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Abstract The speed at which liquid can move over a solid surface is strongly limited when

a three-phase contact line is present, separating wet from dry regions. When enforcing large

contact line speeds this leads to entrainment of drops, films or air bubbles. In this review we

discuss experimental and theoretical progress revealing the physical mechanisms behind these

dynamical wetting transitions. In this context we discuss microscopic processes that have been

proposed to resolve the moving contact line paradox, and identify various dynamical regimes of

contact line motion.
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1 Introduction

Those who have already looked at the slow motion of droplets on the window

of a fast train are aware that a macroscopic flow can be strongly affected by

interactions at molecular scales. Namely, the droplets are governed by the wet-

ting dynamics of the contact line, which is the line that separates “wet” regions

from “dry” regions. This contact line motion is ultimately determined by the

physico-chemical interactions with the substrate, as is exemplified in Fig. 1: the

hydrophobicity of an impacting sphere, which can be altered by a coating of a few

nanometers thick, controls the outcome of a macroscopic splash. Understanding

and modeling of such wetting dynamics have been, in the last decades, the subject

of intense activity at the forefront of fluid mechanics, chemistry and engineering.

In recent years, the main progress has been on understanding the multi-scale

nature of the flow and how this gives rise to dynamical transitions such as shown

for the splash in Fig. 1. In addition, the increasing control over surface properties

has lead to a wealth of new phenomena, such as superhydrophobicity, while the

complexity of liquids and their solutes can give rise to intricate patterning and

self-assembly as shown in Fig. 2. In many cases, the research is motivated by

numerous applications encountered in industrial processes and ranging from oil

recovery to imbibition of powders, from microfluidics and inkjet printing to the

deposition of pesticides on plant leaves.

In this review, we will focus on a single fundamental problem of wetting dynam-

ics: the motion of a contact line over a smooth substrate. We will not touch upon

other contemporary issues like superhydrophobic substrates, Marangoni driven

flows, evaporation, electrowetting, which involve dynamic contact lines in rela-

tively complex situations – for reviews see Bonn et al. (2009), Craster & Matar
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(2009), Mugele & Baret (2005), Roach et al. (2008). Rather, we focus on the na-

ture of dynamical wetting transitions that occur at large driving velocities: these

transitions lead to entrainment of films, drops or air bubbles (Fig. 1). In many

applications, such as coating and immersion lithography, these entrainment phe-

nomena are crucial limiting factors for industrial processes. From a fundamental

perspective, the dynamical wetting transition forms an ideal testing ground for

the various models of contact line motion: it provides more complete informa-

tion than e.g. the dynamic contact angle, which is classically used to compare

different models.

The paper first introduces basic concepts of static and dynamic contact lines in

Section 2, while Section 3 highlights the multi-scale nature of the moving contact

line problem. We then extensively review experimental and theoretical work on

dynamical wetting transitions in Section 4, and discuss the influence of molecular

process on contact line motion in Section 5. The paper closes with a summary of

different regimes of contact line motion and lists some future issues in Section 6.

2 Static versus dynamic contact lines

2.1 Basic concepts

From a thermodynamic point of view, the molecular forces give rise to a sur-

face tension that is defined as Gibbs free energy per surface area of an interface

separating two phases (de Gennes et al. 2002, Rowlinson & Widom 1982). Equiv-

alently, from a mechanical point of view, surface tension is the resultant force per

unit length due to a normal stress anisotropy in the vicinity of the interface (Kirk-

wood & Buff 1949). For curved interfaces this gives rise to a pressure jump, also

called Laplace pressure. The equilibrium shape of a meniscus climbing a wall,
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or of puddle of liquid on a surface, results from the balance between this surface

tension γ, and gravity g. The balance is governed by a characteristic length-scale

given by the capillary length `γ =
√
γ/ρg, where ρ is the liquid density, which is

typically a millimeter.

At the three-phase contact line, the wettability of the surface determines the

equilibrium contact angle θe of the liquid on the solid. Minimization of Gibbs

free energy shows that θe is determined by a balance of solid-vapor, solid-liquid,

and liquid-vapor surface tensions:

cos θe =
γSV − γSL

γ
, (1)

which is known as Young’s law (de Gennes et al. 2002). Throughout, we use

γ for the surface tension of a liquid-vapor (or liquid-gas) interface. In practice,

even the cleanest surfaces are not perfectly homogeneous, and exhibit chemical or

geometrical heterogeneities (Bonn et al. 2009). This unavoidably leads to contact

angle hysteresis, where static contact angles can be achieved in a range θr < θ <

θa. Here θa,r are called advancing and receding contact angles respectively. This

emphasizes that the contact angle is selected at a molecular scale (Snoeijer &

Andreotti 2008), and the contact angle therefore acts as a boundary condition

for the macroscopic interface.

2.2 The singular flow geometry near a contact line

The situation is completely different when the contact line moves with respect

to the substrate, for which the system is no longer at equilibrium. Even for an

infinitesimal velocity U , the six decades separating the molecular size (nanometer

scale) from the capillary length (millimeter scale) are the locus of a force absent

from the static problem: viscosity. The hydrodynamics is in essence described by
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a corner flow (Huh & Scriven 1971), which has no intrinsic length scale (Fig. 3). A

few general conclusions can be drawn from this. First, the lack of intrinsic length

scale of the flow means that one can only define a local Reynolds number, based on

the distance to the contact line r. As this distance can becomes arbitrarily small,

the Reynolds number is typically very small and inertia can often be neglected.

Second, the viscous stress near the contact line scales as ∼ ηU/r, where η denotes

the dynamical viscosity of the liquid. Hence, the shear stress diverges upon

approaching r = 0. It is instructive to rephrase this in terms of the rate of energy

dissipation Ė (per unit contact line), which in bewteen a distance r and r + dr

scales as (Bonn et al. 2009, de Gennes 1985)

dĖ ∼ ηU2dr

r
∼ ηU2 (d ln r). (2)

This implies that the total dissipation is not integrable at r = 0 nor at ∞, and

onerequires a cut-off at both small scales and large scales. Typically, these cut-

offs appear at molecular scale (∼ 10−9m), and at the scale of the capillary length

`γ (∼ 10−3m). Each of the decades in between the microscopic scale and the

macroscopic scale contributes a comparable amount to the viscous dissipation,

revealing the multi-scale character of wetting flows.

These features of moving contact lines were first appreciated by Huh & Scriven

(1971), who analytically solved the flow in a perfect wedge using similarity so-

lutions. The viscosity-dominated flow is described by Stokes equations, which

in two dimensions can be reduced to the biharmonic equation ∇4ψ = 0. Here,

ψ(r, φ) is the streamfunction expressed in polar coordinates (r, φ). Using a no-slip

boundary condition at the wall, ur = −U , one derives the similarity solution for

flow in a perfect corner ψ(r, φ) = Ur (A cosφ+B sinφ+ Cφ cosφ+Dφ sinφ).

The coefficients are determined by the four boundary conditions: the solid is
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impermeable and allows no-slip, while the free surface is impermeable and has

no-(shear)stress. The corresponding streamlines are sketched in Fig. 3, for one-

phase and two-phase flows. The exact solutions by Huh & Scriven also reveal

that there is a viscosity-induced pressure on the free surface. This pressure must

be balanced by the capillary pressure and hence requires a curvature of the in-

terface. The dimensionless number that describes this visco-capillary balance is

the capillary number,

Ca =
Uη

γ
, (3)

which is the key parameter for moving contact lines.

3 Coupling of molecular to macroscopic scales

The interplay between the different length scales is illustrated using the paradig-

matic example of dip-coating, which has obvious importance in coating applica-

tions. As sketched in Fig. 3, a partially wetting solid substrate is plunged into

a liquid reservoir at a velocity U . The successive zooms near the contact line

illustrate the physics at different scales. On the macroscopic scale of the capil-

lary length `γ , the shape of the meniscus is governed by the balance of gravity

and surface tension; at smaller scales one encounters a visco-capillary regime,

characterized by the capillary number Ca. This section addresses the physics of

these regimes and how they are coupled. The ultimate zoom in Fig. 3 is on the

molecular scale, which will be treated separately in Sec. 5.

3.1 Macroscopic scales: apparent contact angle

When plunging the plate at moderate velocities, the meniscus attains a steady

shape in the frame of the reservoir. Figure 4a shows experimental measurements
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of the meniscus shape by Rame & Garoff (1996). The lower of the datasets is

the shape at Ca = 0, which is accurately fitted by the analytical solution for

an equilibrium profile (solid line). The upper dataset is the dynamical meniscus

shape at Ca = 0.1. Here, the variation of the angle θ is non-monotonic: close

to the contact line it increases with x, while it decreases again to connect to the

bath at 90◦. Again, the large scale solution can be accurately fitted to by the

formula for a static meniscus solution. On smaller scales, one observes the onset

of the viscosity-dominated hydrodynamic regime (Kavehpour et al. 2003, Rame

& Garoff 1996).

Extrapolating the static outer solution (dotted line) towards the contact line

leads to an apparent macroscopic contact angle, θap, which in this case is approx-

imately 120◦. A simple way to extract θap from an experiment is to measure the

elevation of the contact line over the bath, z, using the static meniscus solution

(Landau & Lifshitz 1984)

z = `γ

√
2(1− sin θap). (4)

Clearly, the apparent contact angle of a meniscus will depend on Ca, since it

determines how far the system is pushed from equilibrium. For advancing contact

lines θap > θe (as in Fig. 4a), while θap < θe in the receding case. In many

flow situations, the apparent contact angle completely describes the dynamics.

Examples are drop spreading (Hocking 1983), drops sliding down a window at low

velocites (Ben Amar et al. 2003, Rio et al. 2005), or the relaxation of contact line

perturbations (Golestanian & Raphaël 2001, Nikolayev & Beysens 2003, Snoeijer

et al. 2007b).



Moving Contact Lines 9

3.2 Mesoscopic scales: hydrodynamic regime

3.2.1 The visco-capillary balance. We now turn to the hydrodynamic

regime, emerging at distances below `γ , where the meniscus shape is influenced by

viscous effects. This is most easily captured using the lubrication approximation,

for which the angles are assumed small (Oron et al. 1997). The Stokes flow then

reduces to the a third order differential equation for the interface profile h(x), as

defined in Fig. 3c,

d3h

dx3
= −σCa

h2
, (5)

and expresses the balance between the capillary and the viscous stress. Here

σ = +1 for advancing contact lines, σ = −1 for receding contact lines. With this

convention Ca is considered positive for both advancing and receding cases.

3.2.2 The Voinov solution. Remarkably, the highly nonlinear Equation 5

has an exact solution (Duffy & Wilson 1997). In some specific asymptotic limits,

the exact solution reduces to the form proposed by Voinov (1976),

h′(x) ≈ θ(x) ' [9Ca ln(x/c)]1/3 . (6)

This relation reveals the “viscous bending” of the interface: the contact angle

varies logarithmically with the distance to the contact line. This asymptotic

solution by Voinov is valid up to large distances x → ∞ for advancing contact

lines (σ = 1 in Equation 5), but not for receding contact lines (σ = −1). The

solution has the convenient property that the macroscopic curvature h′′(∞) = 0,

which can thus be imposed as a macroscopic matching condition for advancing

contact lines. For receding contact lines the matching to macroscopic scales is

more intricate (Eggers 2004, 2005).

Equation 6 can be generalized to flows with large contact angles, i.e. be-
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yond the assumptions of the lubrication approximation (Cox 1986, Snoeijer 2006,

Voinov 1976), by a perturbation expansion around the Huh & Scriven solutions.

Surprisingly, the generalized result for θ(x) is almost identical to Equation 6, to

within a few percent, up to angles as large as 150◦. This means that Equation 6 is

applicable to the experimental data for θ(x) shown in Fig. 4. Indeed, the Voinov

solution very accurately describes the onset of the viscous regime, and bridges

the gap between molecular scales and macroscopic scales.

3.3 Matching

The matching of the equilibrium solution to the mesoscopic/hydrodynamic solu-

tion provides the relation between θap and Ca (Cox 1986, Hocking 1983, Voinov

1976). In cases where Equation 6 respresents the correct asymptotics, the match-

ing reduces to the “Cox-Voinov” law

θ3ap = θ3e + 9σCa ln

(
α`o
`i

)
. (7)

Here, `o is an outer (macroscopic) length (i.e. the capillary length or the size of

a spreading drop), while `i is an inner (microscopic) length that represents the

molecular processes that regularize the viscous singularity (which relates to c in

Equation 6). The numerical constant α is a non-universal number that depends

on details of the microscopic and macroscopic boundary conditions.

We emphasize that Equations 6 and 7 correspond to a particular solution of the

hydrodynamic problem, and hence these are not universally applicable. A prime

example that is not described by the Cox-Voinov relation is dip-coating with a

reversed plate velocity, i.e. where the plate is withdrawn from the bath (Eggers

2004, 2005). In this case Equation 5 does not admit any solutions with h′′(∞) = 0

and the matching requires the full analytical solution by Duffy & Wilson (1997).
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Figure 4b reveals the bifurcation diagram for steady-state solutions for plate

withdrawal (Delon et al. 2008, Snoeijer et al. 2007b). The menisci are represented

by the meniscus rise z, related to θap according to Equation 4, for various plate

velocities Ca. The maximum possible plate velocity, or critical capillary number

Cac, is achieved at zc ≈ `γ
√

2. This means that at the maximum speed θap ≈

0 (Chan et al. 2011, Maleki et al. 2007, Sedev & Petrov 1991, Snoeijer et al.

2007b), consistent with the conjecture by Deryaguin & Levi (1964) and with the

matched asymptotic expansion by Eggers (2004). Interestingly, the steady-state

solutions continue beyond this critical meniscus rise, onto a higher branch of

meniscus solutions. It is impossible to attribute an apparent contact angle to

these meniscus shapes based on Equation 4 (Chan et al. 2012).

Figure 4b illustrates that the menisci for plate withdrawal are governed by a

nontrivial bifurcation scenario, which is predicted by hydrodynamics, but which

reaches beyond a simple picture based on an apparent contact angle. How quan-

titative is the hydrodynamic prediction, e.g. for the critical speed Cac? The

lubrication model leading to the solid line in Fig. 4b accounts only for the vis-

cous dissipation in between the microscopic scale, here characterized by a slip

length of two molecular sizes, and the capillary length. The microscopic contact

angle was assumed equal to the receding equilibrium angle θr. We emphasize that

the hydrodynamic prediction is quite sensitive to the microscopic contact angle:

the few degrees of uncertainty related to contact angle hysteresis induce varia-

tions of the critical Cac by as much as 20%. The precise value of the slip length

only weakly (logarithmically) affects the results. We return to this important

point in Sec. 5 where molecular process are reviewed in detail. However, as any

other source of dissipation would add up to viscous dissipation, this quantitative
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agreement with experiments suggests that most of the dissipation takes place in

the hydrodynamic scales (roughly from 10 nm to 1 mm).

4 Dynamical wetting transitions

An interesting situation arises when a liquid is forced to flow over a surface that

it does not spontaneously wet in thermodynamic equilibrium. In such partial

wetting conditions, it is energetically favorable for the liquid to stick together

as much as possible and to leave most of the surface dry. However, an external

driving of the flow can push the system sufficiently far from equilibrium such

that it undergoes a dynamical wetting transition. In practical terms, this means

that the contact line motion cannot exceed a maximum speed: enforcing larger

velocities leads e.g. to deposition of liquid films, break-up of liquid drops or

entrainment air bubbles. In this section we summarize recent experimental and

theoretical progress on the nature of these dynamical wetting transitions.

4.1 Entrainment of liquid films

One of the simplest ways to deposit a thin film of liquid is by withdrawing a

solid from a reservoir (Fig. 4). The geometry is identical to the dip-coating in

Fig. 3, but now with a reversed velocity of the substrate such that the contact

line is receding. Under complete wetting conditions, this dip-coating gives a

uniform film of thickness that is controlled by the speed of withdrawal. This goes

back to pioneering work by Landau & Levich (1942) and Deryaguin (1943), who

demonstrated that the thickness hLLD ∼ `γCa2/3.

The situation is much more complex when the liquid is partially wetting the

solid. Figure 4b showed that the contact line can rise to a steady position without
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leaving a film when the speed of withdrawal is sufficiently small (Snoeijer et al.

2007b). Above a critical Cac, however, steady-state solutions cease to exist and a

dynamical wetting transition occurs (Blake & Ruschak 1979, Eggers 2004, Quéré

1991, Sedev & Petrov 1991, Snoeijer et al. 2006). The physics of this dynamical

wetting transition is that above the critical speed, the capillary forces can no

longer compete with the large viscous forces that develop inside the flow (de

Gennes 1985).

Above the critical speed, one observes the dynamical evolution of a liquid

film that is very different from the smooth Landau-Levich film (Fig. 4c). The

dynamical film solution splits into two parts, due to a mismatch of microscopic

and macroscopic boundary conditions (Snoeijer et al. 2006). Immediately behind

the contact line there is a thick film of thickness hf , which is determined by

the microscopic boundary conditions imposed at the contact line. At the side of

the reservoir one observes the Landau-Levich-Derjaguin film. The two solutions

are connected by a shock that travels upwards with respect to the reservoir, at

a velocity described accurately by lubrication theory (Snoeijer et al. 2006). In

terms of the capillary number, the thickness in front of the shock hf ∼ `γCa1/2,

which at small Ca is indeed thicker than hLLD ∼ `γCa2/3.

4.2 V-shaped contact lines

4.2.1 Reducing the contact line normal speed. Stability analysis has

shown that an infinitely extended, straight contact line is linearly stable for all

capillary numbers, all the way up to the critical point (Golestanian & Raphaël

2001, Snoeijer et al. 2007b). Experimentally, however, the finite lateral extension

of the contact line has major practical consequences. This can already be seen
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from the image in Fig. 4c: no entrainment occurs at the sharp edge of the wafer,

inducing a sharp kink in the contact line higher up the solid. Indeed, such corners,

or V-shapes are a generic feature of moving contact lines near the transition.

Figure 5 represents a broad collection of contact lines that spontaneously develop

a V-shape (Blake & Ruschak 1979, Delon et al. 2008, Duez et al. 2007, Le Grand

et al. 2005, Peters et al. 2009, Podgorski et al. 2001, Winkels et al. 2011). In all

experiments, the corners start to emit little droplets (receding contact lines) or

bubbles (advancing contact lines) when moving at even higher speeds.

The formation of a corner is a very elegant way to “delay” the dynamical

wetting transition. The physical mechanism, first described by Blake & Ruschak

(1979), is that the inclination of the contact line reduces the normal velocity,

U⊥ ∼ U sinφ. Here, φ is the top-view angle of the corner. As the local fluid

velocity near the contact line is equal to U⊥ (Rio et al. 2005), the effective driving

is reduced by a factor sinφ. In analogy to the “Mach cone” for supersonic flows,

it was proposed that sinφ ∼ Uc/U , in order to maintain a normal velocity below

the critical speed Uc (Blake & Ruschak 1979, Podgorski et al. 2001).

4.2.2 The case of sliding drops. The dewetting corners appearing at

the rear of sliding drops can be understood from a model that considers the tip of

the corner to be infinitely sharp. By assuming a perfect conical geometry of the

interface, Limat & Stone (2004) identified a similarity solution that describing

the three-dimensional shape of the interface. Defining the coordinates (x, y) as

in Fig. 5d, these solutions are of the form h(x, y) = xΩCa1/3H(y/x), where Ω

is the side-view angle and H is the cross-sectional similarity profile of the cone.

The cone-solution has a vanishing interface curvature along the central axis in

the direction of the flow, i.e. ∂2h/∂x2 = 0. This is fundamentally different from
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straight contact lines, since for the corners the side-view angle ∂h/∂x = Ω no

longer varies with x. Instead, the driving capillary forces inside a corner originate

from the transverse curvature, ∂2h/∂y2 ∼ Ca/x. This three-dimensional feature

is not captured by the Mach-cone argument, and is crucial for explaining the

pearling transition (Snoeijer et al. 2007a).

The fine structure of the corner tip can be characterized by the curvature

1/R of the contact line. Figure 5 shows the tip curvature for different speeds

before the pearling transition (Peters et al. 2009). While at small velocities

1/R is approximately constant, the tip curvature increases dramatically near the

transition. This can be understood quantitatively from a variation of the Cox-

Voinov relation, Equation 7. At a small distance from the tip, much smaller

than R, the contact line is effectively straight. In this regime one expects the

usual contact line dynamics characterized by an inner microscopic scale `i. The

behavior changes at a distances of order R, where the geometry becomes truly

three-dimensional and the transverse curvature is the dominant capillary driving.

Interpreting Equation 7 as an equation for R, one obtains

R = α−1`i exp

(
θ3e − θ3ap

9Ca

)
≈ α−1`i exp

(
θ3e

9Ca

)
. (8)

This relation is represented as the solid line in Fig. 5. It accurately describes the

experimental data, upon fitting a microscopic length α−1`i = 7nm.

4.3 Dewetting holes

Another class of dewetting transitions is encountered after a partially wetting

surface is covered by a macroscopic liquid film. Thermodynamically, such a film

is metastable since the surface free energy can be reduced by collecting the film
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into liquid drops. There are two mechanisms leading to dewetting. The first is

encountered when the thickness falls within the range of microscopic interactions

(typically 2−10 nm). This induces a so-called spinodal instability that is charac-

terized by a well-defined wavelength (Reiter 1992, Saulnier et al. 2002, Seemann

et al. 2001, Thiele 2003). A second mechanism is induced by large amplitude

perturbations: once a small hole is nucleated inside the film and a contact line

appears, the hole will rapidly grow and dewet the surface (Brochard-Wyart et al.

1987, de Gennes et al. 2002, Redon et al. 1991). Here we consider the second

mechanism, which involves the dynamics of a moving contact line. Figure 6 shows

a snapshot of a hole for the dewetting of an air film (Fig. 6a) and for a liquid

film (Fig. 6b). As the contact line bordering the film retracts over the solid,

the liquid or air inside the film is collected into a rim, which grows slowly in

time. It is found experimentally that the speed of retraction of a viscous film is

constant (Redon et al. 1991).

The problem consists essentially of a receding front at the contact line forming

the front of the rim, coupled to an advancing front forming the back of th rim.

The dewetting speed is determined by equating θap for the advancing front to

θap of the receding front (de Gennes et al. 2002). This viewpoint was confirmed

recently by matched asymptotic expansion of the lubrication equations (Flitton &

King 2004, Snoeijer & Eggers 2010). The solid line in Fig. 6d represents an exact

solution of Equation 5, which is matched to the advancing front denoted by the

dashed line. As a result, it was found that the appropriate law for θap(Ca) was not

the classical result by de Gennes (1986), as was previously assumed (de Gennes

et al. 2002), but the Cox-Voinov relation. The advancing front is described by

Equation 7, with θe = 0, and involves the rim-width w and film thickness hf as
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relevant length scales. The receding contact line (σ = −1) involves a ratio w/λ,

where `s is the slip length. Equation the advacing and receding θap, the velocity

was found Snoeijer & Eggers (2010)

Ca =
θ3e
9

[
ln

(
4aθeCa1/3

3e

w2

`shf

)]−1
, (9)

where a is the numerical constant a = 1.094 · · · . Figure 6c replots the dewetting

speeds for different liquids and wettabilities obtained by Redon et al. (1991).

Here, the factor L represents the logarithmic factor in Equation 9, where the slip

length `s was estimated as 2
√
Na, where the N is the number of monomers and

a the monomer size (cf. Sec. 5.1).

4.4 Entrainment of air

The dynamical wetting transition for advancing contact lines results into the

entrainment of air. The splash in Fig. 1 arises when the contact line cannot

advance sufficiently fast over the solid to close the cavity in the wake of the sphere

(Duez et al. 2007). For very hydrophobic surfaces, the splashing threshold scales

as Ca ∼ (π − θe)3 (Fig. 1a). This is strongly reminiscent of the θ3e dependence

characteristic for receding contact lines (see e.g. Equation 9). This suggests that

the critical speed is governed by the gas-phase, which consists of a wedge of angle

π− θe and which is receding over the solid (Fig. 3b). A similar dependency on θe

was found for drop emission by liquid filaments and in simulations (Do-Quang &

Amberg 2009, Ledesma-Aguilar et al. 2011).

The mutual influence of the liquid and gas phases on air entrainment was mostly

investigated in the context of dip-coating (Benkreira & Ikin 2010, Benkreira &

Khan 2008, Blake & Ruschak 1979, Burley & Kennedy 1978, Marchand et al.

2012, Simpkins & Kuck 2000). These experiments typically vary the dynamical
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viscosity of the liquid phase η: the critical speed decreases for more viscous

liquids, suggesting that dissipation in the liquid is important. However, the

dependency is much less than the expected ∼ 1/η. Marchand et al. (2012) showed

that this can be attributed to the gas viscosity: the dissipation in the air becomes

significant due to the confinement of the wedge of air (Fig. 3b). Another striking

effect is that the critical speed increases when reducing the air pressure to about

1-10% atmosphere. Since such a pressure change does not affect the gas viscosity,

this effect must be due to inertia in the gas or due to the increase of the mean free

path. The latter would imply a larger slip length, which reduces the dissipation

in the gas and leads to a larger critical speed (Marchand et al. 2012). Similar

effects of the gas phase were observed in drop splashing (De Ruiter et al. 2012,

Mandre et al. 2009, Tsai et al. 2010, Xu et al. 2005). A definitive description of

the role of the air in dip-coating and in splashing is still lacking.

5 Molecular processes

An important conclusion reached in nano-fluidics is that the Navier-Stokes equa-

tions remain valid for liquid layers down to nanometer scale for simple fluids like

water, under normal conditions (Bocquet & Charlaix 2010) . This means that in

between ∼ 10 nm from the contact line up to macroscopic scales, the shape of a

moving interface can be described by continuum hydrodynamics. In this section

we review different processes that becomes relevant at the scale where hydro-

dynamics breaks down. We anticipate that all descriptions require two physical

quantities: a length scale to point out at what scale microscopic processes start to

play a role, and an energy scale that expresses the strength of the interaction with

the solid (i.e. the wettability). The section first concentrates on mechanisms that
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are commonly used in combination with continuum hydrodynamics, for example

in the context of numerical simulations involving moving contact lines (Sec. 5.1).

We then turn to thermally activated processes (Sec. 5.2), where we point out the

similarities and differences with the hydrodynamic theory.

5.1 Slip length, disjoining pressure, diffuse interface models

5.1.1 Slip length. It is by now well-established that motion of the first

few molecular layers above a solid substrate can be described by the Navier slip

boundary condition :

uz=0 = `s
∂u

∂z
, (10)

where `s is called the slip length and z = 0 denotes the position of the wall.

For gases, the existence of velocity slip in a gas was first predicted by Maxwell

(1878) who argued that the slip length must be proportional to the mean free

path `mfp. This proportionality `s ∼ `mfp was demonstrated experimentally (An-

drew & Harris 1995), numerically (Morris et al. 1992) and analytically (Bocquet

1993), with a proportionality constant 2.4 in experiments. For liquids, a fully

microscopic prediction for the slip length was derived from statistical physical

theory of liquids (Huang et al. 2008):

`s ∼
ηDa kBT

(γa2(1 + cos θe))
2 a. (11)

This expression contains the moleculer size a, the self-diffusion coefficient D, and

a wettability factor γ(1 + cos θe) that arises from the tangential forces on the

liquid near the wall. Indeed, the dependence (1 + cos θe)
−2 is approximately

verified in experiments and in numerical simulations (Bocquet & Charlaix 2010,

Huang et al. 2008). Moreover, for simple liquids, the Stokes-Einstein relation is

approximately valid and leads to ηDa ∼ kBT . As a consequence, the slip length
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`s is not expected to depend on the liquid viscosity for simple liquids. Polymer

solutions typically exhibit much larger slip lengths on the order of the molecule

size 2
√
Na, where the N is the number of monomers and a the monomer size.

5.1.2 Slip and moving contact lines. For moving contact lines, the

Navier slip condition leads to a regularization of the viscous stress divergence

that was discussed in Sec. 2.2: in the lubrication approximation, the viscous

stress applied to the solid by a flowing film of thickness h is 3ηU/(h + 3`s) and

the rate of dissipation per unit contact line becomes

Ė =
1

2
ηU2

∫
3h

(h+ 3`s)2
dx. (12)

This is now a convergent integral as the layer thickness h→ 0.

The Navier slip boundary condition is a popular treatment to remove the mov-

ing contact line singularity: it is well-established experimentally and theoretically,

and it is easily incorporated into a continuum description. However, we wish to

point out a few limitations of the method. The main problem is that the slip

condition introduces only a length scale, but not an energy scale that expresses

the interaction with the solid wall. In practice this means that the hydrodynamic

equations still lack a boundary condition for the microscopic contact angle, which

is necessary to close the problem. Second, the introduction of slip regularizes the

divergence of shear stress and energy dissipation, but it still leads to a logarith-

mically divergent pressure p ∼ ηU/`s ln(h/`s) (Buckingham et al. 2003).

5.1.3 Disjoining pressure. This interaction with the solid substrate can

be introduced using an effective interface potential (de Feijter 1988). A common

approximation is to write the interfacial free energy functional (per unit contact
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line):

F [h(x)] =

∫
dx
[
γ
(√

1 + h′2 − 1
)

+ ω(h)
]
. (13)

The first term represents the capillary energy of the liquid-vapor interface, while

ω(h) is an effective potential due to the finite thickness of the layer h. Taking

the functional derivative of Equation 13, one obtains the pressure discontinuity

across the interface, δF/δh(x) = −γκ + Π(h). The first terms is the Laplace

pressure due to interface curvature κ. The second is the disjoining pressure (or

internal energy per unit volume), defined as Π(h) = dω/dh. Descriptions beyond

Equation 13 leads to more complex nonlocal equations for the capillary pressure

(Getta & Dietrich 1998, Merchant & Keller 1992, Snoeijer & Andreotti 2008).

The most common numerical treatment involving a disjoining pressure is to

introduce a functional form for ω(h) that exhibits a minimum ω′(h = h∗) = 0.

Then, the liquid interface tends to a precursor film of thickness h∗, for which the

disjoining pressure Π(h∗) = 0 (Pismen 2001, Pismen & Pomeau 2000, Schwartz

et al. 2005, Thiele et al. 2002). This method has the convenient property that it

leads to both a selection of the microscopic contact angle and to regularization of

the viscous stress, even without explicitly using the Navier boundary condition.

The introduction of such a disjoining pressure avoids the caveats of the slip model.

From a physical perspective, the drawback is that precursor films are usually not

encountered under partially wetting conditions. It is, however, possible to include

a Π(h) that does not lead to precursor films (Colinet & Rednikov 2011, de Gennes

et al. 1990).

5.1.4 Diffuse interface models. Up to now we have implicitly assumed

that the liquid-vapor interface is characterized by a mathematically sharp profile

h(x). One should bear in mind that the interface has a finite width, typically a
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few molecular sizes (Rowlinson & Widom 1982). This can be characterized by a

variation in the (coarse grained) density field φ (~r), which smoothly connects the

high density liquid phase to the low density vapor phase. The jump in density

occurs over a scale ζ, the interface width. From the perspective of continuum

hydrodynamics, the capillary forces inside the diffuse interface are described by

a force per unit volume ∼ ∇φ, which has to be incorporated in the Navier-Stokes

equation (Jacqmin 2000, Qian et al. 2004, 2006, Yue & Feng 2011).

The diffuse interface framework is very popular for numerical simulations, in

particular when the flow geometry does not allow for a lubrication approxima-

tion. Even if the no-slip boundary condition is applied, the contact line can move

through phase transition (for a liquid-vapor interface) or by diffusion (for two

immiscible liquids). The characteristic length scale over which the phase trans-

formation or diffusion occurs is determined by the diffusion length, `D, which is a

priori independent from the interface width ζ (Qian et al. 2006, Ren & E 2007).

If a Navier slip boundary condition is imposed, the effective slip observed on a

macroscopic scale is determined by the larger of the two lengths `s or `D. In ad-

dition, generalizations of the Navier slip boundary conditions have been proposed

to account for the stresses inside the diffuse interface (Carlson et al. 2009, Qian

et al. 2006, Ren & E 2007). In the simplest version, slip velocity is dominated by

the unbalanced Young stress, leading to a law for the microscopic contact angle:

cos θ − cos θe ∼ Ca
ζ

`s
(14)

Note that for typical fluids, the lengths ζ, `D and `s are expected to be of com-

parable magnitude.
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5.2 Thermally activated processes

5.2.1 Molecular Kinetic Theory for contact line motion. A rather

different perspective on the dynamics of wetting is to consider that contact line

motion is a thermally activated process (Blake 2006, Blake & De Coninck 2011,

Blake & Haynes 1969, Seveno et al. 2009). The key idea of this Molecular Kinetic

Theory (MKT), is that contact line moves by small “jumps” induced by thermal

fluctuations. Indeed, thermal noise leads to a stochastic stress inside the liquid

that can compete with viscous and capillary stresses. For example, the thermal

length `T =
√
kBT/γ is the scale below which thermal activation can dominate

capillary forces, inducing a “roughening” of the surface (Flekkoy & Rothman

1996).

A full derivation of contact line hydrodynamics including thermal fluctuations

has not yet been attempted. However, MKT provides a phenomenological de-

scription that treats contact line motion as a single mode of propagation, char-

acterized by a length scale ξ, and by an energy barrier for the activated process

E∗ (Blake 2006). The activation length ξ is subnanometric and the energy barrier

is of the order of the solid-liquid interaction, E∗ ∼ γ2ξ2(1 + cos θe). Using the

reaction rate theory for thermal activation (Hanggi et al. 1990), the frequency

at which the barrier is crossed is ν = ν0 exp
(
− E∗

kBT

)
, where ν0 is the attempt

frequency. For molecular motion, the attempt frequency is typically the thermal

frequency ν0 ∼ kBT/h ∼ 1013 Hz, where h is Planck’s constant.

If the system is submitted to a driving force F , a quantity of energy ±Fξ/2

is imparted to the particle in the form of work during an elementary contact

line movement. The plus (minus) sign arises when the motion is in the direction

of (opposite to) the direction of the force. As a consequence, the contact line
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moves with an average velocity U = ξ(ν+−ν−), determined by the net frequency

of forward and reverse jumps ν± = ν0 exp
(
−E∗±Fξ/2

kBT

)
. For a contact line with

non-equilibrium angle θ, the unbalanced capillary force F = γξ (cos θe − cos θ).

This way, one obtains the central MKT result (Blake & Haynes 1969):

U = 2ν0ξ exp

(
− E∗

kBT

)
sinh

(
γξ2 (cos θe − cos θ)

2kBT

)
. (15)

This relation predicts the contact line speed as a function of the driving force

cos θe − cos θ. We emphasize that θ must be interpreted as a truly microscopic

contact angle, defined on a molecular scale ξ, which is fundamentally different

from the apparent (macroscopic) contact angle θap. In the hierarchy of scales in

Fig. 3c, the angle θ applies to the zoom on molecular scales while θap applies to

the largest scale meniscus profile.

The arguments of the Boltzmann factors in Equation 15 scale with γξ2/kBT =

(ξ/`T )2. In the original interpretation of MKT, this ratio of length scales is order

unity. Hence, one can approximate sinh(x) ' x, and one recovers a linear relation

between speed and driving force (Seveno et al. 2009). In this interpretation, MKT

does not represent any contact angle hysteresis: the limit of vanishing velocity

gives the same value for θe, both for advancing contact lines (U ↓ 0), as for

receding contact lines (U ↑0).

5.2.2 Relation to Eyring’s viscosity. The MKT is based on the same

phenomenological principles as Eyring’s theory for the viscosity of liquids (Blake

& De Coninck 2011). In a bulk liquid, ξ is interpreted as the size of a molecular

rearrangement, induced by a shear stress τ . Taking F = τξ2, and following the

steps of the preceding paragraph, one obtains Eyring’s formula for the liquid
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viscosity:

η =
kBT

ν0ξ3
exp

(
Eη
kBT

)
. (16)

The activation energy Eη is due to liquid-liquid interactions, and can be esti-

mated by the liquid-liquid adhesion energy Eη ∼ 2γξ2. This phenomenological

description provides a realistic estimate for the viscosity of simple liquids (Mon-

nery et al. 1995). Note that the polymeric liquids standardly used in labs to reach

high viscosities (e.g. glycerol) cannot be described by Eyring’s viscosity model

as they present a glassy dynamics.

Combining the Eyring viscosity with the linearized MKT, Equation 15 gives

U =
γ

η
exp

(
Eη − E∗

kBT

)
(cos θe − cos θ) . (17)

The energy Eη−E∗ appearing in the Boltzmann factor is typically on the order of

γξ2(1−cos θe), such that the Boltzmann factors are once more of order unity. As

the viscosity now appears explicitly in Equation 17, the MKT can be interpreted

in a hydrodynamic framework. On the scale of the first molecular layers, the

balance of viscous stresss and capillary force would induce a “bending” of the

surface by an amount cos θe − cos θ ∼ Ca. This relate is of the same form as

Equation 14, except that the ratio ζ/`s is replaced by a Boltzmann factor of

order unity. From this perspective, the MKT theory should not be considered as

an alternative to the hydrodynamical description, but as another slip model for

the molecular scale boundary condition.

5.2.3 Dissipation induced by surface heterogeneities. Substrates

generically present heterogeneities of chemical or geometrical origin. These het-

erogeneities can be modeled as effective energy barriers, that have a characteristic

width ξ and height E∗. Although not designed for that purpose, the MKT model
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turns out to provide an effective description of contact line motion due to acti-

vated processes, in the presence of substrate heterogeneities (Prevost et al. 1999,

Rolley & Guthmann 2007). Figure 7a shows the velocity of a moving contact line

as a function of the apparent contact angle, in the vicinity to the threshold of de-

pinning. Over a very small range of apparent contact angles (about two degrees),

one observes an exponential increase of the velocity. This is consistent with the

thermal activation model of Equation 15, provided that ξ/`T � 1. A fit of the

experimental data reveal an activation length-scale ξ of typically 10 nm, which

is at least one order of magnitude larger than `T . Introducing the dimensionless

number H = E∗/γξ2, the MKT theory can be written as:

U ' 2ν0ξ exp

(
− ξ

2

`2T
[H + cos θe − cos θ]

)
. (18)

Bearing in mind that (ξ/`T )2 ' 103, this expression predicts a quasi-discontinuity

of the microscopic contact angle across Ca = 0: the contact line velocity can only

become significant when the energy barriers disappear, for cos θ ' cos θe ± H.

Therefore, H is naturally interpreted as the contact angle hysteresis: H =

1
2(cos θr − cos θa), where θa,r are the advancing and receding contact angles.

Since the length scale of the activation is now much larger than `T , one can

no longer interpret ν0 as the thermal attempt frequency. Following Kramers’

analysis (Hanggi et al. 1990, Kramers 1940), the attempt frequency ν0 is given

by the well oscillation frequency ν0 ∼
√
γH/ρξ3 in the underdamped regime

and by the dissipative frequency ν0 ∼ Hγ/ηξ in the overdamped regime. Both

estimates are around 109 Hz for typical experiments.
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6 Dynamical wetting regimes

In this concluding section we propose an organization of the different regimes of

contact line motion.

6.1 Hydrodynamic versus thermally activated regime

The motion of contact lines can be deduced from a balance between power gener-

ated by capillary forces and the total energy dissipation taking place at different

scales. There is substantial direct evidence that, beyond the threshold of contact

angle hysteresis, the motion is dominated by viscous dissipation: (i) the predicted

logarithmic variation of the interface slope with distance to the contact line is

observed over one decade (Fig. 4a); (ii) the phenomenology of dynamical wetting

transitions can, and can only, be recovered using hydrodynamics (Fig. 4b); (iii)

the radius of curvature at the back of a V-shaped drop is observed to vary ex-

ponentially with Ca over one decade (Fig. 5); (iv) at low Reynolds numbers, the

hydrodynamics describes quantitatively all experimental results, within an un-

certainty that is comparable to the hysteresis (Fig. 4, 5, 6). This implies that the

dominant dissipation is spread over 6 decades of length scales (from a nanometer

to macroscopic distances to the contact line), and that molecular processes essen-

tially appears as a cut-off to the dissipation. The tests cited above are much more

delicate than the more classical measurement of θap versus speed: the dynamic

contact angle can usually be fitted accurately by various models (Le Grand et al.

2005, Seveno et al. 2009).

At low capillary numbers, close to the threshold of depinning, molecular scale

processes generically become dominant due to surface heterogeneities. Indeed,

even for the best physico-chemical coating ever realised (thiol brush), the hys-
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teresis is still around 1% so that the Boltzmann factor appearing in Equation 18

is always much larger than unity. In this limit the contact line motion occurs

by thermal activation (Fig. 7a). It is accurately described by Molecular Kinetic

Theory, provided that the ratio of jump size and thermal length ξ/`T is much

larger than unity. There are two noticeable exceptions where ξ/`T could be order

unity such that there is no hysteresis: molecular dynamics simulations and liquid

lenses.

The cross-over between these the thermally activated regime and the hydro-

dynamic regime takes place around the depinning transition (cos θ ' cos θe±H)

where the energy barriers vanish. Figure 7b shows experimental measurements

of apparent contact angles in the hydrodynamic regime. This figure obviously

displays the hysteretic gap in θap at very small Ca, which is the range where con-

tact line motion is thermally activated. For future work, it will be interesting to

observe thermally activated contact line motion and the hydrodynamic regime in

a single experimental setup – comparing the data in Figs. 7a and b, the cross-over

is expected between Ca ∼ 10−5 and 10−4.

6.2 Inertial effects

Another transition takes place when inertial effects become comparable with vis-

cosity. Figure 8 shows an extreme situation – the initial phase of the spreading

of a water drop – which is totally controlled by inertia (Biance et al. 2004, Bird

et al. 2008, Winkels et al. 2012). Also, the splashing in Fig. 1 will clearly involve

inertial effects. To address the cross-over between viscous and inertial regimes,

one can add perturbatively the inertial effect to the lubrication equation, which

can be interpreted as a depth-averaged (Saint-Venant) equation. This method
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was previously used in the context of Landau-Levich films (Koulago et al. 1995)

and shows that inertia provides additional dissipation. Another approach using

a perturbation expansion was followed by Cox (1998), which was qualitatively

(not quantitatively) confirmed experimentally (Stoev et al. 1999). It remains to

be investigated whether the effect of inertia could explain the differences when

comparing low viscosity fluids like water to silicon oils (Podgorski et al. 2001,

Winkels et al. 2011).

6.3 Future issues

1. The systematic procedure to capture the hydrodynamic and thermally ac-

tivated regimes in a single description is to solve fluctuating hydrodynam-

ics (Flekkoy & Rothman 1996). Is this feasible in the context of moving

contact lines?

2. The activated contact line motion involves an acitivation length ξ of about

10 nm. What determines the activation surface ξ2? How is it correlated

with the surface roughness and/or with collective effects (Le Doussal et al.

2009)?

3. New challenges for moving contact lines emerge from the influence of addi-

tional mechanisms, such as the inclusion of liquid inertia.

4. Strong evaporation can affect the contact line motion. In particular if the

liquid contains a solute such as polymers or colloids, this leads to stick-slip

and patterning (Fig. 2).

5. Another type of complexity is related to the substrates. Contact line mo-

tion can be greatly influenced e.g. by patterns on superhydrophobic sur-

faces (Roach et al. 2008).
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6. If the substrate is a soft solid that can be deformed by capillarity, dissipation

can be dominated by the visco-elastic behaviour of the solid (Carre et al.

1996). How is the contact line motion influenced if the substrate is swelling,

such as a gel or elastomer?
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7 Key Terms

• Laplace pressure: difference in pressure ∆p = γκ across an interface of

curvature κ, induced by capillary forces.

• Capillary length: length scale arising from the balance of surface tension

and gravity, determining the rise of a static meniscus.

• Multi-scale: indicates that physical processes at very different length scales

are intimately coupled and cannot be separated.

• Thermal activation: motion towards a lower energy state across an energy

barrier, induced by a rare thermal fluctuation.

• Lubrication approximation: systematic method to simplify the hydrody-

namic equations, which is valid for a quasi parallel flow (for small contact

angles).

• Matching: term borrowed from “matched asymptotic expansion”. It is

often loosely used to indicate the coupling of solutions at different scales.

• Dip-coating: common geometry to study wetting and coating, where a solid

surface is plunged into or withdrawn from a bath.

• Contact angle hysteresis: even the cleanest substrates allow for a finite

range of static contact angles, rather than a single equilibrium contact

angle.

• Apparent contact angle: this is not the true angle of the interface, but an

extrapolated angle based on the large scale meniscus profile.
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• Viscous bending: viscosity-induced curvature of the interface, with a local

contact angle that varies logarithmically with the distance to the contact

line.

8 Sidebar, to be placed after Section 2.2: Evaporation

A similar corner singularity is encountered when liquid drops evaporate on a

surface (Fig. 2) (Deegan et al. 1997). For small contact angles, the evaporative

flux diverges as j = J0/
√
x, where x is the distance to the contact line and

J0 is a constant. Inside the liquid, this induces a flow Uevap ∼ J0/θ
√
x, oriented

towards the contact line. Interestingly, an evaporative contact line usually recedes

over the substrate, in the direction opposite to Uevap (Cazabat & Guena 2010).

Comparing the receding velocity U with Uevap, one obtains a length scale `evap =

(J0/θU)2 that can be as large as 100 microns (Berteloot et al. 2008). This length

separates regions where mass transport is towards or directed away from the

contact line (Fig. 2a). When the liquid contains colloidal particles or polymers,

the evaporation leads to self-assembly and pattern formation. A well known

example is provided by the dark edge of a coffee stain, consisting of particles

transported by Uevap. Figure 2c shows a case where this has induced a stick-slip

motion of the contact line, leaving various deposits.
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Figure 1: Impact of two spheres differing only in wettability via a nanometric

coating on their surface. Left: hydrophylic, θe = 15◦. Right: hydrophobic

θe = 100◦. Threshold capillary number Ca for air entrainment as a function

of the advancing contact angle θa of the impacting body. Data correspond to

various sphere diameters (differing by color) and various viscosities (differing by

symbol). After Duez et al. (2007)
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Figure 2: (a) The evaporative flux for a drop of volatile liquid is strongest near

the contact line (Deegan et al. 1997). The mass transport inside the drop arises

from a competition between the evaporative flux (inducing mass flux to the left)

and the receding velocity of the contact line (inducing mass flux to the right).

After Berteloot et al. (2008). (b) Magnified image of a stripe pattern left by the

moving contact line of a dilute suspension of silica spheres (diameter 123 nm). A

multi-layer close-packed array of particles can be observed. After Watanabe et al.

(2009). (c) Photograph of solid surface after evaporation of dilute suspension of

TiO2 nanoparticles in ethanol. Rings of accumulated particles correspond to the

”sticking phase of a stick-slip cycle. After Moffat et al. (2009).
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Figure 3: Streamlines in a perfect wedge (Huh & Scriven 1971) of angle θ for

(a) a receding contact line (one phase flow, θ close to 0), and for (b) an advanc-

ing contact line (two phase flow, with θ close to π). In the advancing case, the

viscous dissipation in the gas phase can dominate over the liquid phase due to

the strongly confined circulation in the gas wedge. (c) Interface profile h(x) for a

plunging plate under partial wetting conditions. The interface near the contact

line is highly curved so that the apparent contact angle θap on the macroscopic

scale is much larger than the true contact angle θe as nanoscopic scale. The inter-

mediate zoom represents the hydrodynamic regime that is governed by viscosity

and surface tension. After Bonn et al. (2009).
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Figure 4: (a) Shape of a dynamic interface measured by Rame & Garoff (1996) for

a coated cylinder plunging in a bath of silicon oil (θe ∼ 35◦). The dots represent

the local angle of the meniscus with respect to the substrate, θ, as a function of

the horizontal distance to the contact line. Blue dots: static meniscus Ca = 0.

Red dots: dynamical meniscus Ca = 0.1. The inset of the figure shows the same

data on a logarithmic scale. The green solid line is the hydrodynamic prediction

in the visco-capillary regime. Experimental points do not reach below distances

of about 10 microns from the contact line, but the interface is curved down to

nanometer scales. The blue line is the fit of the macroscopic shape of the interface

(θ → 90◦ at the bath) by the static solution. The extrapolation to 120◦ defines

the apparent contact angle θap. (b) A partially wetting plate is withdrawn from a

silicon oil bath liquid at capillary number Ca, which forms a dynamic contact line

at height z(Ca). The solid line is derived from the multi-scale lubrication theory.

The maximum capillary number is reached close to zc =
√

2`γ , which corresponds

to θap = 0. After Delon et al. (2008). (c) A liquid film is entrained above the

critical capillary number Cac. The film consists of two parts of incompatible

thickness, joined by a shock (Snoeijer et al. 2006).
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Figure 5: V-shapes appearing at the dynamical wetting transition. (a) Dip-

coating (Delon et al. 2008). (b) Sphere plunging in a bath (Duez et al. 2007) (as

in Fig. 1), (c) Silicon oil drop moving down an inclined plane (Podgorski et al.

2001). (d) Radius of curvature R of the rounded edge of a corner drop as a

function of Ca. The dotted line is the prediction by hydrodynamic theory. After

Peters et al. (2009).
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Figure 6: Dewetting holes. (a) Picture and schematic of a rewetting hole observed

when a film of air is entrained dynamically into a silicon oil bath. (b) Picture

and schematic of a dewetting hole observed for a film of silicon oil on a flurinated

substrate. (c) Dewetting capillary number as a function of the receding contact

angle θr. L is the logarithmic factor appearing in Equation 9. Different colors

represent different molecular weights of the liquid. The error bars mainly reflect

the uncertainty on the contact angle. After Redon et al. (1991). (d) Cross-section

of the solution obtained by asymptotic matching of the receding front (black solid

line) and the advancing front (dashed red line). After Snoeijer & Eggers (2010).



48 Snoeijer & Andreotti

-10-2-5 10-305 10-3

0.884

0.882

0.880

0.878

0.876

0.874

0.872

0.870
10-9 10-8 10-7 10-6 10-5

60

40

20

0

Figure 7: (a) Relation between the apparent contact angle θap and the capillary

number Ca in a dip-coating experiment performed with liquid hydrogen on a

cesium substrate. The exponential dependence on velocity is the signature of a

thermally activated regime below Ca = 10−5. After Rolley & Guthmann (2007).

(b) Same for silicon oil on a fluorinated substrate (blue symbols, Delon et al.

(2008)) and for a drop of the same fluid flowing down an inclined plane (red,

orange and black symbols, Rio et al. (2005)). This quantitative agreement with

the multi-scale lubrication theory (Fig. 4b) points to a hydrodynamic regime

above Ca = 10−4.
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Figure 8: Inertial spreading of water drops of radius R = 0.82 mm on different

surfaces. After Bird et al. (2008). (b) Contact radius r as a function of time t for

different equilibrium contact angles. Data from Biance et al. (2004), Bird et al.

(2008), Winkels et al. (2012). The time is rescaled by the inertial time
√
ρR3/γ

based on density ρ and surface tension. Insets: initial stages of drop spreading

for a water drop and a simulated Lennard-Jones drop (Winkels et al. 2012).


