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We present the first experimental analysis of drop coalescence in a case where the dynamics is not
governed by viscous dissipation in the bulk nor by the inertia of the fluid flow, only by the geometry and
mobility of surfaces. We found such a situation in the physics of 3He crystals near 0.32 K where the latent
heat of crystallization vanishes. Two crystalline drops of 3He coalesce if their crystalline orientations
are identical: a neck forms after the contact at time t � 0, and the shape evolves towards that of one
convex crystal by local growth and melting in a fraction of a second. We have found that the neck radius
initially increases as t1=3, as predicted by Maris. This behavior is also expected for superfluid drops. It is
clearly distinguished from the logarithmic behavior and from the t1=2 power law which have been
predicted by Eggers et al. in more usual situations.
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When two liquid drops come into contact, a neck forms
whose radius Rn quickly grows as a function of time t.
This is the beginning of coalescence, whose study is
motivated not only by important applications (printing,
sintering, etc.) but also by fundamental considerations.
Coalescence is an example of singularity in fluid dynam-
ics for which at least three different scaling laws have
been proposed. Hopper [1] and Eggers [2] showed that, at
early times, the dynamics should be governed by viscous
dissipation in the bulk fluids, so that Rn should grow as
t ln��t=�R�, where R is the common radius of the two
coalescing drops before contact, � is the surface tension,
and � the viscosity of the liquid inside the drops. Some
experimental evidence for this viscous regime has been
found by Aarts et al. [3]. Eggers et al. also predicted a
crossover to an inertial regime where Rn / t1=2, when the
Reynolds number is much larger than 1. The latter behav-
ior is under active experimental study [4–7].

Maris [8] considered a different possible regime where
dissipation only occurs at surfaces that move with a finite
mobility. This should be the case for superfluids where the
bulk viscosity is zero, and for which Maris predicted a
t1=3 behavior. He further predicted that the same t1=3

power law should describe the coalescence of helium
crystals in their surrounding liquid phase; this is because
the physics is the same, dissipation occurring only at
surfaces. In the latter case, Maris obtained the precise
equation

R3
n �

6�k�
	
C

t; (1)

where � is the surface tension of the crystal, 
C is the
crystal density, and 	 � 2=R is the common initial cur-
vature of the two crystalline drops coming into contact;
the ‘‘growth coefficient’’ or ‘‘surface mobility’’ k charac-
terizes the dissipation at the crystal surface [9–12]. It
relates the growth velocity v to the difference in chemical
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potential per unit mass 
� between the crystal and the
liquid through the relation v � k
� � k��L ��C�. In
this particular case where the temperature is homogene-
ous, 
� is proportional to the pressure difference across
the moving surface, i.e., to the product �	. If one tried to
verify this behavior with two superfluid helium drops, the
coalescence would be very fast and difficult to study. Even
with 4He crystals, the growth dynamics is rather fast.
Maris had anticipated that 3He crystals could be a good
system to study near Tmin � 0:32 K, the minimum in the
melting curve where the latent heat vanishes. He proposed
that one somehow levitates two crystalline drops and
forces them to come into contact. For this to work, the
orientation of the two crystals would need to be identical
since otherwise, a grain boundary would form and co-
alescence would not occur. It happens that in 1989, three
of us [13] observed and recorded the coalescence of
identically oriented 3He crystals without the large mag-
nets which would be necessary for levitation. In this
article, we present an analysis of these 1989 recordings.
They concern several crystals with different radii at vari-
ous temperatures close to 0.32 K. We have found excellent
agreement with Maris’ predictions [8].

Figure 1 shows the experimental cell used by Graner
et al. [13] and Fig. 2 shows how a 3He crystal was growing
in it. At first sight, the growth looked like the flow of a
viscous liquid, but it was not. The 3He cell had two parts
connected by a vertical capillary (see Fig. 1), and it was
immersed in a 4He liquid bath which provided a good
thermal homogeneity. When increasing the pressure of
liquid 4He, the double membrane in the upper part of
the 3He cell was deformed and the 3He pressure increased.
When the 3He crystallization pressure was reached, the
first crystal seed happened to nucleate in the upper part. It
was grown to a large size by increasing the 4He pressure
further.When the 3He crystal was large enough, it started
invading the lower part, and became visible at the lower
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FIG. 2. Twelve images showing how a 3He crystal ‘‘flows’’
down from the upper part of the cell into its lower part. For
this recording, which took a few minutes, the temperature was
Tmin � 11 mK. The crystal first ‘‘drips’’ down, so that a crys-
talline ‘‘drop’’ forms at the bottom (a)–(c); then a second drop
appears (d) and comes into contact with the first one (e);
coalescence is observed (f) and can be quantitatively analyzed
(see Figs. 3 and 4). The second drop has exactly the same
crystalline orientation as the first one because this is not real
flow; it is local melting and growth of a single crystal which
keeps the same orientation all the time. A third drop forms and
coalesces again (g)–(j). Usually, the last drop (k) behaves
differently because, being smaller than the orifice, it falls in
the liquid and changes orientation before touching the lower
crystal. As a consequence, there is a grain boundary between
the two crystals which does not coalesce; the last drop keeps
round, moves to the right, and finally vanishes (l). At this
temperature, 3He crystals have no facets; they are rough in all
directions.

FIG. 1. The experimental cell where 3He crystals were grown
thanks to a flexible membrane. The lower part was 3.45 mm
wide and 3.27 mm high; it could be observed through windows
from the outside of the cryostat, as shown in Fig. 2.
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end of the capillary [see Fig. 2(a)]. At that moment, the
pressure was fixed and the shape evolved at constant total
crystal volume. By exchanging mass with its liquid phase,
i.e., by local growth and melting, the 3He crystal started
to move down because of gravity. The growth of usual
crystals is driven by temperature gradients, but here it is
different. The surrounding superfluid bath provides a
good thermal homogeneity; furthermore, near the melt-
ing curve minimum, the liquid-solid transition only de-
pends on pressure in a first order approximation (more
precisely, the difference in chemical potential 
� has no
linear term in T). This explains why the shape evolution
is driven only by gravity and surface tension.

At the surface of 3He crystals, facets appear only below
about 100 mK [14–19], so that their shape is rounded in
all directions at 320 mK. They look like transparent
honey flowing slowly down, although they are high qual-
ity single crystals. During their shape evolution, there is
no plastic deformation of their lattice, only growth some-
where and melting somewhere else. It is precisely this
kind of remarkable property that allowed unique studies
of crystal surfaces in helium: equilibrium crystal shapes
could often be reached very quickly (especially with 4He
crystals) [19]. These equilibrium shapes minimize the
sum of gravitational and surface energies, exactly as for
liquid drops.

For the ‘‘flow’’ of solid 3He to proceed through the
vertical capillary, a counter flow of mass was necessary
because the liquid density is smaller. A liquid channel
along the capillary wall could provide it. Another possi-
bility is that vacancies move up inside the 3He crystal,
because their density and their mobility are large near
Tmin [20]. After the crystalline drop reached the bottom
of the cell (b), it divided into two crystals (c). This
235301
‘‘dripping’’ must be due to the Rayleigh-Taylor instabil-
ity, i.e., to the crystal neck being too narrow to be stable
against capillary forces; we will analyze it in another
article, because the shape is clearly different from what is
observed with fluids and it deserves a detailed analysis.
For the understanding of the present article, it is only
important to realize that the lower crystal had exactly the
same orientation as the upper one. The next picture in
Fig. 2(d) shows that the lower crystal relaxed to an
equilibrium shape at the bottom of the cell while the
upper crystal kept ‘‘flowing’’ down until it came into
contact with the lower one [Fig. 2(e)]. At this moment,
there was no barrier against forming one single crystal
again, since there was no grain boundary; the two crystals
were nothing but two parts of the same previous crystal;
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they had the same orientation. This is why we observed a
rare and unusual event: the coalescence of two single
crystals in a short time (Fig. 3).

After one coalescence event took place, there was some
crystal remaining in the upper part of the cell, and it
started to flow down again, so that another coalescence
occurred [Fig. 2(g), 2(h), and 2(j)]. Usually, the last
crystalline drops behaved differently [Fig. 2(k) and
2(l)]. They were smaller than the capillary diameter
and fell down. During their motion they probably rotated
slightly, so that when touching the lower crystal, a
grain boundary formed and coalescence did not occur
[Fig. 2(k)]. On the contrary, a cusp appeared between the
two crystals and it took a much longer time for the small
crystal to melt in favor of the large one [Fig. 2(l)]. If
FIG. 3. Six successive images showing two 3He crystals ap-
proaching each other (a), touching (b), and forming a neck
which grows in time (c), (d), (e), and (f). The temperature is
Tmin � 11 mK as for Fig. 2. Each image shows a region which is
0.2 mm by 0.5 mm in size. The time interval between two
successive images is 20 ms.
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needed, this proved that we were not dealing with viscous
liquid matter but with single crystals. Note that, if we
tried to do the same experiment with 4He crystals, which
are hcp instead of bcc, coalescence would not necessarily
occur because stacking faults could form at the interface
between two hcp crystals.

For an ordinary camera, the video rate is 50 fields per
second, and coalescence takes typically 0.3 s; we could
analyze ten events, each of them with about 15 images.
Figure 3 shows six successive images. The two crystals
approach [Fig. 3(a)], come into contact [Fig. 3(b)], and
start coalescing [Fig. 3(c)–3(f)]. We have measured the
neck radius from the outside of the black line which is due
to refraction at the interface. For each event, we needed to
determine the exact contact time t � 0 with an accuracy
better than 20 ms. To do this, we tried various plots of all
our data. R3

n versus time always gave well-defined linear
behaviors at the beginning of the coalescence and a con-
tact time equal to that of the last frame without visible
neck �10 ms. This makes sense, in good agreement with
the prediction by Maris [8]. We used these plots to deter-
mine the time t � 0 for each event. On the contrary, plots
of R2

n versus time always gave infinite initial slope so that
we could rule out a t1=2 behavior of the neck radius. We
also ruled out the t ln��t� behavior, because fits with this
type of function gave contact times which were earlier by
one to five frames than the last one without visible neck.

Given this qualitative agreement with Maris’ predic-
tions, we have proceeded with a quantitative check of
Eq. (1). The coalescence is due to the growth of the neck at
a velocity dRn=dt under a difference in chemical potential
which is proportional to the curvature of the solid-liquid
surface. Note that gravity g plays a role only at scales
larger than the capillary length lc �

����������������
�=

g

p
� 1 mm,

so that it can be neglected in the coalescence analysis.
Furthermore, the surface tension is nearly isotropic, so
that the neck is circular. At the beginning of the coales-
cence, the curvature of the interface is dominated by the
curvature 1=r in the vertical plane. This is because the
shape of the two crystals evolve slowly, except at the
neck, where one curvature radius is r ’ 2R2

n=R while
the other curvature radius is Rn, much larger at small
time. The t1=3 behavior is the consequence of dRn=dt
being proportional to 1=r, i.e., to 1=R2

n. In our case, the
two crystal radii R1 and R2 are different from each other,
so that Eq. (1) has to be slightly modified. According to
the above reasoning, one should simply replace the cur-
vature 	 � 2=R in Eq. (1) by its more general form
�1=R1 � 1=R2�.

Figure 4 shows a comparison of our experimental
results with Maris’ theory at four different temperatures,
respectively T � Tmin � �7 mK;�11 mK;�16 mK, and
�20 mK. Since Eq. (1) is only valid when the neck radius
is much smaller than the crytal radii, we only kept data at
small times (t < 120 ms). At larger times, the radius
-3
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FIG. 4. The time variation of the cube of the neck radius
Rn, normalized by the mean curvature radius 2R1R2=�R1 � R2�
of the initial drops. Symbols correspond to different tempera-
tures, respectively T � Tmin � �7 mK;�11 mK;�16 mK,
and �20 mK with Tmin � 320 mK. Each group of data corre-
sponds to two or three events where crystals had different radii.
For each temperature, a line is also shown which corresponds to
the quantity 3�k�=
C, i.e., Maris’ theory which has no ad-
justable parameter.
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starts saturating, a phenomenon which could be antici-
pated from the weak curvature to the data in Fig. 4.

The coalescence is slower as the temperature difference
T � Tmin increases. This is because the growth coefficient
k increases with the latent heat of crystallization; we used
its experimental determination by Graner et al. [11–13]

k�1 � 550� �3:9
 106��T � Tmin�
2; (2)

with k�1 in cms�1 and T in K. The experimental data
represent ten recordings of coalescence with different
initial radii of the drops. After normalization of R3

n by
the mean curvature radius 2R1R2=�R1 � R2�, we found
consistency between all measurements. As can be seen, at
each temperature, data corresponding to different initial
radii agree not only with each other but also with theory.
This agreement involves no adjustable parameter. Most of
the experimental uncertainty comes from the temperature
measurement, and its typical magnitude is given by the
scatter in the data points.

In this article, we have presented experimental evi-
dence that the time variation of the coalescence between
two crystalline drops follows a critical behavior which is
different from what one expects for viscous liquid drops.
The coalescence is governed by surface curvature and
surface mobility instead of viscous dissipation in the bulk
or inertia. Our results show quantitative agreement with
the t1=3 prediction by Maris [8]. We believe that the same
235301
critical behavior should occur with superfluid liquid
drops, but coalescence would be so fast that the experi-
ment would be rather difficult to perform. In a future
article, we will describe dripping in the same system,
which we have also observed to be quite different from
the case of an ordinary liquid flow.

We are grateful to H. J. Maris for sending us his article
before publication and for several useful discussions of
our work.
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