scale in the elastocapillary
problem.

The paper is organized as follows. We first formulate the
elastocapillary problem and identify the relevant dimension-
less quantities in Sec. II. In Sec. III we analytically determine
the threshold of instability by linear analysis and numerically
compute the nonlinear bifurcation diagrams. The results are
interpreted in experimental context in Sec. IV, where we also
discuss the influence of contact angle hysteresis. The paper
concludes with a discussion on the distribution of capillary
forces in Sec. V, and addresses how the results change upon
replacing the two-dimensional plate with a cylindrical rod.

II. ELASTOCAPILLARY FORMULATION

The strategy of the calculation is to separately treat the
portion of the plate that is outside the bath and the meniscus
region near the contact line—see Fig. 3. For simplicity we
assume that the plate and fluid are density matched, or
equivalently, that the bottom of the plate reaches only just
below the surface. We can consider the forces and torques
induced by the meniscus (Sec. II B) as a boundary condition
for the dry part of the plate (Sec. II A). The dimension-
less equations and boundary condition are then summarized
in Sec. II C.

A. Plate outside the reservoir

Given that the plate is very thin we can describe the shape
by a line that we parametrize by its angle φ(s) with respect to
the vertical direction (Fig. 3). We use a curvilinear coordinate
s that has s = 0 at the level of the bath, and the curvature is κ =
dφ/ds. In Cartesian coordinates, we use the parametrization
x = χ (z), where z is orientated upward and z = 0 corresponds
to the level of the liquid reservoir. The relation between the
two representations is dχ/ds = sin φ and dz/ds = cos φ. We
consider a very long plate that, due to gravity, follows the
boundary condition φ(∞) = 0; cf. Fig. 3.

In the presence of the bending stiffness B, one can express
the internal torque as a function of the curvature φ′, so that the
torque balance reads

Ti = −Bφ′. (2)

This internal force moment is exerted by the upper portion
of the plate on the lower portion of the plate. Note that for
the situation in Fig. 3 the curvature is negative, φ′ < 0. From
the above equation, under the condition that away from the
meniscus there are no forces applied to the plate, one can
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FIG. 3. Left: Photograph of an elastomeric plate partially bent by
capillary forces. We show that such bending to a stable, finite angle
is only possible due to contact angle hysteresis. The plate thickness
is H = 0.8 mm, its Young modulus is E = 66 kPa, and its density
is 1.02 × 103 kg/m3. As not particularly clean tap water is used, the
surface tension is around γ = 0.05 N/m. Right: Definitions of the
vertical coordinate z and curvilinear coordinate s. The deformation
of the plate is characterized by the deflection χ (z) or local angle φ(s).
The characteristic curvature of the plate is �−1

χ . Inset: sketch of the
resultant capillary forces in the meniscus region. At the contact lines
there are pulling forces along the liquid-vapor interface of magnitude
γ . In addition, the hydrostatic pressure pulls or pushes on the plate
depending on the level with respect to bath. The scale of the meniscus
is �γ .

obtain the following elastica equations [13,14], which helps to
compute the shape of the plate:

Bφ′′ = Fz sin φ. (3)

For a thin plate of thickness H and elastic modulus E one
finds the bending stiffness as B = EH 3/12(1 − ν2). (This
expression shows that the bending stiffness is independent
of the plate width W for sufficiently thin plates. Hence for
H � W , the width W will not affect the calculation.) Also
Fz is the vertical component of the force (per unit plate
width) transmitted through a cross section of the plate (or
effectively Fz is an internal force resultant) and we will find
below that Fx = 0. The force Fz on a cross section consists
of two contributions, due to gravity along the plate and due to
surface tension at the meniscus boundary. At a location s along
the plate, the vertical force due to gravity is simply the weight
below s, i.e., ρgHs per unit width of the plate. As we assume
the plate to have the same density as the liquid, or equivalently
that the bottom dips just below the surface, we only take into
account the portion of the plate that is outside the reservoir.

The capillary forces exerted in the meniscus region can be
obtained in two equivalent ways: by the virtual work principle

FIG. 4. The resultant vertical force on the plate can be obtained
from the change in surface free energies due to a virtual displacement
dz. See text for details.

or by a microscopic force construction. While in Sec. II B we
follow the latter approach, we first perform the thermodynamic
argument sketched in Fig. 4 based on virtual work. Let us
consider the left side of the plate. Moving the plate vertically
by dz, one changes the horizontal position of the contact line by
dz tan φ(0), leading to an increase of the liquid-vapor interface
on the left of the plate. However, this is compensated by an
equivalent decrease of liquid-vapor interface on the right of the
plate. A nonvanishing effect is that the vertical displacement
increases the length of dry plate by dz/ cos φ(0), while the
wetted part is decreased by the same amount. Assuming there
is no contact angle hysteresis (�θ = 0), such that γSV − γSL =
γ cos θe, one finds the forces due to the left and right side:

FL
z = γ (sin φ(0) − cos θe)

cos φ(0)
, (4)

FR
z = γ (− sin φ(0) − cos θe)

cos φ(0)
. (5)

Here we introduced the shorthand γ = γLV , which will be
employed in the remainder of the paper. Again, these forces
are per unit width of the plate. Similarly, by moving the plate
horizontally by dx, one reduces the water area by dx so that

FL
x = −γ and FR

x = γ. (6)

The total horizontal force Fx thus vanishes while the total
vertical force reads

Fz = FL
z + FR

z = −2γ cos θe

cos φ(0)
. (7)

These results are easily generalized to incorporate contact
angle hysteresis, i.e., allowing for different contact angles to
the left and to the right of the plate [2]. For this, one replaces
2 cos θe by cos θL + cos θR in Eq. (7), where θL and θR denote
the angles on left and right. Note that Fz can also be obtained by
considering the force contributions around each of the contact
lines (cf. Sec. II B).

Combining Eq. (3) with the Fz induced by gravity and
surface tension derived above, one obtains the equation for the
plate:

Bφ′′ =
(

ρgHs + 2γ
cos θe

cos φ(0)

)
sin φ. (8)
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To analyze this equation it is convenient to introduce a length
scale expressing the strength of gravity with respect to the
bending stiffness:

�χ =
(

B

ρgH

)1/3

. (9)

The analysis implicitly assumes that �χ is much larger than H .
We show below that this is the typical scale over which the

plate is curved. For the elastomeric plate used in the experiment
presented in Fig. 3, �χ is around 7 mm. Scaling the curvilinear
coordinate as

S = s

�χ

and �(S) = φ(s), (10)

the torque balance (8) becomes

�′′ =
(

S + 2S0
cos θe

cos �(0)

)
sin �. (11)

Here we introduced a dimensionless number

S0 = γ �2
χ

B
=

(
�χ

�EC

)2

. (12)

The dimensionless number S0 expressed in Eq. (12) manifests
the importance of the vertical surface tension forces with
respect to the bending stiffness. In the experiment presented
in Fig. 3, �EC is around 7.5 mm so that S0 is of order unity
(S0 � 0.90).

Interestingly, S0 can be interpreted as the ratio of �χ ,
the “effective” length of the plate, and the elastocapillary
length �EC . This is consistent with the general picture of
elastocapillarity, namely that surface tension can induce
deformations (such as buckling), when the plate is longer
than �EC [4,5,10,15,16]. Below we will see that under partial
wetting conditions, there is another dimensionless parameter
associated to the torques induced by normal forces.

Equation (11) can be solved analytically when the angle of
deflection is small, i.e., when sin �(0) � �(0) and cos �(0) �
1. This limit is relevant at large distances from the meniscus,
where the plate tends to a straight line (Fig. 3), as well as for
describing the onset of the instability (Sec. III). The equation
then becomes

�′′ = [S + 2S0 cos θe] �, (13)

which can be solved as

�(S) = �1 Ai (S + 2S0 cos θe) , (14)

where Ai is the Airy function. The integration constant �1

determines the amplitude of the deflection and has to be solved
from the boundary condition at the meniscus. The second Airy
function Bi(S) diverges for large arguments and thus does not
comply with the boundary condition φ(∞) = 0. Using the
large S asymptotics of Ai, we find

�(S) � �1
e−(2/3)S3/2

2
√

π S1/4
. (15)

The plate thus naturally tends to a vertical line. Realizing that
S = s/�χ , we indeed find that �χ sets the length scale over
which the deflection decays along the upward direction.

B. Meniscus region

The plate outside the liquid is described by a second order
ordinary differential equation and thus requires two boundary
conditions. A first boundary condition is φ(∞) = 0, which,
for example, was used while deriving Eq. (14). The second
boundary condition comes from the torques exerted at the
meniscus region. As shown in Eq. (2), the internal torque
experienced by the plate is proportional to the curvature
dφ/ds, which balances the external torque Te applied by the
meniscus:

Ti + Te = 0. (16)

This boundary condition has to be evaluated at the position
of the upper contact line. Namely, this point marks the edge
of the domain for Eq. (3), for which no normal forces were
taken into account along the plate. In the paragraphs below
we assume the meniscus on the left is higher than that on the
right, as in Fig. 3. The left and right contact line positions, zL

and zR , are found from the classical meniscus solutions [17],

zL = ±�γ (2{1 − sin[θL − φ(sL)]})1/2, (17)

zR = ±�γ (2{1 − sin[θR + φ(sR)]})1/2, (18)

where the sign (symbol ±) depends on the value of the contact
angle θe with respect to π/2 or equivalently on the sign of
cos θe. Note that we now allow explicitly for different contact
angles on both sides of the plate. The length scale of the
meniscus is given by the capillary length

�γ =
(

γ

ρg

)1/2

(19)

and reflects the balance between surface tension and the
hydrostatic pressure (gravity). In the conditions of Fig. 3, �γ

is around 2.3 mm. The analysis is simplified by using the
hierarchy of length scales:

H � �γ � �χ ∼ �EC. (20)

Since �γ is significantly smaller than �χ , it is natural to use a
different scaling for the meniscus region. To avoid confusion
with the preceding paragraph, where we scaled the curvilinear
coordinate S = s/�χ , we scale only the Cartesian coordinate
in the meniscus region:

Z = z

�γ

. (21)

One can assume �γ � �EC , which suggests that the length
scale over which the capillary forces are assumed to be
influential is substantially smaller than the length scale over
which the capillary-force induced bending can be significant.
As a consequence, one can assume that the plate represents a
negligible curvature in the meniscus region, so that the angle
can be considered constant, φ(sL) = φ(sR) = φ(0). This gives
a simple relation between the coordinates z = s cos φ(0).

1. Capillary forces

Before addressing the torques, we first specify the various
capillary forces exerted by the liquid on the solid plate. The
detailed spatial distribution of capillary forces is a difficult
question in itself, as addressed, e.g., in Refs. [18,19]. As will be
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commented in Sec. V A, the resultant forces can be represented
as shown in the inset of Fig. 3. First, there is a force per length
of magnitude γ that pulls along the liquid-vapor interface.
Second, there is a contribution due to hydrostatic pressure in
the liquid, which is unbalanced whenever the two contact lines
are at a different height (i.e., when zL 	= zR). This pressure is
acting normal to the solid surface and has to be integrated
between the two contact lines.

Projecting the tangential force contributions, one finds the
resultant force along the plate

Fs = −γ (cos θL + cos θR) , (22)

taken in the positive s direction. For cos θe < 0, or equivalently
an equilibrium angle θe > π/2, this force is compressing
the plate. Similar to the classical buckling instability, such
a compressive force has a destabilizing effect. For cos θe > 0
it is stabilizing.

The normal forces add up to

Fn = γ (sin θR − sin θL) + Fp, (23)

where Fp is the unbalanced hydrostatic pressure appearing on
the left of the plate. Assuming that zL > zR , or equivalently
θL < θR , this hydrostatic pressure is obtained by integration
as

Fp =
∫ sL

sR

ds p(s) = −
∫ sL

sR

ds ρgs cos φ(0)

= −1

2
ρg

(
s2
L − s2

R

)
cos φ(0) = −1

2
γ

Z2
L − Z2

R

cos φ(0)
, (24)

where in the last step we we used ρg = γ /�2
γ and s = Z�γ /

cos φ(0). These equation can be further worked out using
Eq. (17), where we take φ(sL) = φ(sR) = φ(0). Combined
with Eq. (23) this finally gives

Fn = −γ (cos θL + cos θR) tan φ(0). (25)

Let us emphasize that these resultant force components
(22), (25) can be projected in the (x,z) directions in order
to compare to the virtual work result discussed in Sec. II A.
Indeed, the projection gives Fx = 0 while one recovers the
correct Fz upon replacing 2 cos θe by cos θL + cos θR in
Eq. (7). This illustrates the importance of the force due to the
unbalanced hydrostatic pressure Fp. Its magnitude is of order
γ [see Eq. (24)] and involves the expressions that depend
on the contact angles θL and θR . Most importantly, only by
adding Fp to γ (sin θR − sin θL), one recovers the capillary
forces obtained from the virtual work principle (see Sec. II A).
Therefore Fp should be interpreted as a capillary force.

2. Capillary torques

Having established the capillary forces in the meniscus
region, we are in a position to compute the associated torques.
Since we are interested in the boundary condition for the plate
outside the reservoir, we compute the torque around the highest
contact line, i.e., sL. Using the convention that positive torques
induce a rotation in clockwise direction, the normal forces then
give a torque

Tn = −γ (sL − sR) sin θR = −γ �γ

(ZL − ZR) sin θR

cos φ(0)
. (26)

From the construction in the inset of Fig. 3 it is clear that
this torque is destabilizing. Namely, if we consider a small
perturbation where the plate is slightly bent to the right, the
meniscus on the left rises higher than the meniscus on the
right. As a consequence the surface tension force on the right
has a larger moment arm than that its counterpart on the left.
The induced torque on the plate acts in the same direction
as the initial perturbution, and hence has a destabilizing
effect.

Similarly to Eq. (24), there is a torque induced by the
hydrostatic pressure. This is obtained by integrating over the
pressure, now including a moment arm sL − s:

Tp =
∫ sL

sR

ds p(s)(sL − s)

=
∫ sL

sR

ds ρgs cos φ(0)(s − sL)

= 1

6
γ �γ

(ZL + 2ZR)(ZL − ZR)2

cos2 φ(0)
. (27)

Interestingly, this torque scales as (ZL − ZR)2, which reflects
the fact that both the integrated pressure and the moment arm
are proportional to ZL − ZR . For small asymmetry we can
thus neglect Tp with respect to the moment induced by the
force at the contact line.

Finally, the torque induced by the tangential forces is strictly
zero when �θ = 0, as the forces act in the same directions.
For small hysteresis, the resultant torque is of order ∼ γH�θ ,
since the arm for the tangential force is half the thickness of
the plate. Clearly, this can be neglected with respect to Tn,
for which the arm is given by �γ . To summarize, we find the
external torque

Te = Tn + Tp, (28)

which for small φ(0) and small hysteresis is dominated by Tn.

C. Dimensionless equations

The results of the preceding paragraphs can be summarized
as follows. We found that the plate in the region outside the
bath is governed by the length scale �χ , which in practice
is much larger than the size of the meniscus �γ . To separate
the regimes, we use the dimensionless curvilinear coordinate
S = s/�χ outside the bath, for which the shape can be solved
from Eq. (11), i.e.,

�′′ =
(

S + 2S0
cos θe

cos �(0)

)
sin �. (29)

This it to be complemented by a boundary condition at S =
sL/�χ ≈ 0, since sL is of the order of �γ � �χ . This boundary
condition is most conveniently expressed in terms of Z = z/�γ .
When ZL > ZR this gives

�′(0)

= T0

(
− (ZL − ZR) sin θR

cos �(0)
+ (ZL + 2ZR)(ZL − ZR)2

6 cos2 �(0)

)
,

(30)
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while for ZR > ZL one has

�′(0)

= T0

(
(ZL − ZR) sin θL

cos �(0)
− (2ZL + ZR)(ZL − ZR)2

6 cos2 �(0)

)
,

(31)

where

T0 = �χ�γ

�2
EC

. (32)

In the experiment presented in Fig. 3, T0 is of order unity
(T0 � 0.285). The values of ZL,R are determined by the contact
angles from Eq. (17), and the plate inclination at the bottom,
�(0). The latter parameter follows as a result of the calculation
and can be used to identify the buckling instability.

Apart from the contact angle θe (and the hysteresis �θ ),
the problem is governed by two dimensionless parameters that
can be interpreted as a ratio of length scales:

S0 =
(

�χ

�EC

)2

, T0 = �χ�γ

�2
EC

. (33)

The first of these parameters can be interpreted as the
ability to induce buckling for the tangential capillary force,
provided that cos θ < 0. Consistent with the standard view of
elastocapillarity, this effect is governed by the elastocapillary
length �EC with respect to the “effective” length of the plate, set
by �χ . The second dimensionless parameter sets the strength of
the bending induced by the torque generated in the meniscus.
As it involves a torque, the capillary length �γ intervenes as
the moment arm.

III. BIFURCATIONS

It is clear that the straight plate, �(S) = 0, is a solution of
Eq. (29) that satisfies the boundary condition (30). We now
analyze the stability of these solutions in terms of the param-
eters S0 and T0, for different values of θe. Throughout this
section we assume no hysteresis, i.e., �θ = 0 or equivalently
θL = θR = θe. We first perform a linear analysis to identify the
threshold and discuss the regimes where bending or buckling
are dominant. Subsequently, we numerically compute the
bifurcation diagram by following the various solution branches
in the nonlinear regime.

A. Instability threshold

The threshold of instability of the straight plate is obtained
by linearizing the problem for small �, as already done in
Eq. (11), yielding a solution

�(S) = �1Ai(S + 2S0 cos θe). (34)

Similarly, the boundary condition (30) can be expanded as

�′(0) � −2T0
| cos θe| sin θe√

2(1 − sin θe)
�(0), (35)

where the expression for the meniscus rise (17) was used.
Combining Eqs. (34) and (35) one obtains the equation for a

“neutral mode,” which is a solution of the deflection profile
for arbitrary (small) perturbation amplitude �1:

2T0
sin θe| cos θe|√

2(1 − sin θe)
+ Ai′ [2S0 cos θe]

Ai [2S0 cos θe]
= 0. (36)

Indeed, this equation provides the threshold for the instabil-
ity in terms of the parameters T0, S0, and θe. This can be seen,
e.g., by varying one of these parameters while keeping the other
two constant. One finds that the internal moment Ti dominates
the external torque Te (stable) or vice versa (unstable), as the
parameter is varied across the neutral condition (36).

B. Bending instability: θe < π/2

We now reveal the destabilizing effect of the torque in
the meniscus, associated to the parameter T0, which tries to
bend the plate. This mechanism is most relevant for θe < π/2,
for which it turns out the only destabilizing mechanism: the
buckling parameter S0 is stabilizing in this range as it multiplies
with cos θe > 0. In this context of bending, Eq. (36) indeed
provides the critical T0 beyond which the flat solution becomes
unstable. Namely, for larger T0 the torque in the meniscus Tn

becomes larger than the internal torque of the plate Ti for small
perturbations, hence leading to instability.

The result of the stability analysis is shown in Fig. 5,
depicting the critical T0 versus S0 for several contact angles
below π/2. One observes the following trends. First, upon
increasing θe the instability is triggered at a smaller T0. This
occurs as the destabilizing normal forces are proportional to
sin θe, and thus becomes more influential for larger contact
angles. Second, the instability threshold increases with S0,
which represents the strength of the tangential capillary forces.
In the regime θe < π/2 or cos θe > 0, these tangential forces
are pulling on the plate and are indeed stabilizing; hence one
requires a larger value for T0 to induce the instability. In the
limit of large S0 one can expand the Airy functions, yielding
the asymptotics T0 ∼ S

1/2
0 . Finally, for the limiting case where

5

4

3

2

1

0
1086420

FIG. 5. The threshold of stability T0 versus S0 for different values
of the contact angle θe = π/6,π/4,π/3,π/2. For cos θe > 0, the
bending threshold T0 increases with S0 since the vertical capillary
force has a stabilizing effect. The limiting case cos θe = 0 has Fz = 0,
for which the bending threshold is independent of S0.
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0

π/4

−π/4

−π/2

π/2

1086420

FIG. 6. Typical bifurcation diagram for bending induced insta-
bility, obtained from numerical integration of Eqs. (29) and (30).
Solutions branches characterized by the angle at the bottom of the
plate, �(0), upon varying the bending strength T0. The values of
S0 = 10.0 and θe = π/4 were kept fixed.

the tangential capillary forces vanish, θe = π/2, the critical T0

does not depend on S0 and can be computed analytically as

T0(π/2) = − Ai′(0)

2Ai(0)
= 31/3(2/3)

2(1/3)
≈ 0.3645 · · · (37)

We now analyze the nonlinear behavior of the solutions
above the threshold. We numerically solve Eqs. (29) and
(30) and characterize the various solutions with �(0), the
plate inclination at the bottom. Figure 6 shows a typical
bifurcation diagram for the bending induced instability, by
depicting the variation of �(0) with T0. One recognizes a
supercritical pitchfork bifurcation, with a critical exponent 1.
The diagram is for a given value of S0 and θe, and shows
that there is a critical T0 beyond which the trivial solution
�(0) = 0 becomes unstable and bifurcates into two stable
branches. Above threshold, the plate inclination saturates at
a finite angle �(0). The critical T0, can be easily read off from
Fig. 5 by drawing a line parallel to T0 axis, passing through
the corresponding S0 (here S0 = 10) and obtaining the T0 from
the point of intersection of this line (here θe = π/4).

C. Buckling instability: θe > π/2

We now consider the case θe > π/2 for which the tangential
forces are compressing the plate and can lead to the classical
buckling instability. To isolate this buckling from the bending
we can consider the case where T0 � 1 or θe ≈ π . According
to Eq. (36), the onset of buckling is associated to the rightmost
maximum of the Airy function, i.e., Ai′(c0) = 0, which gives

S0 = c0

2 cos θe

, with c0 = −1.018 86 · · · . (38)

This value is indicated by the closed circle in Fig. 7. It can
be seen in the figure that for T0 	= 0, the threshold is lowered
due to the destabilizing nature of the torque in the meniscus
region.

Beyond the onset, one observes a sequence of branches
associated to the other maximima and minima of the Airy
function, at more negative arguments. In analogy to the

1086420

1

0.8

0.6

0.4

0.2

0

FIG. 7. The threshold of stability T0 versus S0 for θe = 2π/3. The
vertical force Fz now compresses the wire and leads to buckling, even
in the absence of bending (T0 = 0). Similar to the classical buckling
instability, the higher order branches correspond to all extrema of the
Airy function.

classical buckling, these correspond to the higher order modes.
The stability threshold is obtained from Eq. (36) which gives,
for T0 � 1, Ai′(cn) = 0, so that

S0 = cn

2 cos θe

. (39)

The higher order branches correspond to large arguments of
the Airy function, and can be determined accurately from
asymptotics of Ai(s):

cn � −
[

3π

8
(4n + 1)

]2/3

. (40)

Similar to Fig. 6, in Fig. 8, we illustrate a typical bifurcation
diagram for the buckling induced (θe > π/2) instability and
characterize the various solution with �(0). For the first
branch, as we move along �(0) = 0, on crossing a critical S0,
the solution becomes unstable and produces two additional

0

π/4

−π/4
1086420

FIG. 8. Typical bifurcation diagram for the buckling induced
instability, obtained from numerical integration of Eqs. (29) and (30).
Solutions branches characterized by the angle at the bottom of the
plate, φ(0), upon varying the buckling strengths S0. The values of
T0 = 0.25 and θe = 2π/3 were kept fixed.
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1

FIG. 9. Shapes of the plate with �(0) = 0 for different buckling
strengths S0. From left to right: S0 = 2.689, S0 = 4.302, S0 = 5.636,
S0 = 6.830. The values of T0 = 0.25 and θe = 2π/3 are as in Fig. 8
and were kept fixed.

unstable solutions. This implies that there is no stable solution
at a finite angle. Physically, this suggests that on slight
perturbation from its equilibrium position, the wire (or plate)
ends up on the surface (as in Fig. 1), corresponding to
�(0) = π/2. On moving further along �(0) = 0, one encoun-
ters further bifurcations, which correspond to higher order
modes becoming unstable. Similar to the previous bifurcation
diagram, the critical values for S0 are obtained from Fig. 7, by
drawing a line parallel to S0 axis, passing through T0 = 0.25.
Typical solutions with �(0) = 0 are depicted in Fig. 9. As in
classical buckling, the successive branches are separated by
half a wavelength.

IV. EXPERIMENTAL PERSPECTIVE

A. Influence of thickness

In this section we would like translate the analysis in
terms of dimensionless numbers S0 and T0 to an experimental
situation. As an illustration, we consider a case where we fix the
material properties of the liquid and the elastic solid, and vary
the thickness H . The instability is then reached below a critical
thickness, for which the bending rigidity is sufficiently weak.
Alternatively, one may perform an experiment as sketched in
Fig. 1, where the thickness is fixed but the contact angle is
varying.

Retracing the steps of the analysis, one finds that S0 and
T0 are constructed from the thickness of the plate H and
the material parameters γ , E, (ρg). The bending stiffness
B by itself is not a material parameter as it depends on the
thickness as B = EH 3/12(1 − ν2). By selecting the proper-
ties of the liquid and the elastic solid, one fixes two length
scales,

�EG = E

12(1 − ν2)ρg
and �γ =

(
γ

ρg

)1/2

. (41)

In the experiment presented in Fig. 3, �EG is around 56 cm and
the capillary length is �γ = 2.3 mm so that �EG/�γ � 250. We
can express T0 and S0 in terms of the length scales defined in

0
0 π/4 3π/4π/2 π

2

1.5

2.5

1

0.5

FIG. 10. Experimental perspective: the threshold of instability by
varying the plate thickness H and the contact angle θe, for �EG/�γ =
250. The plate thickness H is normalized by H, defined in Eq. (44)
as a threshold value for intermediate θe. For typical experimental
conditions, H = 0.47 mm.

Eq. (41) as

T0 = (H 2�EG)1/3�γ
3

�EGH 3
= H−7/3 �EG

−2/3 �γ
3, (42)

S0 = (H 2�EG)2/3�γ
2

�EGH 3
= H−5/3 �EG

−1/3 �γ
2. (43)

Interestingly, the length scales �EG and �γ appear in different
combinations in the two parameters. We thus anticipate that
the threshold thickness H presents different scaling laws,
depending on whether the instability is due to bending (T0)
or due to buckling (S0).

In Fig. 10 we show the critical thickness for different values
of the contact angle. We scaled the thickness by assuming
T0 ∼ O(1), which implies a characteristic thickness H:

H = �9/7
γ �

−2/7
EG . (44)

In the experiment presented in Fig. 3, H is around 0.47 mm.
The upper line in Fig. 10 represents the threshold thickness for
instability. The main trend of the graph is that the instability
is more difficult to reach, i.e., requires a smaller thickness of
the plate, as the contact angle θe is decreased.

A key result, however, is that even for very small contact
angles there is still an instability due to the torque exerted by
the normal forces. This contrasts the classical buckling picture,
since for small θe the capillary forces are not compressing, but
are in fact pulling on the plate. Note that in this regime of
small θe, T0 → ∞, and therefore H, as defined in Eq. (44), is
no longer the correct length scale for the threshold thickness.
Rather, in this regime the critical thickness is obtained
from

2

(H
H

)7/3 sin θe| cos θe|√
2(1 − sin θe)

+
Ai′

[
2
(H

H

)5/3( �EG

�γ

)1/7
cos θe

]
Ai

[
2
(H

H

)5/3( �EG
�γ

)1/7
cos θe

] = 0.

(45)

061601-8



ELASTOCAPILLARY INSTABILITY UNDER PARTIAL . . . PHYSICAL REVIEW E 84, 061601 (2011)

For θe → 0 and H/H → 0:

√
2

(H
H

)7/3

θe −
[

2

(H
H

)5/3 (
�EG

�γ

)1/7 ]1/2

= 0, (46)

which yields

H

H =
(

�γ

�EG

)1/21

θe
2/3 . (47)

This asymptotic form is shown as the dashed line in Fig. 10.
Indeed, this regime involves a different combination of �EG

and �γ than H.
Above π/2, one enters the usual buckling regime. The

graph also reveals the higher order buckling modes. From the
previous paragraphs, a good approximation can be obtained as

H

H =
(

�EG

�γ

)1/21 [
3π

8
(4n + 1)

]−2/5

(−2 cos θe)3/35 . (48)

The onset is generated by the highest of the lines. Finally,
note that there is an optimal contact angle, slightly before
θe = π , for which the instability is most easily reached. The
scaling near θe = π turns out to be

H

H =
(

2

|c0|
)3/5 (

�EG

�γ

)3/35

≈ 1.4988

(
�EG

�γ

)3/35

. (49)

To summarize, the critical thickness below which the plate
becomes unstable increases with the contact angle θe, except
very close to θe = π , where the thickness displays a maximum.
Intriguingly, the dependence of the characteristic thickness
on the material parameters is not universal, but depends on
the contact angle. Three regimes can be identified, involving
different combinations of ρg, γ , and E. At very small contact
angles, one finds from Eq. (47)

H ∝ (ρg)−1/3γ 2/3E−1/3θe
2/3. (50)

Close to θe = π one has [Eq. (49)]

H ∝ (ρg)−2/5γ 3/5E−1/5, (51)

while at intermediate contact angles one has [Eq. (44)]

H ∝ (ρg)−5/14γ 9/14E−2/7. (52)

B. Influence of contact angle hysteresis

Another important experimental feature is that one can-
not eliminate a substantial hysteresis of the contact angle.
This means that θL 	= θR , with typical experimental values
�θ ≈ 0.1 (in radians). Taking this hysteresis into account in
the model, we find a small shift in the threshold of instability.
However, the fact that hysteresis breaks the left-right symmetry
of the problem has a much more pronounced effect on
the general structure of the solutions and their bifurcation
diagrams.

To illustrate this, we first show two bifurcation diagrams
corresponding to Fig. 10 in the case without hysteresis
(�θ = 0). Figures 11(a) and 11(b) are both obtained by
varying θe, for two different values of the plate thickness.
The upper plot corresponds to H/H = 1.54, for which a
single bifurcation is observed. The lower plot corresponds to

0

0

π/4

π/4

−π/4

3π/4π/2
−π/2

π/2

π

0

0

π/4

π/4

−π/4

3π/4π/2
−π/2

π/2

π

(a)

(b)

FIG. 11. Bifurcation diagram, �(0) versus θe for �EG/�γ = 250.
The two panels correspond to different cross sections of Fig. 10,
namely (a) H/H = 1.54, and (b) H/H = 0.77.

H/H = 0.77, for which the higher order buckling modes are
crossed.

The effect of contact angle hysteresis is revealed in Fig. 12,
comparing the bifurcation diagrams for �θ = 0 and �θ = 0.1.
Clearly, the left-right symmetry of the problem is broken by
the hysteresis, as reflected by the splitting of the branches

0

0

π/4

π/4

−π/4

3π/4π/2
−π/2

π/2

π

FIG. 12. Effect on hysteresis on the bifurcation diagram, �(0)
versus θe, in the case H/H = 1.71 and �EG/�γ = 250. �θ = 0.1
(thick lines) is compared to the case without hysteresis (thin line).
The hysteresis allows for stable solutions of nonzero amplitude �(0).
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for �(0) > 0 and for �(0) < 0. A practical consequence is
that, below threshold, the stable solutions actually correspond
to a nonzero �(0). This means that the stable states do not
correspond to a straight plate: the plate is always slightly bent,
even before the instability occurs. This effect is clearly visible
in Fig. 3, which corresponds to a photograph of a stable plate
that is indeed deformed toward a small angle.

V. DISCUSSION

A. Spatial distribution of capillary forces

The total force exerted by the liquid on the solid is
γ cos θe per unit contact line, as follows from a thermodynamic
argument based on virtual work (Sec. II). In this paper, we have
treated these capillary forces as if they were perfectly localized
at the contact line—see the inset of Fig. 3. However, this is not
necessarily a representation of the real distribution of capillary
forces, since the solid can be submitted to a Laplace pressure
wherever the solid surface is curved [18,20,21]. In the case of
the plate, for example, this curvature is localized at the bottom
edges and could induce an upward force due to a Laplace
pressure on the solid. To restore the thermodynamic resultant
force, this necessarily means that additional downward forces
must be present at the contact line to counteract this effect.
Here we will not discuss the origin and nature of this Laplace
pressure and we refer the interested reader to Refs. [18,21];
assuming that it exists, how are the results derived in this paper
affected?

We consider the two-dimensional situation depicted in
Fig. 13, where the bottom of the solid can take an arbitrary
shape. The immersed part of the solid is submitted to a
distribution of pressure γsκ proportional to the curvature κ

and to the relevant surface tension coefficient γs . The total
force exerted on the solid due to this curvature effect is written
as a contour integral:

Fκ =
∫ R

L

γsκ n dl =
∫ R

L

γs

dt
dl

dl = [γst]RL, (53)

where l is the curvilinear coordinate, t is the local tangent
vector, and n is the local normal vector. Elementary geometry
gives dt/dl = κ n, where κ is the local curvature of the surface.
Hence Eq. (53) shows that the Laplace contribution to the

FIG. 13. Sketch of the quantities required to compute the Laplace
pressure exerted on a solid of arbitrary shape. See text for details.

total capillary force depends only on the tangent vectors
at the contact line and is independent of the shape of the
immersed solid. As mentioned above, this must be com-
pensated by an additional force at the contact line to restore
the thermodynamic result. Similarly, the total moment of the
Laplace force can be written as a contour integral:

τκ =
∫ R

L

γsr ∧ κ n dl =
∫ R

L

γs

dr ∧ t
dl

dl = [γsr ∧ t]RL, (54)

where we have used the property dr/dl = t . As for the
resulting force, the moment also does not depend on the shape
of the object and is equal to the moment of a force γst that
would be localized at the contact line. In other words, neither
the total force nor the total moment exerted on the upper part
of the plate depend on the distribution of capillary forces below
the surface.

We thus conclude that all results presented in this paper
are perfectly insensitive to the true spatial distribution of
the capillary forces. Reciprocally, it also implies that the
Laplace pressure on a solid cannot be characterized using
bending or buckling experiments. Instead, one must measure
the deformations of the solid surface [20].

An important question in the present context is to what
extent the analysis would be modified in case we considered
a thin wire instead of a thin plate. Although, we would expect
a similar phenomenology for a cylindrical rod, a quantitative
difference exists. The capillary length appears as it sets the
typical moment arm for the torque. Changing the solid from a
plate to a thin wire of radius R � �γ , as in Fig. 1, the length
scale for the meniscus is determined by the radius rather than
the capillary length. The corresponding dimensionless bending
parameter for a thin rod would thus be �χR/�2

EC , but the
qualitative features of the instability will be comparable to the
two-dimensional plate.

B. Conclusion

In this paper we identified two separate mechanisms that
can lead to elastocapillary instability of a flexible plate partially
immersed in a liquid. The tangential components of the
capillary forces can induce buckling whenever the contact
angle θe > π/2. By contrast, the normal components of the
capillary forces, which are proportional to γ sin θe, have
a destabilizing effect for arbitrary θe > 0. The underlying
physical mechanism can be inferred from the inset of Fig. 3:
a small perturbation of the plate inclination induces a longer
moment arm one one side of the plate, such that the resultant
torque is destabilizing. Alternatively, one may consider a free
energy argument, showing that the immersed state of the wire
is energetically unfavorable whenever the liquid is partially
wetting (Fig. 2). We found that the dimensionless number
associated to this bending mechanism not only involves the
elastocapillary length �EC , but also the capillary length �γ .
The capillary length appears as it sets the typical moment arm
for the torque. Changing the solid from a plate to a thin wire
of radius R � �γ , as in Fig. 1, the length scale for the moment
arm becomes R. By estimating the physical parameters for the
wire in Fig. 1, we conclude that in this particular example the
instability is not triggered by bending or buckling individually,
but by a combination of the two mechanisms.
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The analysis of the present paper focused on the transition
of an immersed plate, partially wetted on both sides, to a
state where the plate is pushed to free surface. This can be
considered as the inverse of the “piercing” problem that is
relevant, e.g., for water striders [2]. In the case of piercing,
the contact line remains pinned on the edge of the solid before
entering the liquid, such that one side of the solid remains
completely dry. It would be interesting to see if the equivalent

of the stability threshold (36) could be derived for piercing as
well.
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